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Radio frequency spectrum is an invaluable resource that calls for smart 

management solutions with the advent of the fifth generation wireless 

networks and the use of the Open RAN approach. Spectrum use analytics is 

the use of advanced data science methods for the interpretation of real-time 

data and historical data extracted from distributed radios on the network. 

Autoregressive integrated models and deep learning models provide the 

means for the prediction of capacity needs and congestion maps along the 

timeline and geography. Synergistic methods with RAN Intelligent Controller 

provide the means for closed-loop automation and the use of smart 

applications for automatic allocation according to demands for the use of the 

spectrum resource. The use of reinforcement learning provides models for the 

autonomous allocation process along the timeline with the interpretation of 

the environment and the use of rewards for the learning process. 

Implementation methods in this context involve the use of computing 

infrastructure and the integration with the existing legacy systems for the 

management of networks with testing for the continuity of the service. The 

use of smart spectrum management solutions provides benefits such as 

increased efficiency in the spectrum resource use, reduced latency in the 

networks, and increased quality of experience. 

Keywords: Spectrum Utilization Analytics, Open Ran Architecture, Time-

Series Forecasting, Ran Intelligent Controller, Reinforcement Learning 

 

1. Rarity of Spectrum & Allocation Issues in Contemporary Wireless Communications 

The radio frequency spectrum is an inherently limited natural resource in wireless communication 

networks, with the portion of the electromagnetic spectrum suitable for mobile broadband use limited 

by the combined effect of propagation properties and global regulatory regulation. The advent of the 

fifth-generation cellular network of unprecedented data speeds and lower latency performance 

requirements than all previous generations of wireless cellular networks has increased this demand 

for wireless spectrum. The introduction of network slicing into this situation raises more complexities 

with regard to spectrum resource management, with this technology now requiring spectrum isolation 

between several virtual networks, which require different levels of service and resource allocation 

objectives to be mutually fulfilled within the limited resource allocation of the radio frequency 

spectrum [1]. 

While network slicing represents an architectural evolution in wireless communications, it also poses 

resource management issues in terms of multidimensional resource allocation that go well beyond 

basic assignment of frequency bands. This is because network slice service map management is 

required by network service providers when assigning infrastructure resources and radio network 

resources in the radio access network and core network infrastructure, while respecting end-to-end 

service level agreements concerning various service categories, including massive enhanced mobile 
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broadband communications, massive machine-type communications, and ultra-reliable and low-

latency communications. Mobility management is more complex when network slicing is involved 

because user equipments change cells and hence network slice reconfiguration and spectrum 

reassignment are necessary in order to provide end-to-end service continuity. Radio resource 

management then needs to consider interference coordination, admission control, and handovers 

among other issues [1]. 

Strategies for spectrum allocation need to take into account the diverse nature of licensed frequency 

spectra. This ranges from low-band frequency below one gigahertz, which has range but lacks 

capacity; medium-band frequency between one and six gigahertz, which has medium range and 

medium capacity; and millimeter wave frequency above twenty-four gigahertz, which has huge 

bandwidth and very limited range. The technical issue of mitigating the interference complexity 

increases with the rising need to support macrocellular, microcellular, picocellular, and femtocellular 

communications within overlapping geographical regions and differing transmission powers and 

antenna size and type. Frameworks for dynamic spectrum sharing between fourth and fifth 

generations of communications technology further complicate the issue and need real-time spectrum 

allocation to retain compatibility while allowing for a smooth transition to next-generation 

communication technology. 

 

2. Spectrum Analytics Framework Based on Data and Telemetry 

For the purpose of comprehensive spectrum resource utilization monitoring, performance 

measurement data needs to be continuously collected from radio access network elements dispersed 

across the cell network, involving measurement instrumentation of physical layer indicators of 

channel state, medium access control layers of resource allocation statistics, and radio resource 

management decision records. Contemporary cellular base station technology provides fine-grained 

monitoring of network activity via standardized management interfaces to facilitate centralized 

analytical platforms to compile performance measurement data of synchronized measurement 

intervals across a network of thousands of cell sites. The magnitude of measurement intervals of 

collected network activity will influence the accuracy of analytical models to be developed, varying 

from millisecond intervals of resource block allocations to minute intervals of traffic volume 

contributions [3]. 

Data pipeline designs follow hierarchical processing topologies, with edge filtering and initial 

aggregations conducted at the edge RU sites to lower backhaul capacity-utilization factors ahead of the 

distribution of purified data to analytics analysis systems via the sanctioned data stream. Principles of 

network functions virtualization facilitate the elastic scaling of the data telemetry monitoring software 

components as lightweight software containers running atop general-purpose computing servers with 

arbitrarily elastic processing capacity scaling demand functions, independent of initial purpose-built 

hardware designs with limited capacity for downstream expansion via software updates alone [1]. 

Time-series storage systems optimized for rapid data ingestion velocities store the full historical 

record of measurements with user-specified retention periods to enable the support of operational 

monitoring analysis views as well as modeling analysis in the batch processing mode. Microservices-

oriented architecture decouples data ingestion, processing, and analysis phases to ensure fault 

tolerance with separate scaling of compute components depending upon the nature of computational 

workload [4]. 

Important new key performance indicators are those that focus on spectral occupancy information 

such as the proportion of available logical resource blocks actually reused in active communication 

transmissions, signal quality information describing the reference signal received power and signal-

to-interference plus noise ratio values in defined coverage regions, and data traffic information 

describing data volume throughputs on defined frequency bands and time windows. More 

sophisticated feature engineering methods relate new spectral usage information with additional 

metadata information such as geographical coordinates, time information describing hour and day of 
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the week, weather information, and so on, describing events such as sporting events or public 

assemblies with high abnormal usage patterns. Machine learning processing pipelines are used in data 

preprocessing to normalize data values coming from various hardware vendors, handle missing values 

resulting from data gathering failures, and identify points with abnormal values pointing towards 

hardware malfunctions or improper configuration affecting data analysis models [4]. 

 

Measurement 

Layer 
Telemetry Type 

Collection 

Interval 
Primary Purpose 

Processing 

Location 

Physical Layer 
Channel State 

Indicators 
Millisecond-scale 

Signal Quality 

Assessment 
Edge Radio Units 

MAC Layer 

Resource 

Allocation 

Statistics 

Sub-second 

intervals 

Spectrum Occupancy 

Tracking 
Edge Aggregation 

RRM Layer Decision Logs Second-scale Policy Validation 
Centralized 

Platform 

Network Layer 
Traffic Volume 

Aggregations 
Minute-scale Capacity Planning 

Analytics 

Platform 

Application Layer 

Quality of 

Experience 

Metrics 

Periodic sampling 
Service Level 

Monitoring 
Cloud Analytics 

Table 1: Telemetry Data Collection Parameters and Performance Metrics in Spectrum Analytics 

Framework [3, 4] 

 

3. Time Series Forecasting Methodologies for Spectrum Demand Prediction 

Statistical forecasting methods offer a set of basic solutions to the problem of predicting future 

patterns of use, autoregressive integrated moving averages being a set of models that yield 

interpretable models of temporal relationships within stationary or trend-stationary time series data. 

These traditional statistical models break down observed data into systematic parts consisting of 

deterministic trend, periodic seasonality, and stochastic error terms describing unpredictable 

changes. Identification algorithms examine the autocorrelation and partial autocorrelation functions 

to decide on the order of autoregressive and moving-average terms, and differencing operations 

render non-stationary data stationary when showing long-term trends of growth or decline. 

Estimation of parameters via maximum likelihood optimization delivers point and interval 

predictions of the uncertainty surrounding future predictions for use demand [7]. 

Designs inspired by recurrent neural networks defy some of the restrictions posed by linear statistical 

models when dealing with complex nonlinear dynamics and high-dimensional input space inherent in 

large-scale cellular networks. Long short-term memory neural networks are designed using special 

gating modules such as input gates for controlling information flows to the cells, forget gates for 

eliminating irrelevant information from previous cells along a particular temporal trajectory, and 

output gates for controlling activation values broadcasted into downstream layers of a neural network 

design. These design features make it possible for learning to proceed on a large temporal window by 

mitigating vanishing or exploding gradients inherited by recurrent architectures during 

backpropagation through time learning algorithms. Convolutional neural networks apply spatial 

filtering techniques for deriving a hierarchical representation of spectra measurement matrices 

through both time and space [7]. 

Training techniques for deep predictive models involve the use of supervised learning. For these 

models, the input variables and target values involve the sequence of spectrum usage in the past, while 

the target involves the values of the predicted forecasts. Optimization techniques involve the use of 

stochastic gradient descent with momentum and adaptive learning rate techniques, including the use 

of the Adam algorithm, aiming at the objective of minimizing the loss function that involves the mean 
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squared error or the mean absolute percentage error. Regularization techniques involve the use of 

techniques such as dropout, where the model randomly shuts down neurons during training, and the 

use of early stopping, where the optimization technique is paused once the performance of the model 

ceases to improve on the validation data. Techniques that involve the averaging of the predictions of 

multiple models that were trained separately involve the use of techniques that entail the use of 

weighted averages and the use of stack techniques, and these techniques have greater predictive 

accuracy, as explained by an author [8]. 

 

Measuremen
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Table 2: Comparative Analysis of Time-Series Forecasting Methodologies for Spectrum Demand 

Prediction [7, 8] 

 

4. Integration of Spectrum Intelligence with RAN Intelligent Controller Architecture 

The disaggregated RAN architecture defines a hierarchical control plane topology with a separation of 

intelligence functions from infrastructure resources using standardized open interfaces. The RAN 

intelligent controller framework includes near-real-time controllers with a timescale from ten 

milliseconds to one second for supporting closed-loop optimized control of RR management 

functions, in addition to non-real-time controllers for handling policy decision-making and model 

training processes with a timescale above one second. This timescale separation enables a suitable 

timescale for operation of spectrum analytics engines, where applications for demand forecasting and 

capacity planning are normally non-real-time intelligent apps with a decision-making timescale above 

one second [5]. 

Within the RIC framework, intelligent applications that reside in the RIC ecosystem can retrieve the 

state of the network through standardized northbound interfaces specified in open radio access 

network alliance documentation. The applications run optimization procedures that consider trade-

offs for multiple objectives, which range from the maximization of spectral efficiency to the 

distribution of loads in adjacent cells and comprehensive quality of experience fairness for different 

subscribers that have different service agreements. Artificial intelligence techniques used in intelligent 

applications can analyze real-time network data for anomalous usage patterns, foretell potential 

congestion points, and suggest preventive measures such as carrier aggregation or inter-cell handover 

optimization [5]. 

In closed-loop automation chains, the entire life cycle from monitoring and predictions, decision 

execution, and validation is managed, and the southbound transmission of configuration commands 

via E2 interfaces sends configuration updates from the RIC platforms to the radio resource 

management modules in the distributed or central units. E2 interface specifications also address 

parameter updates, policy compliance, and decision delegation between RIC platforms and the 

underlying radio access network components. Feedback routines assess measured values after 

executing actions and match predictions, allowing automated improvements of optimization 

strategies with reinforcement learning, where successful actions are reinforced and suboptimal 



Journal of Information Systems Engineering and Management 
2026, 11(1s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article 

 

 

 

 460 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

behavior is discouraged by reduced performance of the network. Security frameworks that safeguard 

control plane communications use mutual authentication, verification, and encryption to prevent 

malicious users from intercepting and altering spectrum allocation strategies [6]. 
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Table 3: RAN Intelligent Controller Architecture Components and Operational Timescales [5, 6] 

 

5. Adaptive Spectrum Allocation Using Reinforcement Learning Methods 

Reinforcement learning paradigms find applications in modeling spectrum management as a 

sequence of decision-making steps accomplished by autonomous entities perceiving network 

conditions, choosing resource allocation actions, and receiving reward signals defining measures of 

policy efficiency based on predefined operator targets. The MDP model describes network evolution 

based on state transition probabilities to reflect causal linkages between existing allocation actions 

and future network behaviors regarding statistical distributions related to spectrum usage, 

interference, and service qualities. Network state description models relevant network characteristics 

like intra-cell ratios of utilized/spectral resources, buffer sizes, inter-cell RSRP reporting between 

adjacent cells, and mobility parameters describing UE trace behaviors within network coverage 

regions [9]. 

Actions spaces represent the set of allocation choices fed into learning agents, which include 

frequency band mappings to target cells, transmission power control, modulation/coding schemes, 

and Beamforming parameters. Continuous action spaces enable precise control over parameters 

during resource allocation, whereas discrete action spaces facilitate learning by allowing allocation 

choices to be made between pre-defined configuration settings. Reward functions represent 

translation of high-level business goals into signals that influence optimization of learning policies, 

involving maximum throughput optimization, latency penalties, and fairness requirements 

disallowing starvation in low-priority traffic classes. Negative rewards corresponding to high 

overheads or termination of service trigger stability in allocation policies with potential adaptations 

according to network variations [9]. The policies are optimized for parameterized policies by deep 

neural networks to map the observed state to the probability distributions for actions, with actor-critic 

networks breaking down the learning process into distinct sub-problems for the value function and 

policies. The value function network predicts the weighted cumulative rewards for each state to 

provide baselines for variance reduction in the estimated gradient with Monte Carlo trajectory 

sampling. Experience buffers are used to store interaction traces as ordered tuples of states, actions, 

rewards, and next states to re-use for learning and to reduce instability in gradient-based 

optimizations by absorbing temporal correlations in trajectories. Multi-agent reinforcement learning 
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approaches extend to coordinated decisions for multiple cells/network spectra with centralized 

learning and decentralized control paradigms by training cooperative policies for offline learning 

stages and executing independently for runtime tasks [10].  
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Table 4: Reinforcement Learning Components for Adaptive Spectrum Allocation [9, 10] 

 

6. Operational Benefits and Implementation Factors for Intelligent Spectrum 

Management  

Predictive spectrum analytics provides quantifiable gains in terms of efficiency of network resource 

utilization by matching resource allocation capabilities and expected demand behavior patterns, 

minimizing occurrences and durations of congestion events, causing user experience dissatisfaction. 

Proactive resource allocation schemes migrate resources to involved cells when traffic starts 

increasing before quality of service is affected, maintaining system throughput at levels better than 

those promised in service-level agreements. By training algorithms on past experiences, machine 

learning algorithms detect repeat daily, weekly, and yearly demand behavior patterns to facilitate 

early resource migration when ahead of reactive schemes that only respond after congestion occurs. 

Latency improvement is obtained from resource allocation schedules when delay-sensitive traffic is 

scheduled when spectrum is limited, and other traffic is postponed when spectrum availability is high 

[11].  

The implementation methods of the spectrum intelligence systems involve computational 

infrastructure planning, from edge computing to cloud platforms for inference and training of the 

models, respectively. Graphics processing units can speed up the training of artificial networks, with 

parallel processing systems handling the high-dimensional space of states and large batches to 

increase the accuracy of the gradient estimates. The model deployment methods, however, consider 

the latency of the networks during inference, with model quantization reducing the precision from 

thirty-two-bit floating point to eight-bit integers for faster computations on the edge devices with 

negligible errors. The containerized systems enable easy migrations to different hardware platforms, 

with the orchestration systems considering the model versioning, release, and rollback operations [11].  
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Integration with the existing management frameworks for the broader network requires the 

formulation of middleware pieces to map the analytics-driven suggestions in vendor-agnostic 

configuration command formats required by the older element management frameworks. 

Standardization of interfaces for intent-based networks seeks to abstract the equipment-specificities 

through declarative policy definitions, making it easier for analytics frameworks to articulate the 

required outcome specifications without detailing the execution specifications. Validation and test 

methodologies are required to check the adherence to seamless service delivery by automated changes 

to the resource allocations, as well as within regulatory boundaries regarding the use of the allocated 

spectrum resources, coupled with maintaining interoperabilities between borders via standardized 

signal interfaces. Roll-out models starting from the 'shadow mode' operation phase, where the 

suggestions are computed but not acted upon, facilitate empirical verification regarding the 

correctness and safety of the policies before the activation of the closed-loop automation process in 

the production networks [12].  

 

Conclusion  

Smart spectrum management via analytics and forecasting is a basic need for large-scale Open RAN 

deployments facing a scarcity of frequencies and mounting capacity demands. The convergence of 

time-series forecasting approaches with a disaggregated RAN architecture assists in predictive 

resource allocation, foreseeing congestion points ahead of time, thereby preventing service quality 

degradation. RIC platforms support standardized hooks for integrating machine learning models 

engaged in perpetual analysis of time-series telemetry and providing optimization guidance targeted 

at spectral efficiency, latency needs, and quality of experience goals. Reinforcement learning 

algorithms move ahead of rule-based allocation approaches by learning adaptive policies through 

direct interaction with their environment, allowing automated spectrum resource allocation in 

dynamically varying network conditions, typical of dense-urban scenarios. To be successfully adopted, 

it is essential to be mindful of computing infrastructure support, interfacing with legacy support, and 

testing mechanisms guaranteeing automated actions preserve continuity of services and do not violate 

regulatory parameters. With evolving wireless systems embracing increasingly complex networking 

for a wide range of application domains, intelligence in spectrum resource allocation is deemed a 

pivotal facilitator of sustainable resource utilization and networking. 
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