
Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 290 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modernizing Insurance Systems with Java, Spring Boot, AWS,

and AI: A Comprehensive Technical Framework

Sreelatha Pasuparthi

KSRM College of Engineering, India

ARTICLE INFO ABSTRACT

Received: 03 Nov 2025

Revised: 21 Dec 2025

Accepted: 02 Jan 2026

The insurance sector's systems currently experience significant challenges in

modernization, which are caused by the monolithic systems developed in the older

technology systems. This article outlines the technical approach to the modernization

of insurance systems, which will require the effective utilization of Java, Spring Boot,

and Artificial Intelligence technology. The article covers the domain-driven design

approach, which will allow the software design to fit the domain of the insurance

business, and the microservices design approach, which will break down the

monolithic software systems into deployable units of software. Also, the article

highlights the cloud development approach, which will take advantage of the elastic

nature of the cloud and its various ready-to-use services. The article also highlights

the technical approach to the implementation of the insurance systems’ security,

which will cover the authentication and authorization of the software systems,

protecting the software systems from various threats, and the compliance of the

software systems with various regulatory requirements, which will be required by the

insurance systems to handle the insurance information of a sensitive nature. Other

aspects of the article include the event-driven approach, which will enable the

software systems to communicate effectively, and the Artificial Intelligence approach,

which will revolutionize the insurance systems through the application of Artificial

Intelligence technology. The article highlights the approach to the implementation of

the software delivery of the insurance systems, which will include the DevOps

approach, which will enable the software systems to be developed and delivered to the

insurance market effectively and efficiently.

Keywords: Domain-Driven Design, Microservices Architecture, Cloud-Native

Infrastructure, Artificial Intelligence Integration, Continuous Delivery

1. INTRODUCTION AND INSURANCE DOMAIN LANDSCAPE

The insurance sector involves intricate business processes that range from policy management, claims handling,

underwriting, billing, and customer service. Domain-Driven Design focuses on developing a profound knowledge of

the business domain and creating a ubiquitous language that eliminates semantic confusion between the technical

and business teams [1]. Policy management is responsible for the entire life cycle that covers the quote, issuance,

renewal, modification, and subsequent termination of insurance contracts. The contemporary policy management

solution needs to factor in dynamic product structures that cover a wide array of insurance lines, including property

and casualty, life and annuity, and health-related insurance. The solution needs dynamic rating engines that rate a

charge based on factors, automated underwriting that determines insurability, and document management

functionality that is capable of handling digital policy documentation [1].

Processing claims is the most customer-focused endeavor of an insurance enterprise, from the point of First Notice

of Loss until the validation, investigation, adjudication, and settlement stages. Modern claims processing systems

allow omnichannel handling capabilities such as web, mobile, telephony, and agent-assisted interfaces. The Spring

Framework offers end-to-end support for building enterprise-level Java-based systems, such as dependency

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 291 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

injection, aspect-oriented programming, and declarative transaction support, for the implementation of complex

business logics efficiently.[2] Automated validation rules will check the applicability of the coverage and the policy

status prior to the submission of claims into the respective adjudication queues. Links with external service

providers like car repair shops and medical providers facilitate the synchronization during the entire procedure for

the resolution of claims.[2]

The underwriting process evaluates risk profiles and defines policy acceptance and rate decisions. The traditional

underwriting cycle was intensive in terms of manual processing and reliance on human decisions. Contemporary

underwriting systems utilize rule engines and predictive processing for fast-tracking decisions and preserving risk

quality. The underwriting systems interface with credit reporting agencies, motor vehicle records, and specific data

vendors for accessing complete risk information. The underwriting decision mechanism is required to provide

thorough audit trails of all data inputs, decisions, and overrides for satisfying regulatory examination obligations.

Domain-Driven Design tenets emphasize mapping computer code alignment along domain lines and promoting

accurate domain representation in code by strategic and tactical patterns [1].

Billing and payment processing systems handle premium computation, issuance, payments, and collection

processes. The system is capable of supporting a variety of premium frequencies, various payment options such as

automatic clearing house and credit card payments, and customized payment terms. The integration with payment

processors and banks is capable of processing payments in real time. Spring Boot is based on the Spring Framework

with features such as auto-configuration, embedded containers for easier deployment, and production-level

functionalities like health checks and monitoring that meet operational needs [2].

2. ARCHITECTURAL EVOLUTION: FROM LEGACY MONOLITHS TO CLOUD-NATIVE

MICROSERVICES

Monolithic architectures are known to prevail in the existing insurance IT systems, which have been found to

possess single-unit architecture designs with functional capabilities embedded in separate but intricately

interwoven applications. Monolithic architecture designs create bottlenecks for digital transformations because an

update in any of the functional domains requires performing comprehensive regression testing of the entire

application. The release cycle can range from quarterly to semi-annual intervals because of modifications in more

than one team. Scalability issues are anticipated because the entire application collectively needs to have its

scalability addressed for handling an increase in the workload in instances when boosted demands are limited to

certain domains. Obsolescence in technology emerges because of insurance products using computing paradigms

through programming languages of past generation computing eras [3].

Microservices architecture effectively deals with these limitations by breaking down the monolithic applications

into distinct services, each representing different business capabilities. Microservices architectural style is based on

mapping the technology artifacts to business domains, thereby allowing organizations to organize their

development teams according to value streams, rather than focusing on the technology stacks. Each microservice

has a data model, business logic, and application programming interface contained in it, allowing it to work like an

autonomous system, which can then be developed, deployed, and scaled individually. The Strangler Fig pattern

helps in gradual migration by gradually diverting workloads from the legacy systems to the microservices in order

to allow organizations to test each microservice in the production environment before doing the next migration [3].

Cloud native architecture is an extension of microservices that harnesses the full power of cloud computing. Cloud

native apps fully take advantage of the benefits of the cloud and make use of the benefits of containerized

application technologies that include bundling the application and the dependencies together with the aim of

achieving the same environment from development to run time. Container orchestration tools take care of the

deployment, scale management, and management of the containerized apps that run on top of machine clusters

that can be physical or virtual. Kubernetes is a container orchestration solution that has been equipped with

functionalities that include rolling out and rolling back apps automatically. It, in turn, provides self-healing abilities

that can revive a failed container and redirect the workload to another node if the node is unresponsive [4].

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 292 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Communication patterns in microservices use both synchronous and asynchronous methods based on coupling and

consistency requirements. Synchronous communication using REST API or gRPC is useful for querying and

commands that require an immediate response. In addition, this method of communication introduces temporal

coupling because when the components are unavailable, it leads to cascading failures in the system. Asynchronous

methods of communication using message queues ensure that there is no temporal coupling since services run

independently, and this allows for differing speeds of execution. Patterns for event-driven programming allow

services to handle domain events in the system without necessarily knowing the source of the events [3].

Resilience design patterns are used to make the microservices architecture fault-tolerant and prevent cascade

failures and performance degradation. The use of circuit breakers is used to identify failed services and thus

prevents repeated calls to such failed services, thus further degrading the stability state of the whole system. The

Circuit Breaker design pattern keeps track of failed calls as well as successful calls, and once a threshold number of

failed calls is reached, it opens a circuit to make a cascade failure [Kamal, 2020]. The bulkhead design patterns

segregate resources used by different operations to prevent resource degradation in a particular domain because

resource degradation in a domain does not affect other domains. Kubernetes can autoscale pods horizontally, based

on metrics such as observed CPU utilization, as well as vertically, by adjusting the amount of CPU and Memory [4].

Architecture

Type

Deployment

Model

Scalability

Approach

Communication

Pattern
Failure Handling

Legacy

Monolith
Single Unit Vertical Scaling Tight Coupling Cascading Failures

Microservices
Independent

Services

Horizontal

Scaling
REST/gRPC Circuit Breakers

Cloud-Native
Container

Orchestration
Auto-Scaling

Asynchronous

Messaging
Self-Healing

Event-Driven
Distributed

Components

Elastic

Infrastructure
Event Streams Bulkhead Isolation

Table 1: Architectural Transformation Characteristics in Insurance Systems [3][4]

3. DOMAIN-DRIVEN DESIGN AND MODULAR ARCHITECTURE IN INSURANCE APPLICATIONS

Domain-Driven Design sets forth strategic and technical patterns for dealing with complexity in software systems

using domain knowledge. Strategic designs focus on knowing the domain and developing a ubiquitous language,

along with detecting bounded contexts that denote distinct semantic domains in the domain of interest. Bounded

contexts denote domains that explicitly denote conceptual domain models within which are different and may use

different models for identical conceptual domains [5].

For example, in various insurance domains, contexts are majorly dominated by core capabilities in domains such as

policy management, processing of claims, underwriting activities, and billing systems [5]. A ubiquitous language

provides a common vocabulary between domain experts and development teams to ensure that terms in code map

to business terms consistently. The language is created from collaborative modeling sessions where development

teams and business experts work together to analyze business scenarios related to the domain and come up with

key business rules. A ubiquitous language requires more than just naming and focuses on the semantics related to

concepts, their lifecycles, invariants, and operations. A bounded context of policy administration would use terms

such as “effective date,” “endorsement,” and “cancellation” in specific and common meanings associated across all

conversations related to businesses [5].

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 293 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Context mapping describes relationships between the contexts, explaining integration patterns, as well as

translation needs. Partnership relationships express dependence between contexts created by partnering groups

with common goals for success. Customer-supplier relationships address dependence from upstream to

downstream, with capabilities delivered from an upstream context and used by downstream contexts. Anti-

Corruption Layers provide translations between model-incompatible contexts, maintaining the independence of

downstream contexts from model modifications in the upstream context, as well as legacy system constraints. The

published language describes common data models required by multiple contexts during communications,

expressed in the form of schemas in registry repositories or application programming interfaces [5].

Tactical design patterns offer structures that can be used as building blocks in implementing domain models.

Entities model things with a distinct identity that survive transformations of state as well as system resets. They

represent descriptive data, termed as value objects, such as address, monetary value, coverage terms, focusing

instead on immutability, making them eligible to be shared or replaced without having issues of identity. An

aggregate establishes boundaries of consistency by identifying entities and value objects needing consistency with

respect to business invariants. The aggregate then provides a sole entry point of external access [6].

In relation to this, a policy aggregate may contain coverage entities as well as premium value objects, with the

policy being obligated by the sum of coverage premiums [6]. Domain services package business logic that has

nothing to do with a particular entity or value object. Domain events represent meaningful events in the domain.

They make it possible to loosely couple domain changes with the desired actions. Event-sourced data structures

store the state as a series of events rather than as a snapshot of the state. This makes it possible to perform

temporal queries. Repositories are abstracted persistence techniques. They offer collection-style APIs for accessing

and storing aggregate roots while obscuring database concerns in query languages, connection creation, and

transactions [6].

DDD

Component
Purpose

Insurance

Example
Boundary Type

Persistence

Pattern

Bounded

Context

Semantic

Boundary

Policy

Administration

Explicit Domain

Model
Context-Specific

Entity Unique Identity Policy Object Aggregate Root Identity-Based

Value Object Descriptive Data Premium Amount Immutable Type Replaceable

Aggregate
Consistency

Boundary

Policy with

Coverages
Transactional Unit Event-Sourced

Domain

Event

Business

Occurrence
PolicyIssued Event

Asynchronous

Trigger
Event Stream

Repository Data Abstraction PolicyRepository Collection Interface
Storage-

Independent

Table 2: Domain-Driven Design Components in Insurance Applications [5][6]

4. API DESIGN, INTEGRATION PATTERNS, AND EVENT-DRIVEN ARCHITECTURE

Application Programming Interface design establishes the contract through which systems interact, requiring

careful consideration of usability, stability, and extensibility. RESTful API design principles organize resources

around business entities, exposing them through uniform interfaces using standard HTTP methods. Resource-

oriented architectures use HTTP verbs to manipulate resources, with GET retrieving resource representations,

POST creating new resources, PUT updating existing resources with complete replacements, and DELETE

removing resources [7]. Resource URIs follow hierarchical structures reflecting domain relationships, and proper

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 294 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTTP status codes communicate operation results with specific ranges indicating success, client errors, or server

failures [7].

API versioning strategies maintain backward compatibility while enabling evolution. URI-based versioning embeds

version identifiers in paths, providing clear version boundaries, while header-based versioning uses custom headers

or content negotiation, maintaining clean URIs but requiring clients to specify versions explicitly. Regardless of

strategy, semantic versioning principles guide version numbering with major versions indicating breaking changes,

minor versions adding backward-compatible functionality, and patch versions addressing defects. Request and

response design balances expressiveness with simplicity, with JSON emerging as the predominant serialization

format due to widespread tooling support and human readability [7].

Event-driven architecture models system behavior as sequences of events representing significant domain

occurrences. Event sourcing ensures that all changes to application state are stored as a sequence of events,

allowing the system to reconstruct past states and providing a complete audit log of all changes. This pattern proves

particularly valuable when regulatory requirements mandate comprehensive audit trails, when debugging complex

scenarios requires understanding exactly how the system reached its current state, or when business analytics

teams need to query historical data [8]. Domain events communicate business state changes, including policy

issuance, claim approval, and payment receipt, containing sufficient context for consumers to process them

independently without synchronous queries back to producers [8].

Command Query Responsibility Segregation separates read and write models, optimizing each for its specific access

patterns. Command models enforce business rules and maintain consistency boundaries through aggregates, while

query models provide denormalized views optimized for specific read scenarios without the constraints of

normalized data models. This separation enables independent scaling, with read-heavy workloads scaling

horizontally across multiple query model instances while write operations concentrate on command model

instances. Event-driven synchronization propagates changes from command to query models through domain

events, accepting eventual consistency in exchange for scalability and performance benefits [8].

API gateway patterns consolidate cross-cutting concerns, including authentication, rate limiting, request routing,

and protocol translation. Gateways serve as the single entry point for all external requests, simplifying client

configuration and enabling centralized policy enforcement. Authentication and authorization mechanisms verify

caller identity and permissions before routing requests to backend services. Rate limiting prevents abuse and

protects backend systems from overload, while request and response transformation adapts between external

contracts and internal service interfaces [7].

Integratio

n Pattern

Communication

Style

Consistency

Model

Versioning

Strategy
Use Case

RESTful

API
Synchronous

Strong

Consistency

URI-Based

Versioning
Policy Queries

Event

Sourcing
Asynchronous

Eventual

Consistency
Schema Evolution Audit Trails

CQRS
Separated

Read/Write

Eventual

Consistency
Model Versioning

Claims

Processing

API

Gateway
Unified Entry Point Request-Response Header Versioning

External

Integration

Message

Queue
Decoupled Services

Eventual

Consistency
Message Versioning

Notification

Systems

Table 3: API Integration Patterns and Event Architecture [7][8]

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 295 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

5. SECURITY, COMPLIANCE, AND DATA PROTECTION IN INSURANCE PLATFORMS

Security architecture in insurance platforms requires defense-in-depth approaches, layering multiple protective

mechanisms to mitigate diverse threat vectors. The OWASP Top Ten identifies the most critical security risks to

web applications, including injection attacks, broken authentication, sensitive data exposure, XML external

entities, broken access control, security misconfiguration, cross-site scripting, insecure deserialization, using

components with known vulnerabilities, and insufficient logging and monitoring [9]. Perimeter security establishes

the first line of defense through firewalls, intrusion detection systems, and distributed denial-of-service protection.

Web application firewalls inspect HTTP traffic for common attack patterns, including SQL injection attempts,

cross-site scripting exploits, and command injection vulnerabilities [9].

Identity and access management form the foundation of security controls, ensuring that only authenticated and

authorized entities access protected resources. Multi-factor authentication combines multiple credential types,

including knowledge factors such as passwords, possession factors such as hardware tokens, and inherence factors

such as biometric characteristics to strengthen authentication assurance. OAuth 2.0 and OpenID Connect provide

standardized protocols for delegated authorization and federated authentication, enabling secure integration with

external identity providers. JSON Web Tokens encapsulate user identity and claims in cryptographically signed

formats, enabling stateless authentication suitable for distributed microservices architectures [9].

Authorization mechanisms control access to resources based on user identity, roles, and contextual attributes. Role-

Based Access Control assigns permissions to roles rather than individual users, simplifying administration as user

responsibilities change. Attribute-Based Access Control evaluates access decisions using attributes of users,

resources, actions, and environmental context, providing fine-grained control for complex scenarios. The principle

of least privilege grants users the minimum permissions necessary for their functions, limiting potential damage

from compromised accounts or insider threats. Security misconfiguration represents one of the most common

vulnerabilities, occurring when security settings are not defined, implemented, or maintained properly [9].

Data protection mechanisms safeguard sensitive information throughout its lifecycle from collection through

disposal. The NIST Cybersecurity Framework provides a policy framework of computer security guidance for how

organizations can assess and improve their ability to prevent, detect, and respond to cyber attacks. The Framework

Core consists of five concurrent and continuous Functions: Identify, Protect, Detect, Respond, and Recover, which

provide a strategic view of the lifecycle of an organization's management of cybersecurity risk [10]. Encryption at

rest protects stored data using industry-standard algorithms with key management systems controlling access to

encryption keys [10].

Audit logging captures security-relevant events for compliance monitoring, incident investigation, and forensic

analysis. Comprehensive logs record authentication attempts, authorization decisions, data access, configuration

changes, and security control modifications. Insufficient logging and monitoring represent a critical vulnerability

because without proper logging and monitoring, breaches cannot be detected, and attackers can persist in systems,

extracting, modifying, or destroying data [9]. The NIST Framework emphasizes the Detect function, which develops

and implements appropriate activities to identify the occurrence of a cybersecurity event through continuous

monitoring and detection processes [10].

Security

Layer

Control

Mechanism

Authentication

Method

Protection

Scope

Compliance

Function

Perimeter

Defense
Firewall/IDS Network-Level Infrastructure Identify Threats

Identity

Management

Multi-Factor

Auth
OAuth 2.0/JWT User Access Protect Resources

Authorization RBAC/ABAC Role-Based Control Resource Access Detect Violations

Data Encryption at Key Management Sensitive Data Respond to Incidents

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 296 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Protection Rest

Audit Logging Event Recording Centralized Logs System Activities Recover Operations

Table 4: Security and Compliance Framework Components [9][10]

6. AWS CLOUD INFRASTRUCTURE FOR SCALABLE INSURANCE SOLUTIONS

Amazon Web Services provides comprehensive cloud computing capabilities spanning compute, storage,

networking, databases, and specialized services essential for modern insurance applications. The AWS Well-

Architected Framework describes key concepts, design principles, and architectural best practices for designing and

running workloads in the cloud. The framework is built on six pillars: Operational Excellence, Security, Reliability,

Performance Efficiency, Cost Optimization, and Sustainability [11]. Each pillar includes design principles that guide

architectural decisions and best practices that provide specific guidance for implementing the principles [11].

Compute services support diverse workload patterns from traditional server-based applications to serverless event-

driven functions. Elastic Compute Cloud provides resizable virtual machines with various instance types optimized

for compute-intensive, memory-intensive, or storage-intensive workloads. Auto Scaling automatically adjusts

compute capacity based on demand patterns, maintaining performance during peak loads while reducing costs

during quiet periods. The Reliability pillar focuses on workloads performing their intended functions and how to

recover quickly from failure to meet demands, including distributed system design, recovery planning, and

adaptation to changing requirements [11].

Container orchestration through Elastic Container Service or Elastic Kubernetes Service streamlines the

deployment and management of microservices architectures. Containers package applications with their

dependencies, ensuring consistent execution environments across development, testing, and production

environments. Container orchestration platforms automate deployment, scaling, load balancing, and self-healing of

containerized applications. Service discovery mechanisms enable dynamic service location as instances start and

stop, while rolling updates deploy new application versions gradually, maintaining availability throughout

deployment cycles [11].

Storage services accommodate diverse data types and access patterns. Simple Storage Service provides object

storage for unstructured data, including policy documents, claims photos, and application logs, with durability

across multiple facilities. Storage classes with different performance and cost characteristics enable optimization

based on access patterns, with infrequent access and archival tiers significantly reducing costs for rarely accessed

data. The Cost Optimization pillar focuses on avoiding unnecessary costs by understanding spending over time and

controlling fund allocation, selecting appropriate resource types and quantities, and scaling to meet business needs

without overspending [11].

Database services span relational, NoSQL, in-memory, and graph databases, enabling workload-appropriate

selections. Relational Database Service provides managed PostgreSQL, MySQL, Oracle, and SQL Server databases

with automated backups, patching, and replication. DynamoDB offers single-digit millisecond latency and NoSQL

database scaling to accommodate millions of requests per second. The Performance Efficiency pillar focuses on

structured and streamlined allocation of IT and computing resources, including selecting resource types and sizes

optimized for workload requirements, monitoring performance, and making informed decisions to maintain

efficiency as business needs evolve [11].

7. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING INTEGRATION

Artificial Intelligence can revolutionize the workings of the insurance sector by automating certain existing human

tasks, enhancing human decision-making abilities, and allowing new modes of service delivery based upon the

capabilities of AI to identify patterns and make predictions. Deep learning is seen to be a sub-area of machine

learning that utilizes ‘neural networks with many layers to learn higher-level representations from raw data.’ Some

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 297 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

deep learning models include convolutional neural networks (for image processing), recurrent neural networks (for

sequential data), and transformers (for natural language processing) [12]. The machine learning cycle includes

problem definition, data selection and preparation, feature selection, training and evaluation, and monitoring [12].

Claims processing uses computer vision to evaluate accident damage based on pictures uploaded via smartphone

apps. Convolutional neural networks are trained on pictures to classify damage patterns and assign costs for repairs

based on hierarchical feature extraction. Natural language processing is used to derive structured information from

unstructured claim descriptions, police statements, and medical histories. Named Entity Recognition isolates

relevant entities such as individuals, geographic locations, and dates, while Relation Extraction reveals linking

entities such as cause and effect relationships and injuries sustained during accidents [12].

Anomaly detection and supervised learning techniques are used for fraud detection. Machine learning techniques

such as decision trees, forests, gradient boosting, and feedforward networks can be employed for modeling patterns

related to fraud based on past instances. Hands-On Machine Learning presents a detailed range of topics related to

the basics of machine learning, such as supervised learning methodologies, unsupervised learning methods,

feedforward networks, and real-world implementations using popular toolsets [13]. Characteristics extracted from

the claim, claimant, social network analysis, and external inputs are used for training a model to distinguish

between genuine and fraudulent claims [13].

Underwriting automation employs predictive models for risk assessment and pricing recommendations. The

gradient boosting models based on past policy and claim records predict loss costs for new business by aggregating

various weak predictive models to produce robust predictive models. The models employ conventional rating

variables, alternative data, and telematics data available in connected vehicles. The process for building a predictive

model using a machine learning system generally includes data exploration to gain insights into data distributions

and associations, followed by model development and hyperparameter tuning, and ending with testing on a hold-

out test dataset [13].

The customer service chatbots deal with the routine queries, and the complex queries are attended to by the agents.

Natural language understanding entails the interpretation of customer queries by mapping queries to the

corresponding intent by the text-classification algorithms. Dialog management refers to the ability of the chatbots

to maintain the conversation flow and assist the user in the end-to-end conversational interactions. Backend

integrations provide the necessary functionalities of fetching policy details, processing claims, and processing

payments. The chatbots learn from the conversations solved and become accurate by model re-training on the

production data to ensure continuous improvements to accuracy, as stated by [13].

8. DEVOPS, OBSERVABILITY, AND CONTINUOUS DELIVERY PRACTICES

The cultural norms and technical systems of DevOps allow for rapid and trustworthy delivery of software by

integrating the efforts of the development and operations staff. Continuous Delivery is the concept of the software

development life-cycle, in which the software is developed in such a way that it can easily be deployed to the

production environment at any point in time. The deployment pipeline offers automation of the application’s build,

deployment, testing, and release process, where every change in the code triggers the execution of the pipeline [14].

Infrastructure as Code describes infrastructure in terms of versioned configuration files that allow for

reproducibility of infrastructure changes [14].

Code integration in Continuous Integration strategies happens often, with code validation after each integration

through builds and tests. Version control tools allow tracing of code changes with a complete history of

modifications in code, which helps in parallel development of code by different teams working together.

Automation builds processes, compiles code, runs unit tests, does code analysis, and produces deployable packages.

CD pipeline involves a commit stage in which code compilation and unit testing are carried out, automated

acceptance testing, and capacity testing for assessing performance under loads [14].

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 298 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Continuous Delivery is an extension of Continuous Integration, encompassing the automation of deployment over

various environments. Deployment pipelines provide control over the movement of code from the development

stage to test, staging, and production environments, with various tests being performed at each level to ensure

functionality, performance, security, and compliance. In blue-green deployment, two copies of the production

environment are created, with rotation of users during deployment, facilitating immediate switching in case of

problems. In canary deployment, incremental user traffic routing can be performed based on health checks before

rolling out the application entirely [14].

The DevOps Handbook outlines the Three Ways that must be considered to fully understand the principles of

DevOps. The First Way is a focus on system thinking and fast flow from the development environment to the

operation environment and ultimately to the customers. The Second Way is an “emphasis on amplifying the

feedback loops,” meaning that the goals of the organization should be focused on preventing problems from

recurring. The Third Way is the “culture of CIE and L,” which stands for the culture of continual experimentation

and learning. “The First Way provides the ‘how’ of improved IT in the contemporary digitized organization.”

Service level goals are quantified by measuring service level indicators related to specified system properties.

Availability is a measure of systems’ performance in responding successfully to requests by a certain percentage of

time, delay metrics gauge the time taken by systems in responding, usually in percentile values, and error rates are

a measure of requests that produce errors. Error budgets are set in such a way that a balance between innovation

speed and need for reliability is achieved, based on values that determine acceptable unreliability in terms of

downtime or error values [15]. Incident management processes include roles, communication, and escalation

procedures for disruptions in services, and root causes for prevention in postmortem analysis of disruptions [15].

CONCLUSION

Modernization in insurance systems also demands end-to-end transformation in architectural patterns,

development methodologies, platform infrastructures, and intelligent automation technologies. Domain-driven

design methodologies help in strictly demarcating business capabilities, retaining semantics in systems in a

common language, and bounded context representation. Microservices architecture helps in carving structurally

autonomous applications in BDSD, allowing different teams for individual developments and strategic scaling

according to concrete component requirements. Cloud Native platform on Amazon Web Services ensures dynamic

scaling facilities for computing, databases, storage, and specific services for insurance. Security systems,

implementing Defense-In-Depth, ensure secure mitigation against important and sensitive data involving direct

users in multi-layered access, authorization, encryption, and overall auditing trails fully satisfying regulation

standards. Event-Stimulated Systems make opportunistic decoupling in different applications in message

transmission and domain events, encouraging real-time systems representation. Integration in Artificial

Intelligence associates complete automation in claim settlement, detection of fraud, optimization in underwriting,

and CB in different customer interactions. DevOps methodologies involving complete integration of continuous

development, outputs, infrastructures, and observability assure accelerated deployment, retaining overall system

reliability. Organizations embracing these technologies advance in effectively catering to innovation in insurance

offerings, overall clinch in superior customer service, alongside operational benefits in competitive digital

platforms.

REFERENCES

[1] Eric Evans, "Domain-Driven Design: Tackling Complexity in the Heart of Software," 2003. Available:

https://fabiofumarola.github.io/nosql/readingMaterial/Evans03.pdf

[2] Spring Framework Documentation, "Spring Boot Reference Guide." Available: https://docs.spring.io/spring-

boot/docs/2.1.1.RELEASE/reference/html/index.html

https://fabiofumarola.github.io/nosql/readingMaterial/Evans03.pdf
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/index.html
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/index.html

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 299 Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[3] Chris Richardson, "Microservices Patterns: With Examples in Java," Manning Publications. Available:

https://github.com/AAAAAIstudy/bookshelf-

1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf

[4] Kubernetes, "Kubernetes Documentation." Available: https://kubernetes.io/docs/

[5] Vaughn Vernon, "Implementing Domain-Driven Design," O'Reilly, 2013. Available:

https://www.oreilly.com/library/view/implementing-domain-driven-design/9780133039900/

[6] Vaughn Vernon, "Domain-Driven Design Distilled," O'Reilly, 2016. Available:

https://www.oreilly.com/library/view/domain-driven-design-distilled/9780134434964/

[7] Leonard Richardson and Sam Ruby, "RESTful Web Services," O'Reilly Media, 2007. Available:

https://www.oreilly.com/library/view/restful-web-services/9780596529260/

[8] Microsoft, "Event Sourcing pattern." Available: https://learn.microsoft.com/en-

us/azure/architecture/patterns/event-sourcing

[9] OWASP Foundation, "The OWASP Top Ten." Available: https://www.owasptopten.org/

[10] National Institute of Standards and Technology, "The NIST Cybersecurity

Framework (CSF) 2.0," 2024. Available: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf

[11] Amazon Web Services, "AWS Well-Architected Framework." Available:

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

[12] GeeksforGeeks, "Introduction to Deep Learning," 2025. Available: https://www.geeksforgeeks.org/deep-

learning/introduction-deep-learning/

[13] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition,"

O'Reilly Media, 2019. Available: https://www.oreilly.com/library/view/hands-on-machine-

learning/9781492032632/

[14] David Farley and Jez Humble, "Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation," O'Reilly, 2010. Available: https://www.oreilly.com/library/view/continuous-

delivery-reliable/9780321670250/

[15] Gene Kim et al., "The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in

Technology Organizations," IT Revolution Press, 2016. Available: https://dl.acm.org/doi/10.5555/3044729

https://github.com/AAAAAIstudy/bookshelf-1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf
https://github.com/AAAAAIstudy/bookshelf-1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf
https://kubernetes.io/docs/
https://www.oreilly.com/library/view/implementing-domain-driven-design/9780133039900/
https://www.oreilly.com/library/view/domain-driven-design-distilled/9780134434964/
https://www.oreilly.com/library/view/restful-web-services/9780596529260/
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://www.owasptopten.org/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://www.geeksforgeeks.org/deep-learning/introduction-deep-learning/
https://www.geeksforgeeks.org/deep-learning/introduction-deep-learning/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/
https://www.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/
https://dl.acm.org/doi/10.5555/3044729

