Journal of Information Systems Engineering and Management
2026, 11(18)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Modernizing Insurance Systems with Java, Spring Boot, AWS,
and Al: A Comprehensive Technical Framework

Sreelatha Pasuparthi
KSRM College of Engineering, India

ARTICLE INFO ABSTRACT

Received: 03 Nov 2025 The insurance sector's systems currently experience significant challenges in
modernization, which are caused by the monolithic systems developed in the older
technology systems. This article outlines the technical approach to the modernization
of insurance systems, which will require the effective utilization of Java, Spring Boot,
and Artificial Intelligence technology. The article covers the domain-driven design
approach, which will allow the software design to fit the domain of the insurance
business, and the microservices design approach, which will break down the
monolithic software systems into deployable units of software. Also, the article
highlights the cloud development approach, which will take advantage of the elastic
nature of the cloud and its various ready-to-use services. The article also highlights
the technical approach to the implementation of the insurance systems’ security,
which will cover the authentication and authorization of the software systems,
protecting the software systems from various threats, and the compliance of the
software systems with various regulatory requirements, which will be required by the
insurance systems to handle the insurance information of a sensitive nature. Other
aspects of the article include the event-driven approach, which will enable the
software systems to communicate effectively, and the Artificial Intelligence approach,
which will revolutionize the insurance systems through the application of Artificial
Intelligence technology. The article highlights the approach to the implementation of
the software delivery of the insurance systems, which will include the DevOps
approach, which will enable the software systems to be developed and delivered to the
insurance market effectively and efficiently.

Revised: 21 Dec 2025

Accepted: 02 Jan 2026

Keywords: Domain-Driven Design, Microservices Architecture, Cloud-Native
Infrastructure, Artificial Intelligence Integration, Continuous Delivery

1. INTRODUCTION AND INSURANCE DOMAIN LANDSCAPE

The insurance sector involves intricate business processes that range from policy management, claims handling,
underwriting, billing, and customer service. Domain-Driven Design focuses on developing a profound knowledge of
the business domain and creating a ubiquitous language that eliminates semantic confusion between the technical
and business teams [1]. Policy management is responsible for the entire life cycle that covers the quote, issuance,
renewal, modification, and subsequent termination of insurance contracts. The contemporary policy management
solution needs to factor in dynamic product structures that cover a wide array of insurance lines, including property
and casualty, life and annuity, and health-related insurance. The solution needs dynamic rating engines that rate a
charge based on factors, automated underwriting that determines insurability, and document management
functionality that is capable of handling digital policy documentation [1].

Processing claims is the most customer-focused endeavor of an insurance enterprise, from the point of First Notice
of Loss until the validation, investigation, adjudication, and settlement stages. Modern claims processing systems
allow omnichannel handling capabilities such as web, mobile, telephony, and agent-assisted interfaces. The Spring
Framework offers end-to-end support for building enterprise-level Java-based systems, such as dependency

Copyright © 2026 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 290

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

injection, aspect-oriented programming, and declarative transaction support, for the implementation of complex
business logics efficiently.[2] Automated validation rules will check the applicability of the coverage and the policy
status prior to the submission of claims into the respective adjudication queues. Links with external service
providers like car repair shops and medical providers facilitate the synchronization during the entire procedure for
the resolution of claims.[2]

The underwriting process evaluates risk profiles and defines policy acceptance and rate decisions. The traditional
underwriting cycle was intensive in terms of manual processing and reliance on human decisions. Contemporary
underwriting systems utilize rule engines and predictive processing for fast-tracking decisions and preserving risk
quality. The underwriting systems interface with credit reporting agencies, motor vehicle records, and specific data
vendors for accessing complete risk information. The underwriting decision mechanism is required to provide
thorough audit trails of all data inputs, decisions, and overrides for satisfying regulatory examination obligations.
Domain-Driven Design tenets emphasize mapping computer code alignment along domain lines and promoting
accurate domain representation in code by strategic and tactical patterns [1].

Billing and payment processing systems handle premium computation, issuance, payments, and collection
processes. The system is capable of supporting a variety of premium frequencies, various payment options such as
automatic clearing house and credit card payments, and customized payment terms. The integration with payment
processors and banks is capable of processing payments in real time. Spring Boot is based on the Spring Framework
with features such as auto-configuration, embedded containers for easier deployment, and production-level
functionalities like health checks and monitoring that meet operational needs [2].

2. ARCHITECTURAL EVOLUTION: FROM LEGACY MONOLITHS TO CLOUD-NATIVE
MICROSERVICES

Monolithic architectures are known to prevail in the existing insurance IT systems, which have been found to
possess single-unit architecture designs with functional capabilities embedded in separate but intricately
interwoven applications. Monolithic architecture designs create bottlenecks for digital transformations because an
update in any of the functional domains requires performing comprehensive regression testing of the entire
application. The release cycle can range from quarterly to semi-annual intervals because of modifications in more
than one team. Scalability issues are anticipated because the entire application collectively needs to have its
scalability addressed for handling an increase in the workload in instances when boosted demands are limited to
certain domains. Obsolescence in technology emerges because of insurance products using computing paradigms
through programming languages of past generation computing eras [3].

Microservices architecture effectively deals with these limitations by breaking down the monolithic applications
into distinct services, each representing different business capabilities. Microservices architectural style is based on
mapping the technology artifacts to business domains, thereby allowing organizations to organize their
development teams according to value streams, rather than focusing on the technology stacks. Each microservice
has a data model, business logic, and application programming interface contained in it, allowing it to work like an
autonomous system, which can then be developed, deployed, and scaled individually. The Strangler Fig pattern
helps in gradual migration by gradually diverting workloads from the legacy systems to the microservices in order
to allow organizations to test each microservice in the production environment before doing the next migration [3].

Cloud native architecture is an extension of microservices that harnesses the full power of cloud computing. Cloud
native apps fully take advantage of the benefits of the cloud and make use of the benefits of containerized
application technologies that include bundling the application and the dependencies together with the aim of
achieving the same environment from development to run time. Container orchestration tools take care of the
deployment, scale management, and management of the containerized apps that run on top of machine clusters
that can be physical or virtual. Kubernetes is a container orchestration solution that has been equipped with
functionalities that include rolling out and rolling back apps automatically. It, in turn, provides self-healing abilities
that can revive a failed container and redirect the workload to another node if the node is unresponsive [4].

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 291

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/

Research Article

Communication patterns in microservices use both synchronous and asynchronous methods based on coupling and
consistency requirements. Synchronous communication using REST API or gRPC is useful for querying and
commands that require an immediate response. In addition, this method of communication introduces temporal
coupling because when the components are unavailable, it leads to cascading failures in the system. Asynchronous
methods of communication using message queues ensure that there is no temporal coupling since services run
independently, and this allows for differing speeds of execution. Patterns for event-driven programming allow
services to handle domain events in the system without necessarily knowing the source of the events [3].

Resilience design patterns are used to make the microservices architecture fault-tolerant and prevent cascade
failures and performance degradation. The use of circuit breakers is used to identify failed services and thus
prevents repeated calls to such failed services, thus further degrading the stability state of the whole system. The
Circuit Breaker design pattern keeps track of failed calls as well as successful calls, and once a threshold number of
failed calls is reached, it opens a circuit to make a cascade failure [Kamal, 2020]. The bulkhead design patterns
segregate resources used by different operations to prevent resource degradation in a particular domain because
resource degradation in a domain does not affect other domains. Kubernetes can autoscale pods horizontally, based
on metrics such as observed CPU utilization, as well as vertically, by adjusting the amount of CPU and Memory [4].

Architecture | Deployment Scalability Communication . .
Fail Handl
Type Model Approach Pattern ailure Handling
Legacy
Monolith Single Unit Vertical Scaling Tight Coupling Cascading Failures
Microservices Indepe.n dent Horlz?ntal REST/gRPC Circuit Breakers
Services Scaling
. i . h .
Cloud-Native Contalne.r Auto-Scaling Async ronous Self-Healing
Orchestration Messaging
Event-Driven Distributed Elastic Event Streams Bulkhead Isolation
Components Infrastructure

Table 1: Architectural Transformation Characteristics in Insurance Systems [3][4]

3. DOMAIN-DRIVEN DESIGN AND MODULAR ARCHITECTURE IN INSURANCE APPLICATIONS

Domain-Driven Design sets forth strategic and technical patterns for dealing with complexity in software systems
using domain knowledge. Strategic designs focus on knowing the domain and developing a ubiquitous language,
along with detecting bounded contexts that denote distinct semantic domains in the domain of interest. Bounded
contexts denote domains that explicitly denote conceptual domain models within which are different and may use
different models for identical conceptual domains [5].

For example, in various insurance domains, contexts are majorly dominated by core capabilities in domains such as
policy management, processing of claims, underwriting activities, and billing systems [5]. A ubiquitous language
provides a common vocabulary between domain experts and development teams to ensure that terms in code map
to business terms consistently. The language is created from collaborative modeling sessions where development
teams and business experts work together to analyze business scenarios related to the domain and come up with
key business rules. A ubiquitous language requires more than just naming and focuses on the semantics related to
concepts, their lifecycles, invariants, and operations. A bounded context of policy administration would use terms
such as “effective date,” “endorsement,” and “cancellation” in specific and common meanings associated across all
conversations related to businesses [5].

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 292

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/

Research Article

Context mapping describes relationships between the contexts, explaining integration patterns, as well as
translation needs. Partnership relationships express dependence between contexts created by partnering groups
with common goals for success. Customer-supplier relationships address dependence from upstream to
downstream, with capabilities delivered from an upstream context and used by downstream contexts. Anti-
Corruption Layers provide translations between model-incompatible contexts, maintaining the independence of
downstream contexts from model modifications in the upstream context, as well as legacy system constraints. The
published language describes common data models required by multiple contexts during communications,
expressed in the form of schemas in registry repositories or application programming interfaces [5].

Tactical design patterns offer structures that can be used as building blocks in implementing domain models.
Entities model things with a distinct identity that survive transformations of state as well as system resets. They
represent descriptive data, termed as value objects, such as address, monetary value, coverage terms, focusing
instead on immutability, making them eligible to be shared or replaced without having issues of identity. An
aggregate establishes boundaries of consistency by identifying entities and value objects needing consistency with
respect to business invariants. The aggregate then provides a sole entry point of external access [6].

In relation to this, a policy aggregate may contain coverage entities as well as premium value objects, with the
policy being obligated by the sum of coverage premiums [6]. Domain services package business logic that has
nothing to do with a particular entity or value object. Domain events represent meaningful events in the domain.
They make it possible to loosely couple domain changes with the desired actions. Event-sourced data structures
store the state as a series of events rather than as a snapshot of the state. This makes it possible to perform
temporal queries. Repositories are abstracted persistence techniques. They offer collection-style APIs for accessing
and storing aggregate roots while obscuring database concerns in query languages, connection creation, and
transactions [6].

DDD Purpose Insurance Boundary Type Persistence
Component P Example Yy Pattern
Bounded Semantic Policy Explicit Domain Context-Specific
Context Boundary Administration Model P
Entity Unique Identity Policy Object Aggregate Root Identity-Based
Value Object Descriptive Data | Premium Amount Immutable Type Replaceable
Aggregate Consistency Policy with Transactional Unit Event-Sourced

Boundary Coverages
Domain Business PolicyIssued Event Async'hronous Event Stream
Event Occurrence Trigger
Repository Data Abstraction | PolicyRepository Collection Interface In(Slz(;)I;iiggént

Table 2: Domain-Driven Design Components in Insurance Applications [5][6]

4. API DESIGN, INTEGRATION PATTERNS, AND EVENT-DRIVEN ARCHITECTURE

Application Programming Interface design establishes the contract through which systems interact, requiring
careful consideration of usability, stability, and extensibility. RESTful API design principles organize resources
around business entities, exposing them through uniform interfaces using standard HTTP methods. Resource-
oriented architectures use HTTP verbs to manipulate resources, with GET retrieving resource representations,
POST creating new resources, PUT updating existing resources with complete replacements, and DELETE
removing resources [7]. Resource URIs follow hierarchical structures reflecting domain relationships, and proper

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 293

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/

Research Article

HTTP status codes communicate operation results with specific ranges indicating success, client errors, or server
failures [7].

API versioning strategies maintain backward compatibility while enabling evolution. URI-based versioning embeds
version identifiers in paths, providing clear version boundaries, while header-based versioning uses custom headers
or content negotiation, maintaining clean URIs but requiring clients to specify versions explicitly. Regardless of
strategy, semantic versioning principles guide version numbering with major versions indicating breaking changes,
minor versions adding backward-compatible functionality, and patch versions addressing defects. Request and
response design balances expressiveness with simplicity, with JSON emerging as the predominant serialization
format due to widespread tooling support and human readability [7].

Event-driven architecture models system behavior as sequences of events representing significant domain
occurrences. Event sourcing ensures that all changes to application state are stored as a sequence of events,
allowing the system to reconstruct past states and providing a complete audit log of all changes. This pattern proves
particularly valuable when regulatory requirements mandate comprehensive audit trails, when debugging complex
scenarios requires understanding exactly how the system reached its current state, or when business analytics
teams need to query historical data [8]. Domain events communicate business state changes, including policy
issuance, claim approval, and payment receipt, containing sufficient context for consumers to process them
independently without synchronous queries back to producers [8].

Command Query Responsibility Segregation separates read and write models, optimizing each for its specific access
patterns. Command models enforce business rules and maintain consistency boundaries through aggregates, while
query models provide denormalized views optimized for specific read scenarios without the constraints of
normalized data models. This separation enables independent scaling, with read-heavy workloads scaling
horizontally across multiple query model instances while write operations concentrate on command model
instances. Event-driven synchronization propagates changes from command to query models through domain
events, accepting eventual consistency in exchange for scalability and performance benefits [8].

API gateway patterns consolidate cross-cutting concerns, including authentication, rate limiting, request routing,
and protocol translation. Gateways serve as the single entry point for all external requests, simplifying client
configuration and enabling centralized policy enforcement. Authentication and authorization mechanisms verify
caller identity and permissions before routing requests to backend services. Rate limiting prevents abuse and
protects backend systems from overload, while request and response transformation adapts between external
contracts and internal service interfaces [7].

Integratio | Communication Consistency Versioning Use Case
n Pattern Style Model Strategy
RESTful Strong URI-Based . .
API Synchronous Consistency Versioning Policy Queries
E E 1 . . .
Vent' Asynchronous ven tua Schema Evolution Audit Trails
Sourcing Consistency
Separated Eventual . Claims
CQRS Read/Write Consistency Model Versioning Processing
API . . . External
Gateway Unified Entry Point | Request-Response | Header Versioning Integration
M . E 1 - ificati
essage Decoupled Services ven tua Message Versioning Notification
Queue Consistency Systems

Table 3: API Integration Patterns and Event Architecture [7][8]

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

294

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

5. SECURITY, COMPLIANCE, AND DATA PROTECTION IN INSURANCE PLATFORMS

Security architecture in insurance platforms requires defense-in-depth approaches, layering multiple protective
mechanisms to mitigate diverse threat vectors. The OWASP Top Ten identifies the most critical security risks to
web applications, including injection attacks, broken authentication, sensitive data exposure, XML external
entities, broken access control, security misconfiguration, cross-site scripting, insecure deserialization, using
components with known vulnerabilities, and insufficient logging and monitoring [9]. Perimeter security establishes
the first line of defense through firewalls, intrusion detection systems, and distributed denial-of-service protection.
Web application firewalls inspect HTTP traffic for common attack patterns, including SQL injection attempts,
cross-site scripting exploits, and command injection vulnerabilities [9].

Identity and access management form the foundation of security controls, ensuring that only authenticated and
authorized entities access protected resources. Multi-factor authentication combines multiple credential types,
including knowledge factors such as passwords, possession factors such as hardware tokens, and inherence factors
such as biometric characteristics to strengthen authentication assurance. OAuth 2.0 and OpenID Connect provide
standardized protocols for delegated authorization and federated authentication, enabling secure integration with
external identity providers. JSON Web Tokens encapsulate user identity and claims in cryptographically signed
formats, enabling stateless authentication suitable for distributed microservices architectures [9].

Authorization mechanisms control access to resources based on user identity, roles, and contextual attributes. Role-
Based Access Control assigns permissions to roles rather than individual users, simplifying administration as user
responsibilities change. Attribute-Based Access Control evaluates access decisions using attributes of users,
resources, actions, and environmental context, providing fine-grained control for complex scenarios. The principle
of least privilege grants users the minimum permissions necessary for their functions, limiting potential damage
from compromised accounts or insider threats. Security misconfiguration represents one of the most common
vulnerabilities, occurring when security settings are not defined, implemented, or maintained properly [9].

Data protection mechanisms safeguard sensitive information throughout its lifecycle from collection through
disposal. The NIST Cybersecurity Framework provides a policy framework of computer security guidance for how
organizations can assess and improve their ability to prevent, detect, and respond to cyber attacks. The Framework
Core consists of five concurrent and continuous Functions: Identify, Protect, Detect, Respond, and Recover, which
provide a strategic view of the lifecycle of an organization's management of cybersecurity risk [10]. Encryption at
rest protects stored data using industry-standard algorithms with key management systems controlling access to
encryption keys [10].

Audit logging captures security-relevant events for compliance monitoring, incident investigation, and forensic
analysis. Comprehensive logs record authentication attempts, authorization decisions, data access, configuration
changes, and security control modifications. Insufficient logging and monitoring represent a critical vulnerability
because without proper logging and monitoring, breaches cannot be detected, and attackers can persist in systems,
extracting, modifying, or destroying data [9]. The NIST Framework emphasizes the Detect function, which develops
and implements appropriate activities to identify the occurrence of a cybersecurity event through continuous
monitoring and detection processes [10].

Security Control Authentication Protection Compliance
Layer Mechanism Method Scope Function

Perimeter Firewall/IDS Network-Level Infrastructure Identify Threats
Defense
Identity Multi-Factor OAuth 2.0/JWT User Access Protect Resources
Management Auth
Authorization RBAC/ABAC Role-Based Control | Resource Access Detect Violations
Data Encryption at Key Management Sensitive Data Respond to Incidents

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 295

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Protection Rest
Audit Logging | Event Recording Centralized Logs System Activities Recover Operations

Table 4: Security and Compliance Framework Components [9][10]

6. AWS CLOUD INFRASTRUCTURE FOR SCALABLE INSURANCE SOLUTIONS

Amazon Web Services provides comprehensive cloud computing capabilities spanning compute, storage,
networking, databases, and specialized services essential for modern insurance applications. The AWS Well-
Architected Framework describes key concepts, design principles, and architectural best practices for designing and
running workloads in the cloud. The framework is built on six pillars: Operational Excellence, Security, Reliability,
Performance Efficiency, Cost Optimization, and Sustainability [11]. Each pillar includes design principles that guide
architectural decisions and best practices that provide specific guidance for implementing the principles [11].

Compute services support diverse workload patterns from traditional server-based applications to serverless event-
driven functions. Elastic Compute Cloud provides resizable virtual machines with various instance types optimized
for compute-intensive, memory-intensive, or storage-intensive workloads. Auto Scaling automatically adjusts
compute capacity based on demand patterns, maintaining performance during peak loads while reducing costs
during quiet periods. The Reliability pillar focuses on workloads performing their intended functions and how to
recover quickly from failure to meet demands, including distributed system design, recovery planning, and
adaptation to changing requirements [11].

Container orchestration through Elastic Container Service or Elastic Kubernetes Service streamlines the
deployment and management of microservices architectures. Containers package applications with their
dependencies, ensuring consistent execution environments across development, testing, and production
environments. Container orchestration platforms automate deployment, scaling, load balancing, and self-healing of
containerized applications. Service discovery mechanisms enable dynamic service location as instances start and
stop, while rolling updates deploy new application versions gradually, maintaining availability throughout
deployment cycles [11].

Storage services accommodate diverse data types and access patterns. Simple Storage Service provides object
storage for unstructured data, including policy documents, claims photos, and application logs, with durability
across multiple facilities. Storage classes with different performance and cost characteristics enable optimization
based on access patterns, with infrequent access and archival tiers significantly reducing costs for rarely accessed
data. The Cost Optimization pillar focuses on avoiding unnecessary costs by understanding spending over time and
controlling fund allocation, selecting appropriate resource types and quantities, and scaling to meet business needs
without overspending [11].

Database services span relational, NoSQL, in-memory, and graph databases, enabling workload-appropriate
selections. Relational Database Service provides managed PostgreSQL, MySQL, Oracle, and SQL Server databases
with automated backups, patching, and replication. DynamoDB offers single-digit millisecond latency and NoSQL
database scaling to accommodate millions of requests per second. The Performance Efficiency pillar focuses on
structured and streamlined allocation of IT and computing resources, including selecting resource types and sizes
optimized for workload requirements, monitoring performance, and making informed decisions to maintain
efficiency as business needs evolve [11].

7. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING INTEGRATION

Artificial Intelligence can revolutionize the workings of the insurance sector by automating certain existing human
tasks, enhancing human decision-making abilities, and allowing new modes of service delivery based upon the
capabilities of AI to identify patterns and make predictions. Deep learning is seen to be a sub-area of machine
learning that utilizes ‘neural networks with many layers to learn higher-level representations from raw data.” Some

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 296

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

deep learning models include convolutional neural networks (for image processing), recurrent neural networks (for
sequential data), and transformers (for natural language processing) [12]. The machine learning cycle includes
problem definition, data selection and preparation, feature selection, training and evaluation, and monitoring [12].

Claims processing uses computer vision to evaluate accident damage based on pictures uploaded via smartphone
apps. Convolutional neural networks are trained on pictures to classify damage patterns and assign costs for repairs
based on hierarchical feature extraction. Natural language processing is used to derive structured information from
unstructured claim descriptions, police statements, and medical histories. Named Entity Recognition isolates
relevant entities such as individuals, geographic locations, and dates, while Relation Extraction reveals linking
entities such as cause and effect relationships and injuries sustained during accidents [12].

Anomaly detection and supervised learning techniques are used for fraud detection. Machine learning techniques
such as decision trees, forests, gradient boosting, and feedforward networks can be employed for modeling patterns
related to fraud based on past instances. Hands-On Machine Learning presents a detailed range of topics related to
the basics of machine learning, such as supervised learning methodologies, unsupervised learning methods,
feedforward networks, and real-world implementations using popular toolsets [13]. Characteristics extracted from
the claim, claimant, social network analysis, and external inputs are used for training a model to distinguish
between genuine and fraudulent claims [13].

Underwriting automation employs predictive models for risk assessment and pricing recommendations. The
gradient boosting models based on past policy and claim records predict loss costs for new business by aggregating
various weak predictive models to produce robust predictive models. The models employ conventional rating
variables, alternative data, and telematics data available in connected vehicles. The process for building a predictive
model using a machine learning system generally includes data exploration to gain insights into data distributions
and associations, followed by model development and hyperparameter tuning, and ending with testing on a hold-
out test dataset [13].

The customer service chatbots deal with the routine queries, and the complex queries are attended to by the agents.
Natural language understanding entails the interpretation of customer queries by mapping queries to the
corresponding intent by the text-classification algorithms. Dialog management refers to the ability of the chatbots
to maintain the conversation flow and assist the user in the end-to-end conversational interactions. Backend
integrations provide the necessary functionalities of fetching policy details, processing claims, and processing
payments. The chatbots learn from the conversations solved and become accurate by model re-training on the
production data to ensure continuous improvements to accuracy, as stated by [13].

8. DEVOPS, OBSERVABILITY, AND CONTINUOUS DELIVERY PRACTICES

The cultural norms and technical systems of DevOps allow for rapid and trustworthy delivery of software by
integrating the efforts of the development and operations staff. Continuous Delivery is the concept of the software
development life-cycle, in which the software is developed in such a way that it can easily be deployed to the
production environment at any point in time. The deployment pipeline offers automation of the application’s build,
deployment, testing, and release process, where every change in the code triggers the execution of the pipeline [14].
Infrastructure as Code describes infrastructure in terms of versioned configuration files that allow for
reproducibility of infrastructure changes [14].

Code integration in Continuous Integration strategies happens often, with code validation after each integration
through builds and tests. Version control tools allow tracing of code changes with a complete history of
modifications in code, which helps in parallel development of code by different teams working together.
Automation builds processes, compiles code, runs unit tests, does code analysis, and produces deployable packages.
CD pipeline involves a commit stage in which code compilation and unit testing are carried out, automated
acceptance testing, and capacity testing for assessing performance under loads [14].

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 297

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Continuous Delivery is an extension of Continuous Integration, encompassing the automation of deployment over
various environments. Deployment pipelines provide control over the movement of code from the development
stage to test, staging, and production environments, with various tests being performed at each level to ensure
functionality, performance, security, and compliance. In blue-green deployment, two copies of the production
environment are created, with rotation of users during deployment, facilitating immediate switching in case of
problems. In canary deployment, incremental user traffic routing can be performed based on health checks before
rolling out the application entirely [14].

The DevOps Handbook outlines the Three Ways that must be considered to fully understand the principles of
DevOps. The First Way is a focus on system thinking and fast flow from the development environment to the
operation environment and ultimately to the customers. The Second Way is an “emphasis on amplifying the
feedback loops,” meaning that the goals of the organization should be focused on preventing problems from
recurring. The Third Way is the “culture of CIE and L,” which stands for the culture of continual experimentation
and learning. “The First Way provides the ‘how’ of improved IT in the contemporary digitized organization.”

Service level goals are quantified by measuring service level indicators related to specified system properties.
Availability is a measure of systems’ performance in responding successfully to requests by a certain percentage of
time, delay metrics gauge the time taken by systems in responding, usually in percentile values, and error rates are
a measure of requests that produce errors. Error budgets are set in such a way that a balance between innovation
speed and need for reliability is achieved, based on values that determine acceptable unreliability in terms of
downtime or error values [15]. Incident management processes include roles, communication, and escalation
procedures for disruptions in services, and root causes for prevention in postmortem analysis of disruptions [15].

CONCLUSION

Modernization in insurance systems also demands end-to-end transformation in architectural patterns,
development methodologies, platform infrastructures, and intelligent automation technologies. Domain-driven
design methodologies help in strictly demarcating business capabilities, retaining semantics in systems in a
common language, and bounded context representation. Microservices architecture helps in carving structurally
autonomous applications in BDSD, allowing different teams for individual developments and strategic scaling
according to concrete component requirements. Cloud Native platform on Amazon Web Services ensures dynamic
scaling facilities for computing, databases, storage, and specific services for insurance. Security systems,
implementing Defense-In-Depth, ensure secure mitigation against important and sensitive data involving direct
users in multi-layered access, authorization, encryption, and overall auditing trails fully satisfying regulation
standards. Event-Stimulated Systems make opportunistic decoupling in different applications in message
transmission and domain events, encouraging real-time systems representation. Integration in Artificial
Intelligence associates complete automation in claim settlement, detection of fraud, optimization in underwriting,
and CB in different customer interactions. DevOps methodologies involving complete integration of continuous
development, outputs, infrastructures, and observability assure accelerated deployment, retaining overall system
reliability. Organizations embracing these technologies advance in effectively catering to innovation in insurance
offerings, overall clinch in superior customer service, alongside operational benefits in competitive digital
platforms.

REFERENCES

[1] Eric Evans, "Domain-Driven Design: Tackling Complexity in the Heart of Software,” 2003. Available:
https://fabiofumarola.github.io/nosql/readingMaterial /Evanso3.pdf

[2] Spring Framework Documentation, "Spring Boot Reference Guide." Available: https://docs.spring.io/spring-
boot/docs/2.1.1.RELEASE/reference/html/index.html

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 298

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://fabiofumarola.github.io/nosql/readingMaterial/Evans03.pdf
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/index.html
https://docs.spring.io/spring-boot/docs/2.1.1.RELEASE/reference/html/index.html

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

[3] Chris Richardson, "Microservices Patterns: With Examples in Java,” Manning Publications. Available:
https://github.com/AAAAAIstudy/bookshelf-
1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf

[4] Kubernetes, "Kubernetes Documentation." Available: https://kubernetes.io/docs/

[5] Vaughn Vernon, ‘"Implementing Domain-Driven Design,” O'Reilly, 2013. Available:
https://www.oreilly.com/library/view/implementing-domain-driven-design/9780133039900/
[6] Vaughn Vernon, "Domain-Driven Design Distilled," O'Reilly, 2016. Available:

https://www.oreilly.com/library/view/domain-driven-design-distilled/9780134434964/

[7] Leonard Richardson and Sam Ruby, "RESTful Web Services,” O'Reilly Media, 2007. Available:
https://www.oreilly.com/library/view/restful-web-services/ 9780596529260/

[8] Microsoft, "Event Sourcing pattern.” Available: https://learn.microsoft.com/en-
us/azure/architecture/patterns/event-sourcing

[9] OWASP Foundation, "The OWASP Top Ten." Available: https://www.owasptopten.org/

[10] National Institute of Standards and Technology, "The NIST Cybersecurity

Framework (CSF) 2.0," 2024. Available: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf

[11] Amazon Web Services, "AWS Well-Architected Framework." Available:
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

[12] GeeksforGeeks, "Introduction to Deep Learning,” 2025. Available: https://www.geeksforgeeks.org/deep-
learning/introduction-deep-learning/

[13] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition,"
O'Reilly Media, 2019. Available: https://www.oreilly.com/library/view/hands-on-machine-
learning/9781492032632/

[14] David Farley and Jez Humble, "Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation,” O'Reilly, 2010. Available: https://www.oreilly.com/library/view/continuous-
delivery-reliable/9780321670250/

[15] Gene Kim et al., "The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in
Technology Organizations," IT Revolution Press, 2016. Available: https://dl.acm.org/doi/10.5555/3044729

Copyright © 2026 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons Attribution License 299

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://github.com/AAAAAIstudy/bookshelf-1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf
https://github.com/AAAAAIstudy/bookshelf-1/blob/main/Extra/Microservices%20Patterns%20With%20examples%20in%20Java.pdf
https://kubernetes.io/docs/
https://www.oreilly.com/library/view/implementing-domain-driven-design/9780133039900/
https://www.oreilly.com/library/view/domain-driven-design-distilled/9780134434964/
https://www.oreilly.com/library/view/restful-web-services/9780596529260/
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://www.owasptopten.org/
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.29.pdf
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://www.geeksforgeeks.org/deep-learning/introduction-deep-learning/
https://www.geeksforgeeks.org/deep-learning/introduction-deep-learning/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/
https://www.oreilly.com/library/view/continuous-delivery-reliable/9780321670250/
https://dl.acm.org/doi/10.5555/3044729

