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Log file analysis plays a vital role in performance optimization, security monitoring, 

and fault detection across large-scale international networks. However, traditional 

log analyzers struggle to process modern log data due to its high volume, diverse 

formats, and real-time generation. This study proposes a generic log analysis system 

using distributed computing to improve scalability and efficiency. The methodology 

involves collecting multiple log types, including firewall, server, web, email, and call 

data logs, and processing them using Apache Hadoop MapReduce for large-scale 

batch analysis. Log events are parsed, aggregated, and summarized to identify 

patterns, abnormal activities, and usage trends without interfering with system 

performance. Experimental results show that the proposed approach successfully 

analyzes diverse log formats and produces meaningful summaries while reducing 

manual effort. The system demonstrates improved handling of large log datasets and 

supports visualization for better interpretation. Overall, the proposed log analyzer 

provides an efficient and scalable solution for managing and extracting insights from 

heterogeneous log data. 

Keywords: Log file analysis, Hadoop, Spark, Flink, big data, distributed computing, 

real-time processing. 

 

Introduction 

Modern digital infrastructures generate enormous volumes of log data that capture system events, user 

activities, errors, performance metrics, and security incidents. These logs originate from heterogeneous 

environments such as cloud platforms, web applications, network devices, industrial control systems, 

and hospital information systems. As organizations expand globally, log streams become increasingly 

complex due to diverse formats, distributed deployment, varying time zones, and continuously evolving 

system behaviors. Consequently, traditional log analysis tools which typically rely on manual inspection 

or single-machine processing are insufficient for extracting timely and reliable insights from large-scale 

global log repositories. 

Global log file analysis is essential for several key objectives: ensuring system availability, identifying 

operational bottlenecks, detecting intrusions, supporting compliance auditing, and enabling proactive 

maintenance. However, achieving these goals in real time requires scalable processing frameworks 

capable of handling high throughput, low latency, and fault tolerance. Big data technologies such as 

Hadoop, Spark, and Apache Flink have emerged as effective solutions for batch and stream-based log 

processing. Among these, Apache Flink is particularly suitable for real-time analytics due to its event-
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time processing, windowing operations, and stateful computation capabilities, which allow accurate 

analysis even under out-of-order event arrival. 

Beyond scalable processing, the challenge of accurate anomaly detection and intelligent classification 

remains significant. Log data often contains noise, missing fields, irregular patterns, and domain-

specific variations, making single-model prediction approaches unreliable in many real-world 

conditions. To address this limitation, ensemble learning techniques provide a robust solution by 

combining multiple predictive models to improve generalization and reduce false alarms. Ensembles 

such as bagging, boosting, and stacking leverage model diversity to better capture complex system 

behaviors and rare incident patterns, especially in cybersecurity and fault detection scenarios. 

This study evaluates existing global log file analysis systems and proposes a design framework that 

integrates distributed processing with ensemble-based intelligence. The framework supports 

heterogeneous log formats, scalable ingestion, automated preprocessing, and enhanced anomaly 

detection, ultimately enabling organizations to make faster, more informed operational decisions across 

industries, healthcare, and large-scale network environments. 

1. Importance of Log Files in Modern Systems : Log files record system events, errors, 

transactions, and security-related incidents, making them essential for monitoring and understanding 

system behavior. As digital infrastructure expands rapidly, organizations increasingly depend on 

reliable log analysis solutions to detect failures, ensure security, and optimize overall performance. 

2. Growth of Big Data and Need for Advanced Analytics : Today, massive volumes of digital 

data are generated in critical domains such as social networks, e-commerce, healthcare, education, and 

environmental systems. This rapid growth has made big data mining an important technique for 

extracting valuable insights that support decision-making and enable more personalized services. As a 

result, many advanced computing frameworks for large-scale data analysis have been developed. 

3. Adoption of Big Data Frameworks for Log Analysis : Traditional log analysis tools cannot 

handle large-scale, heterogeneous, and continuously generated logs in real time. To overcome this 

limitation, big data technologies such as Apache Hadoop, Apache Spark, and Apache Flink are 

widely used for scalable and efficient log processing. 

4. Why Apache Flink is Suitable for Log Analytics : Apache Flink is a mature, open-source 

distributed stream processing framework designed for large-scale analytics. It supports both bounded 

data (batch logs) and unbounded data streams (real-time logs), enabling low-latency and 

high-throughput processing. Logs contain structured entries describing system activities and incidents, 

including security-related events, making Flink highly suitable for continuous monitoring and anomaly 

detection. 

5. Anomaly Detection in Distributed Logs Using Flink : This research focuses on identifying 

anomalies in large-scale logs collected from distributed environments using Flink. Flink ensures 

reliability through fault tolerance mechanisms such as: 

• Periodic checkpointing, where application state is stored persistently for automatic recovery during 

failures. 

• Savepoints, which store consistent execution states to allow stopping, resuming, upgrading, or 

restarting Flink jobs without losing progress. 

Both checkpointing and savepoints work asynchronously, enabling continuous processing without 

interrupting the flow of incoming log data. 

6. Motivation for a Generic Multi-Log Analyzer: Many existing log analyzers in the market can 

process only one specific type of log file. Therefore, the main objective of this system is to develop a 

generic log analyzer capable of supporting multiple log formats and improving productivity through 
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Flink-based distributed processing. By using Apache Flink, the system becomes more efficient in 

processing diverse log datasets. 

7. Integration with Kafka for Real-Time Streaming: In the proposed framework, logs are 

collected and streamed through Kafka and then processed using Apache Flink. This integration allows 

continuous data ingestion, real-time orchestration, and generation of meaningful insights. Performance 

evaluation also confirms that the combined Flink–Kafka approach enhances scalability and supports 

real-world use cases effectively. 

8. Role of Machine Learning and Ensemble Techniques: To further improve accuracy and 

robustness, ensemble learning techniques can be applied to log analysis. By combining multiple 

predictive models trained using different methods or subsets of data, ensemble approaches improve 

anomaly detection and generalization compared to single-model methods. This makes ensemble 

learning valuable for large-scale and complex log environments. 

Log File Analysis Overview (Step-by-Step) 

The overall log analysis process follows these main steps: 

1. Data Collection: Collecting logs from multiple sources such as applications, web servers, databases, 

and networks. 

2. Preprocessing: Cleaning, filtering, and structuring logs for analysis. 

3. Storage and Management: Storing logs using distributed platforms such as Hadoop or cloud storage 

systems. 

4. Analysis and Visualization: Applying statistical analysis, machine learning, and visualization tools 

to extract insights. 

5. Real-Time Monitoring: Using stream processing frameworks like Flink for continuous monitoring 

and alerts. 

Research Work 

Large-scale data analytics has become essential because modern systems continuously generate 

massive volumes of heterogeneous data, including logs from networks, servers, applications, industrial 

devices, and healthcare platforms. Processing such datasets efficiently requires big data technologies 

that balance speed, accuracy, scalability, and cost-effectiveness. However, designing systems 

that are simultaneously large-scale, adaptive, fault-tolerant, accurate, and error-free remains 

challenging due to the complexity of distributed environments and the unpredictable nature of real-

world data streams [1], [2]. As a result, a wide range of big data tools and frameworks have emerged to 

address these requirements, including Hadoop, MapReduce, HPCC, Storm, Qubole, 

Cassandra, CouchDB, Pentaho, Flink, and Cloudera, among others [1]. These tools support 

advanced processing capabilities such as large-scale storage, distributed computation, machine 

learning integration, and real-time analytics across diverse applications [3], [4]. 

Among these technologies, Apache Hadoop has been widely adopted as a foundational framework 

for big data analysis because it enables data processing directly where the data is stored, minimizing 

transfer overhead and improving efficiency [2], [5]. Hadoop’s architecture combines the Hadoop 

Distributed File System (HDFS) for distributed storage and MapReduce for parallel batch 

processing, enabling organizations to store large volumes of structured and unstructured log data across 

clusters and analyze them efficiently [2], [6]. HDFS provides a reliable storage layer by splitting files 

into blocks and replicating them across nodes, ensuring scalability and fault tolerance in large 

deployments [7]. At the same time, MapReduce supports batch-oriented processing by dividing 

computation into map and reduce tasks, allowing log aggregation, historical trend identification, and 

pattern extraction such as security threats or error frequency analysis [8], [9]. In addition, Hadoop 
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ecosystems often integrate tools such as Hive and Pig, enabling SQL-like queries and script-based 

analysis for extracting insights from stored log datasets [10], [11]. Despite its strengths, Hadoop-based 

log analysis typically suffers from high latency and is less suited for real-time monitoring due to the 

batch processing nature and operational complexity of setup and maintenance [12], [13]. 

A major challenge within Hadoop environments is job scheduling, particularly for MapReduce tasks 

where resource allocation, deadline requirements, data locality, and execution time significantly 

influence performance [14]. Research in Hadoop scheduling highlights that MapReduce schedulers can 

be grouped into categories such as resource-aware, deadline-aware, data-locality-aware, 

learning-aware, budget-aware, and makespan-aware, each designed to optimize specific 

performance objectives [1], [15]. These schedulers differ in their goals, algorithms, and evaluation 

approaches, and their effectiveness depends heavily on workload characteristics and cluster 

configurations [16], [17]. This demonstrates that efficient scheduling is a key factor in improving 

Hadoop-based log analytics performance, especially under heavy data loads [18]. 

In this research work, three major big data technologies are considered for log analysis: Hadoop, 

Spark, and Flink. Hadoop is primarily useful for storage and batch analytics, where the goal is 

to process large historical log datasets cost-effectively [2], [19]. For example, Hadoop supports log 

storage, aggregation, and pattern mining across months or years of data, making it well suited for 

compliance auditing and historical incident analysis [20]. However, when organizations require faster 

insights, Hadoop’s limitations in real-time processing become more visible [12], [21]. 

To overcome latency issues, Apache Spark is often used because of its in-memory computation 

engine, which accelerates log processing by keeping intermediate results in memory rather than 

repeatedly reading from disk [22]. Spark supports both batch and near real-time analytics through 

components such as Spark Core, Spark Streaming, Spark SQL, and MLlib, enabling use cases 

such as fraud detection, network security monitoring, log pattern mining, and anomaly detection using 

machine learning [22], [23]. Spark provides unified analytics and broad API support (Python, Scala, 

Java, SQL), but typically requires higher memory resources and introduces additional operational 

complexity compared to Hadoop [22], [23]. 

Finally, Apache Flink is a powerful distributed processing framework designed for stateful 

computations over both bounded (batch) and unbounded (streaming) data streams. Flink supports 

unified stream and batch processing, advanced state management, low-latency processing, and 

high fault tolerance, making it especially effective for real-time log analytics such as monitoring, 

alerting, IoT log processing, and predictive maintenance [3], [4], [23]. Flink’s event-time processing 

model enables accurate computation even when log events arrive out of order, which is common in 

distributed systems [4], [23]. Moreover, its scalable parallel execution and flexible APIs—including 

DataStream, DataSet, SQL, and Table APIs—allow organizations to build robust and efficient log 

analysis pipelines across multiple domains [3], [23]. 

Table 1 Comparative Analysis of Hadoop, Spark, and Flink for Log Analysis 

Feature Hadoop 

(MapReduce) 

Apache Spark Apache Flink 

Primary 

Processing Model 

Batch processing Batch + Streaming 

(micro-batch) 

Streaming-first + Batch 

Latency High (minutes) Low (seconds; micro-

batch) 

Ultra-low (milliseconds–

seconds) 

Best Suited For Historical log 

analysis, archival 

datasets 

Fast analytics, near 

real-time monitoring 

Real-time event 

processing, continuous 

monitoring 
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Processing Speed Slower (disk-based) Very fast (in-memory 

execution) 

Very fast (pipelined 

streaming + in-memory 

state) 

Real-Time Log 

Support 

 No  Yes (micro-batching)  Yes (true streaming) 

Handling 

Continuous 

Streams 

Not supported Supported via Spark 

Streaming 

Built-in (native stream 

processing) 

Fault Tolerance Strong (data 

replication + re-

execution) 

Strong (RDD lineage 

recovery) 

Strong (checkpointing + 

state recovery) 

Stateful Processing Limited Supported 

(structured 

streaming) 

Excellent (native stateful 

operators) 

Event-Time 

Processing 

 Weak / Not natural Moderate (structured 

streaming) 

 Excellent (native event-

time + watermarks) 

Scalability Very high (large 

clusters) 

High High (optimized parallel 

execution) 

Storage Support HDFS mainly HDFS, S3, HBase, 

others 

HDFS, S3, Kafka, others 

Ease of Setup Complex Easier than Hadoop Moderate–Complex 

Ease of Use 

(Programming) 

Moderate–Hard Easier (high-level 

APIs) 

Moderate (requires 

stream concepts) 

Programming APIs Java, Pig, Hive Scala, Python, Java, 

SQL 

Java, Scala, SQL, Table 

API 

Machine Learning 

Support 

Limited Strong (MLlib) Growing (integration with 

ML pipelines) 

Typical Log Use 

Cases 

Batch log 

aggregation, offline 

reporting 

Pattern mining, 

anomaly detection, 

interactive analytics 

Fraud detection, anomaly 

detection, alerting, IoT 

monitoring 

Resource Usage Low-cost but slower Higher memory 

required 

Efficient but requires 

tuning for state 

Cost Effectiveness Best for cheap batch 

processing 

Good for fast analytics 

(needs memory) 

Best for real-time 

intelligence (needs 

tuning) 

Main Limitation High latency, no real-

time 

Streaming is micro-

batch (not true real-

time) 

More complex to 

implement and manage 
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3. Aim and Objectives 

The aim of this research is to develop a scalable and efficient log analysis system that can examine 

multiple types of log files collected from worldwide sources using Apache Flink. The proposed 

approach emphasizes real-time processing, parallel execution, and scalability, so that large volumes of 

log data can be analyzed effectively on standard computer hardware. Since modern systems generate 

diverse logs such as firewall logs, mail logs, server logs, cloud logs, and IoT logs, the system is designed 

to support heterogeneous formats and produce meaningful insights for monitoring, security, and 

operational decision-making. 

The primary objective of this study is to design and implement an intelligent log analysis 

framework capable of processing diverse log formats while supporting both real-time analytics 

and historical trend analysis. To achieve this, the framework focuses on building an end-to-end 

pipeline that includes log collection, ingestion, processing, storage, visualization, and alerting. The 

system is intended to enable faster detection of anomalies and security threats, improve reliability 

through fault tolerance mechanisms, and generate actionable insights through graphical reporting. 

The specific objectives include building an efficient log ingestion pipeline using tools such as Kafka, 

Fluentd, or Logstash, and designing a normalization layer that converts structured, semi-structured, 

and unstructured log data into a common schema. The framework will support stream processing 

using Flink (or Spark Streaming) for real-time monitoring and anomaly detection, while also enabling 

batch processing using Hadoop or Spark for historical analysis. To ensure scalability, distributed 

storage solutions such as HDFS, Amazon S3, and Elasticsearch will be integrated, along with indexing 

and query optimization methods for faster retrieval. In addition, the system aims to incorporate 

machine learning techniques for anomaly detection, fraud detection, and predictive analytics using 

tools such as Spark MLlib, TensorFlow, or Flink ML. Furthermore, visualization dashboards and 

automated alerting mechanisms will be implemented through Grafana, Kibana, or Superset to support 

real-time incident response. 

Another key objective is to take full advantage of Apache Flink’s strengths—particularly its event-

driven stream processing, stateful computation, checkpointing, fault tolerance, and 

scalability—to improve the efficiency and reliability of log analysis. Finally, the study will benchmark 

Flink’s performance against other frameworks such as Hadoop and Spark to evaluate its suitability for 

global-scale log analytics. Overall, the research aims to deliver a robust, fault-tolerant, and scalable 

system capable of processing massive log streams continuously and generating timely insights for 

different real-world domains. 

 

4. Proposed Methodology 

 For this research endeavour, a variety of widely used log file formats collected from global sources were 

examined. The proposed approach requires that the Apache Flink framework first be used to 

evaluate and validate log files, after which their key contents are analyzed and presented through 

graphical visualization. This combination of real-time processing and graphical interpretation is 

highly valuable for supporting decision-making in hospital management, industrial operations, 

and other domains that rely on large-scale log data. 

1. Significance of Using Apache Flink for Large Log Datasets: Apache Flink is a powerful 

stream-processing framework that is well suited for handling large and complex log datasets. Its 

scalable, fault-tolerant, and real-time architecture allows organizations to process continuous 

streams of log records with low latency and high throughput. As a result, Flink supports improved 

operational efficiency, faster detection of anomalies or security threats, and the extraction of actionable 

insights from large volumes of log data. 
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2. Role of Java in Enhancing Data Analysis Efficiency: Java improves the functionality and 

efficiency of log data analysis through several key features. First, it offers rich built-in data structures 

such as arrays, lists, sets, and maps, which support efficient data organization and processing. Second, 

Java provides strong multithreading capabilities, enabling parallel execution of tasks and faster 

handling of large datasets. Finally, Java integrates smoothly with major big data frameworks such as 

Apache Hadoop, Apache Spark, and Apache Flink, allowing developers to build robust and efficient 

analytics systems within these ecosystems. 

3. Importance of Graphical Representation for Decision-Making: Graphical representation 

plays a crucial role in interpreting complex log data for effective decision-making in both hospitals and 

industries. Visual tools such as charts, graphs, and dashboards simplify large datasets and highlight 

trends, patterns, and anomalies. For example, doctors can use visual summaries to monitor patient-

related events and device alerts, while industrial managers can identify system failures, production 

bottlenecks, and performance inefficiencies. Therefore, visualization enhances clarity, improves 

operational awareness, and supports timely data-driven decisions. 

4. Examples of Practical Implementations: Several hospitals and industries have implemented 

log-based monitoring systems to improve management practices, such as real-time security auditing, 

patient device monitoring, predictive maintenance, and system performance tracking. These 

implementations demonstrate the effectiveness of combining large-scale log processing with 

visualization for operational improvement. 

5. Future Developments in Log Data Analysis Technologies: Future improvements in log 

analysis technologies may include the integration of machine learning and AI-based anomaly 

detection, edge computing for faster processing at the data source, and more intelligent dashboards 

that provide predictive insights. These advancements can further enhance automation, scalability, and 

decision support in both industry and hospital environments. 

 

Figure 1. System Architecture of Hadoop and Map Reduce. 

Step-Wise Explanation of Diagram 1: Hadoop-Based Log File Analysis Architecture 

Diagram 1 illustrates a log file analysis system architecture designed using Hadoop-based 

technologies. The architecture processes large-scale logs collected from multiple sources and generates 

meaningful reports through distributed storage and computation. The major components are explained 

step by step as follows: 
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Step 1: Data Aggregation (Log Collection) 

• Log data is generated from various systems such as Log1, Log2, ..., Logn. 

• These logs are collected and ingested into the processing system for further analysis. 

• The aggregation layer ensures that log data from multiple sources is available in one pipeline. 

Step 2: Data Storage in HDFS 

• After ingestion, all collected logs are stored in the Hadoop Distributed File System (HDFS). 

• HDFS uses a NameNode to manage metadata (file locations and structure) and multiple DataNodes 

to store log blocks. 

• This distributed storage provides reliability, scalability, and fault tolerance for large datasets. 

Step 3: Data Analytics (Distributed Processing) 

• Once stored in HDFS, the log files are processed using distributed computing frameworks. 

• Processing tasks are executed through scripts and analytics engines such as MapReduce, Apache 

Spark, or similar big data tools. 

• These frameworks extract insights such as patterns, summaries, trends, and anomalies from log 

datasets. 

Step 4: Job Scheduling and Workflow Automation 

• A Job Scheduler is used to automate and manage the execution of log processing tasks. 

• It schedules recurring jobs, monitors execution, and ensures workflow consistency. 

• Tools such as Apache Oozie, Apache Airflow, or even Cron jobs may be used for scheduling. 

Step 5: Reporting and Data Access 

• After processing, the analytics results are made available through a Data Access Web Service. 

• This service enables users to query processed log outputs and generate reports or dashboards. 

• Reporting supports decision-making for system administrators, hospital management, and industrial 

operations. 

Algorithm 1: Hadoop MapReduce–Based Global Log File Analysis (Batch Mode) 

Input: Heterogeneous raw log files (Firewall, Web, Server, Mail, Call data) 

Output: Aggregated summaries, frequency metrics, anomaly counts, stored analysis results in HDFS 

Steps: 

1: Start 

2: Initialize Hadoop cluster services (NameNode, DataNode, ResourceManager, NodeManager) 

3: Configure HDFS parameters (block size, replication factor, storage paths) 

4: Collect log files from distributed sources: 𝐿𝑜𝑔1, 𝐿𝑜𝑔2, … , 𝐿𝑜𝑔𝑛 

5: Create HDFS directories by log category (e.g., /logs/firewall/, /logs/web/, /logs/mail/) 

6: Upload logs into HDFS using distributed storage commands 

7: Preprocessing Stage 

8: for each log file in HDFS do 

9:  Read log file line-by-line 

10:  Remove duplicates and empty records 
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11:  Handle invalid timestamps and missing critical fields 

12:  Normalize each record into standard schema 

13:  Generate intermediate key-value format: 

14:  𝐾𝑒𝑦 ← (IP/User/EventType/TimeWindow) 

15:  𝑉𝑎𝑙𝑢𝑒 ← 1 (or event metadata) 

16: end for 

17: MapReduce Stage 

18: Define Mapper function 

19: for each log record do 

20:  Parse required fields (timestamp, IP, event type, status) 

21:  Emit intermediate pair (𝐾𝑒𝑦, 1) 

22: end for 

23: Shuffle and sort intermediate outputs by key (Hadoop internal operation) 

24: Define Reducer function 

25: for each unique 𝐾𝑒𝑦do 

26:  Compute aggregation: 𝑇𝑜𝑡𝑎𝑙 ← ∑𝑉𝑎𝑙𝑢𝑒 

27:  Emit final output pair (𝐾𝑒𝑦, 𝑇𝑜𝑡𝑎𝑙) 

28: end for 

29: Store reducer output to HDFS directory /output/log_summary/ 

30: Post-Processing Stage (Optional) 

31: Execute additional MapReduce jobs for trends, anomalies, and top-N queries 

32: Export results to Hive/HBase/ElasticSearch for reporting 

33: Generate dashboards and summary reports 

34: End 

 

Algorithm 2: Apache Spark–Based Log File Analysis (In-Memory Batch + Streaming) 

Input: Raw logs from HDFS/S3/Kafka (structured, semi-structured, unstructured) 

Output: Fast log summaries, anomaly indicators, streaming alerts, stored metrics 

Steps 

1: Start 

2: Initialize Spark environment (SparkSession, executors, memory, cluster mode) 

3: Load input logs from storage source: 

4:  HDFS/S3 for batch mode, Kafka for streaming mode 

5: Convert logs into Spark DataFrames/Datasets using schema inference or predefined schema 

6: Data Cleaning and Normalization Stage 

7: Remove corrupted entries, null timestamps, and duplicate records 

8: Standardize timestamps into common time zone (UTC) 

9: Parse log formats (JSON/CSV/XML/Syslog/Custom) and extract structured fields: 

10:  (timestamp, source, level, eventType, IP/user, message, status) 

11: Batch Analytics (Spark Core / Spark SQL) 

12: Perform distributed in-memory transformations: filter(), select(), groupBy(), agg() 

13: Compute frequency-based summaries (Top IPs, Top Users, Error counts) 

14: Compute time-window trends using window() aggregations 

15: Store batch results into distributed output storage (HDFS/S3/HBase/ElasticSearch) 
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16: Streaming Analytics (Optional: Structured Streaming) 

17: if real-time logs are available then 

18:  Read log stream from Kafka topics 

19:  Apply watermarking and sliding/tumbling windows 

20:  Compute continuous metrics and anomaly triggers 

21:  if anomaly condition is satisfied then 

22:   Generate alert record and push to alert channel/dashboard 

23:  end if 

24:  Write streaming outputs into sink (ElasticSearch/Cassandra/PostgreSQL) 

25: end if 

26: Machine Learning Extension (Optional: Spark MLlib) 

27: Extract features (TF-IDF, categorical encoding, frequency vectors) 

28: Train or apply anomaly detection / classification models 

29: Store prediction results for visualization and reporting 

30: Generate dashboards and reports using Kibana/Grafana/Power BI 

31: End 

 

Figure 2. High-level proposed system architecture 

Figure 2 illustrates a high-level proposed system architecture for large-scale log file evaluation and 

graphical analysis using Apache Flink and Java. In this architecture, log data generated from multiple 

sources such as hospitals, industrial systems, and global platforms (in formats like JSON, CSV, XML, 

Syslog, and custom logs) is first collected through an ingestion layer using Kafka, NiFi, REST APIs, or 

file watchers. The ingested logs are stored in raw form within distributed storage such as HDFS or S3 

for audit and replay purposes. Apache Flink, implemented with Java, then performs two major tasks: 

(1) log evaluation to validate formats, detect schemas, calculate data quality, and route logs accordingly, 

and (2) analytics processing to compute window-based KPIs, identify anomalies, and generate alerts in 

real time. The processed outputs are stored in analytical databases such as Elasticsearch/OpenSearch, 

Druid/ClickHouse, and PostgreSQL, and then exposed through Spring Boot REST APIs with role-based 

access control. Finally, the results are presented through visualization platforms such as Grafana, 

Kibana, Superset, Power BI, or custom dashboards to support effective decision-making in hospital and 

industry management, while security and governance (RBAC, encryption, masking, auditing, 
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compliance) and orchestration tools (Airflow, Kubernetes CronJobs, Flink scheduler) ensure reliability, 

automation, and secure operations across the pipeline. 

Algorithm 3: Flink-Based Log Evaluation and Graphical Analytics Pipeline  

Input: 

Raw log streams/files 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑛}from hospitals, industries, and global systems 

Output: 

Validated logs 𝐿𝑣, analytics results 𝑅, anomaly alerts 𝐴, and graphical dashboards 𝐷 

Steps 

1: Initialize system components 

2: Configure ingestion sources (Kafka / REST / File Watchers) 

3: Configure raw storage (HDFS/S3) and processed storage (Elastic/Druid/PostgreSQL) 

4: Deploy Flink cluster with state backend and checkpointing enabled 

5: Ingest Logs 

6: for each incoming log record 𝑙𝑖 ∈ 𝐿do 

7: Send 𝑙𝑖to ingestion layer 

8: Store 𝑙𝑖in Raw Storage (HDFS/S3) 

9: end for 

10: Log Evaluation Stage (Flink Job 1) 

11: for each log record 𝑙𝑖do 

12: Detect log format 𝑓𝑖(JSON/CSV/XML/Syslog/Custom) 

13: Extract schema 𝑠𝑖and mandatory fields 

14: if 𝑙𝑖is invalid OR missing timestamp/critical fields then 

15:  Route 𝑙𝑖to Error Topic / Reject Store 

16: else 

17:  Compute log quality score 𝑞𝑖 

18:  Enrich metadata (source, type, device, department, etc.) 

19:  Append validated log to 𝐿𝑣 

20: end if 

21: end for 

22: Log Analytics Stage (Flink Job 2) 

23: for each validated log 𝑙𝑣 ∈ 𝐿𝑣do 

24: Apply event-time alignment and watermarking 

25: Perform window-based aggregation (time windows: min/hour/day) 

26: Compute KPIs (failure rate, access counts, downtime, utilization, etc.) 

27: Perform anomaly detection using thresholds/pattern rules 

28: if anomaly detected then 

29:  Generate alert 𝑎𝑗and push to Alert Channel 

30:  Add 𝑎𝑗to 𝐴 

31: end if 

32: Store metrics and summaries into Processed Storage 

33: end for 

34: Data Access and Visualization 

35: Expose processed results via Spring Boot REST APIs 

36: Generate dashboards 𝐷using Grafana/Kibana/Superset/Power BI 

37: Return dashboards, reports, and alerts to hospital/industry decision-makers 
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End Algorithm 

 

5. Mathematical Equations for Log File Analysis 

A. Firewall Log Analysis (Blocked IP Frequency and Source-IP Entropy) 

In firewall log analysis, two common statistical measures are (i) the frequency of blocked source 

IPs, and (ii) the entropy of source IP distribution. The blocked IP frequency quantifies how 

often a particular IP address is blocked relative to the total number of block events, which helps identify 

suspicious or repeatedly offending sources [1]. Let 𝑁denote the total number of blocked events in the 

log, and let 𝑛(ip
𝑖
)represent the number of times source IP ip

𝑖
is blocked. Then, the frequency of a blocked 

IP is computed as: 

𝑓(ip
𝑖
) =

𝑛(ip𝑖)

𝑁
(1)  

 

For example, if 𝑛(ip
1
) = 3, 𝑛(ip

2
) = 1, and 𝑛(ip

3
) = 6, then 𝑁 = 3 + 1 + 6 = 10, resulting in 𝑓(ip

1
) =

0.3, 𝑓(ip
2
) = 0.1, and 𝑓(ip

3
) = 0.6. In addition, entropy is widely used to measure the uncertainty or 

randomness in the distribution of source IPs; low entropy suggests that traffic is concentrated from a 

few sources, whereas high entropy indicates widely distributed traffic, which may be associated with 

scanning or distributed attacks [2]. If 𝑝(ip
𝑖
)is the probability of observing IP ip

𝑖
, then the Shannon 

entropy of the source IP distribution is given by: 

𝐻 = −∑ 𝑝(
𝑚

𝑖=1
ip

𝑖
)log⁡2 𝑝(ip𝑖

) (2)  

 

where 𝑚is the number of distinct source IPs and 𝑝(ip
𝑖
) = 𝑓(ip

𝑖
). 

B. Mail Log Analysis (Sender Frequency and Bayesian Spam Detection) 

For mail log analysis, a basic but effective metric is the frequency of senders, which indicates how 

active a particular sender is compared with overall email traffic [1]. Let 𝑀be the total number of emails 

and 𝑚(𝑠𝑖)be the number of emails sent by sender 𝑠𝑖. Then sender frequency is defined as: 

𝑓(𝑠𝑖) =
𝑚(𝑠𝑖)

𝑀
(3) 

 

For instance, if 𝑀 = 1000and Sender A sends 𝑚(𝐴) = 50, then 𝑓(𝐴) = 0.05(5%), while if Sender B sends 

𝑚(𝐵) = 200, then 𝑓(𝐵) = 0.20(20%). Beyond basic frequency measures, Bayes’ theorem is widely 

applied in spam filtering to compute the probability that an email is spam given its observed content 

(e.g., words in the email) [3]. Using Bayes’ rule, the posterior spam probability is computed as: 

𝑃(spam ∣ 𝑥) =
𝑃(𝑥 ∣ spam)𝑃(spam)

𝑃(𝑥)
(4) 

 

where 𝑥denotes the observed email content, 𝑃(spam)is the prior spam probability, 𝑃(𝑥 ∣ spam)is the 

likelihood of observing content 𝑥in spam, and 𝑃(𝑥)is the marginal probability of observing content 𝑥. 

For classification, the marginal term can be expanded using the law of total probability [3]: 

𝑃(𝑥) = 𝑃(𝑥 ∣ spam)𝑃(spam) + 𝑃(𝑥 ∣ ham)𝑃(ham) (5) 
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These probability-based models provide a mathematically grounded approach for detecting spam and 

identifying suspicious sender behavior in large-scale mail logs [3]. 

Algorithm 4: Log Evaluation and Statistical Analysis for Firewall and Mail Logs 

 

Notation 

• 𝐿𝑓: Firewall log dataset (block events) 

• 𝐿𝑚: Mail log dataset (email events) 

• 𝑁: Total number of blocked events in 𝐿𝑓  

• 𝑀: Total number of emails in 𝐿𝑚 

• ℐ: Set of distinct source IPs in 𝐿𝑓  

• 𝒮: Set of distinct senders in 𝐿𝑚 

• 𝑛(ip): Count of blocked events for IP ip 

• 𝑚(𝑠): Count of emails sent by sender 𝑠 

• 𝑓(ip): Frequency of blocked IP ip 

• 𝑓(𝑠): Frequency of sender 𝑠 

• 𝑝(ip): Probability of observing ipin block events 

• 𝐻: Shannon entropy of source IP distribution 

• 𝑥: Observed email content features (e.g., word set) 

• 𝑃(spam), 𝑃(ham): Prior probabilities 

• 𝑃(𝑥 ∣ spam), 𝑃(𝑥 ∣ ham): Likelihoods 

• 𝑃(spam ∣ 𝑥): Posterior probability of spam 

 

Input 

• Firewall logs 𝐿𝑓(block events with source IPs) 

• Mail logs 𝐿𝑚(email events with sender + content features) 

• Priors 𝑃(spam), 𝑃(ham)and likelihood model parameters 

 

Output 

• Blocked-IP frequency map {𝑓(ip)} 

• Source-IP entropy 𝐻 

• Sender frequency map {𝑓(𝑠)} 

• Spam classification probability 𝑃(spam ∣ 𝑥)for each email 

 

Steps  
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1: Initialize counts and sets 

2: Set 𝑁 ← 0, 𝑀 ← 0 

3: Initialize hash maps 𝑛(⋅)for IP counts, and 𝑚(⋅)for sender counts 

4: Initialize ℐ ← ∅, 𝒮 ← ∅ 

 

A. Firewall Log Processing (Frequency + Entropy) 

5: for each firewall event 𝑒 ∈ 𝐿𝑓do 

6: Extract source IP ip ← 𝑒.srcIP 

7: 𝑛(ip) ← 𝑛(ip) + 1 

8: 𝑁 ← 𝑁 + 1 

9: ℐ ← ℐ ∪ {ip} 

10: end for 

11: for each ip ∈ ℐdo 

12: Compute blocked IP frequency: 

13: 𝑓(ip) =
𝑛(ip)

𝑁
 

14: end for 

15: Initialize entropy 𝐻 ← 0 

16: for each ip ∈ ℐdo 

17: Compute probability 𝑝(ip) ← 𝑓(ip) 

18: Update entropy: 

19: 𝐻 ← 𝐻 − 𝑝(ip)log⁡2(𝑝(ip)) 

20: end for 

 

B. Mail Log Processing (Sender Frequency + Bayesian Spam Probability) 

21: for each mail event 𝑟 ∈ 𝐿𝑚do 

22: Extract sender 𝑠 ← 𝑟.sender 

23: Extract content features 𝑥 ← 𝑟.features 

24: 𝑚(𝑠) ← 𝑚(𝑠) + 1 

25: 𝑀 ← 𝑀 + 1 

26: 𝒮 ← 𝒮 ∪ {𝑠} 

27: Compute sender frequency: 

28: 𝑓(𝑠) =
𝑚(𝑠)

𝑀
 

29: Compute spam posterior probability using Bayes: 

30: 𝑃(spam ∣ 𝑥) =
𝑃(𝑥∣spam)𝑃(spam)

𝑃(𝑥∣spam)𝑃(spam)+𝑃(𝑥∣ham)𝑃(ham)
 

31: if 𝑃(spam ∣ 𝑥) ≥ 𝜏then 

32:  Label email as Spam 

33: else 

34:  Label email as Ham 

35: end if 

36: end for 

37: Return {𝑓(ip)}, 𝐻, {𝑓(𝑠)}, 𝑃(spam ∣ 𝑥) 
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End Algorithm 

 

Figure 3. The complete processing workflow 

Figure 3 represents the complete processing workflow for Algorithm 1, which performs mathematical 

analysis on both firewall logs and mail logs to support large-scale log monitoring and decision-

making. The process begins by accepting inputs consisting of firewall log data 𝐿𝑓, mail log data 𝐿𝑚, and 

probability parameters such as 𝑃(spam), 𝑃(ham), and likelihood models for spam detection. The 

workflow then splits into two parallel branches based on log type: in the firewall log branch, the 

system counts the number of blocked events for each source IP 𝑛(ip)and total blocked events 𝑁, 

computes the frequency of each blocked IP using 𝑓(ip) = 𝑛(ip)/𝑁, and then calculates the source-IP 

entropy 𝐻 = −∑𝑝(ip)log⁡2 𝑝(ip)to quantify randomness in the distribution of blocked IPs. In the mail 

log branch, the system counts emails per sender 𝑚(𝑠)and total emails 𝑀, calculates sender frequency 

using 𝑓(𝑠) = 𝑚(𝑠)/𝑀, and estimates the probability that an email is spam through Bayes’ theorem 

𝑃(spam ∣ 𝑥), followed by a decision step that classifies each email as spam or ham based on a threshold 

𝜏. Finally, the flowchart ends by returning all computed results, including blocked-IP frequency maps, 

entropy values, sender frequencies, and spam classification outputs for further reporting and dashboard 

visualization. 

 

6. Experimental Work 

Single Cluster Node (Pseudo-Distributed Mode) Setup 

I. Terminology  

When configuring Hadoop on a single machine, it is important to use correct terminology. A single-

node (pseudo-distributed) cluster means that all Hadoop services (daemons) run on one physical 

system, but they behave as if they are operating in a distributed environment. This mode uses HDFS 

and allows users to test Hadoop features such as NameNode, DataNode, and MapReduce locally. 

In contrast, Standalone mode refers to Hadoop’s default configuration where Hadoop runs as a single 

Java process without HDFS. Standalone mode is mainly used for debugging and basic testing and does 

not represent a distributed setup. Therefore, for a realistic local cluster simulation, pseudo-distributed 

mode is the appropriate choice. 
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II. Creating a Dedicated Hadoop System User 

Although it is not mandatory, it is strongly recommended to create a dedicated user account specifically 

for running Hadoop. This improves system organization and enhances security because Hadoop files 

and processes remain separate from other applications and users. It also simplifies permission 

management, backups, and troubleshooting. 

To create a Hadoop group and a dedicated Hadoop user (for example, hduser), the following commands 

can be used: 

sudo addgroup hadoop 

sudo adduser --ingroup hadoop hduser 

These commands create: 

• a group named hadoop 

• a user named hduser assigned to the hadoop group 

III. Configuring SSH Access 

Hadoop requires SSH access to manage nodes, even when running on a single-node cluster. In 

pseudo-distributed mode, Hadoop daemons communicate through SSH to the local system. Therefore, 

SSH access to localhost must be configured for the hduser account. 

Step 1: Generate an SSH Key 

Login as hduser and generate an RSA key pair without a password: 

su - hduser 

ssh-keygen -t rsa -P "" 

An empty passphrase is used here so that Hadoop can automatically access SSH without asking for user 

input each time. Although passwordless keys are not recommended for normal secure systems, they are 

commonly used for Hadoop cluster operations. 

Step 2: Enable SSH Login to Localhost 

Copy the public key into the authorized keys list: 

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

ssh localhost 

When connecting the first time, the system will ask: 

Are you sure you want to continue connecting (yes/no)? 

Type yes to allow the connection. 

IV. Disabling IPv6  

On Ubuntu systems, Hadoop may bind to IPv6 addresses when network configurations use values like 

0.0.0.0. If the system is not connected to an IPv6 network, enabling IPv6 provides no benefit and can 

cause networking problems in Hadoop. Therefore, disabling IPv6 is recommended for smooth Hadoop 

operation. 

To disable IPv6, open the file: 

sudo nano /etc/sysctl.conf 

Then add the following lines at the end: 
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net.ipv6.conf.all.disable_ipv6 = 1 

net.ipv6.conf.default.disable_ipv6 = 1 

net.ipv6.conf.lo.disable_ipv6 = 1 

To confirm whether IPv6 is disabled: 

cat /proc/sys/net/ipv6/conf/all/disable_ipv6 

• Output 0 → IPv6 enabled 

• Output 1 → IPv6 disabled  

V. Hadoop Installation 

Download Hadoop from the official Apache mirror and extract it into a suitable directory. A common 

installation path is: 

/usr/local/hadoop 

After extraction, change the ownership of Hadoop files so the dedicated Hadoop user can manage them: 

sudo chown -R hduser:hadoop /usr/local/hadoop 

This ensures that all Hadoop directories and files are accessible to the hduser account and the hadoop 

group. 

 

 

Figure 4. Running Single Cluster Node 

To begin the distributed setup, two single-node Hadoop clusters must first be configured and 

successfully executed. In this arrangement, the Hadoop configuration is modified so that one machine 

is designated as the Master node (which also functions as a Slave node for local processing), while 

the second machine is configured as a Slave node. This initial setup ensures that both systems 

are operational before expanding to a fully distributed cluster environment. 

For firewall log analysis, an application titled “Applet Viewer: main1.class” is used to process and 

visualize the log data, as summarized in the corresponding output image. The application provides a 

clear overview of network activity by presenting key traffic statistics. In the Top 5 Hosts section, the 

internal IP addresses that generated the highest number of connection attempts (HITS) are displayed. 

Among these, host 192.168.0.6 recorded the highest activity with 112 hits, followed by host 

192.168.0.7 with 56 hits. The Day-Wise Analysis table presents the distribution of traffic hits 

across specific dates in November 2023, where the highest traffic was observed on November 20 

and November 22, each recording 64 hits. Additionally, the Action State chart illustrates the 

proportion of firewall decisions, showing how traffic was handled by the firewall. The results indicate 

that 12.3% of traffic was marked as OPEN (allowed), 27.3% was recorded as CLOSE (actively denied, 

typically with a reset response), and the majority, 60.3%, was classified as DROP, meaning the packets 

were silently blocked and discarded without any notification to the source. 
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Figure 5. Firewall log analysis 

 

Figure 6. Propose System analysis log file in time 

Figure 6 illustrates the relationship between log file size (MB) and processing time (minutes) for 

three different log types weblog, serverlog, and firewall log across three experimental datasets (Set-1 to 

Set-3). The results show a clear increase in processing time as file size grows, indicating higher 

computational demand for larger datasets. In Set-1, the file sizes are 60 MB (weblog), 68 MB (serverlog), 

and 61 MB (firewall log), with processing times of 3.3, 3.2, and 3 minutes respectively. In Set-2, the sizes 

increase to 80 MB (weblog), 80 MB (serverlog), and 76 MB (firewall log), with corresponding times of 

3.5, 3.3, and 3 minutes. The highest workload occurs in Set-3, where file sizes rise to 102 MB (weblog), 

136 MB (serverlog), and 121 MB (firewall log), resulting in processing times of 4, 5.4, and 3 minutes 

respectively. Overall, the figure highlights that server logs require the most processing time at larger file 

sizes, while firewall logs remain comparatively faster, demonstrating differences in computational 

complexity across log types. 

 

7. Conclusion 

Log file analysis is a critical component of modern IT systems because it enables organizations to 

monitor performance, detect security threats, and support data-driven decision-making. Based on the 

proposed algorithms, firewall logs were effectively analyzed by computing blocked IP frequency and 

entropy, which helped identify repeated offenders and traffic randomness. Similarly, mail logs were 

processed using sender frequency and Bayesian spam probability to classify suspicious emails 

accurately. The results show that as log file size increases, processing time also grows, with server logs 

requiring the highest time in large datasets, while firewall logs remained comparatively faster. These 

findings highlight the importance of scalable processing frameworks. Real-time technologies such as 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 3508 
 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

Apache Flink and Spark provide low-latency insights, while Hadoop remains valuable for batch analysis 

of historical logs. Future work should focus on automation, intelligent anomaly detection, and enhanced 

scalability. 
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