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and fault detection across large-scale international networks. However, traditional

log analyzers struggle to process modern log data due to its high volume, diverse

Accepted: 26 Dec 2024  formats, and real-time generation. This study proposes a generic log analysis system
using distributed computing to improve scalability and efficiency. The methodology
involves collecting multiple log types, including firewall, server, web, email, and call
data logs, and processing them using Apache Hadoop MapReduce for large-scale
batch analysis. Log events are parsed, aggregated, and summarized to identify
patterns, abnormal activities, and usage trends without interfering with system
performance. Experimental results show that the proposed approach successfully
analyzes diverse log formats and produces meaningful summaries while reducing
manual effort. The system demonstrates improved handling of large log datasets and
supports visualization for better interpretation. Overall, the proposed log analyzer
provides an efficient and scalable solution for managing and extracting insights from
heterogeneous log data.
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Introduction

Modern digital infrastructures generate enormous volumes of log data that capture system events, user
activities, errors, performance metrics, and security incidents. These logs originate from heterogeneous
environments such as cloud platforms, web applications, network devices, industrial control systems,
and hospital information systems. As organizations expand globally, log streams become increasingly
complex due to diverse formats, distributed deployment, varying time zones, and continuously evolving
system behaviors. Consequently, traditional log analysis tools which typically rely on manual inspection
or single-machine processing are insufficient for extracting timely and reliable insights from large-scale
global log repositories.

Global log file analysis is essential for several key objectives: ensuring system availability, identifying
operational bottlenecks, detecting intrusions, supporting compliance auditing, and enabling proactive
maintenance. However, achieving these goals in real time requires scalable processing frameworks
capable of handling high throughput, low latency, and fault tolerance. Big data technologies such as
Hadoop, Spark, and Apache Flink have emerged as effective solutions for batch and stream-based log
processing. Among these, Apache Flink is particularly suitable for real-time analytics due to its event-
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time processing, windowing operations, and stateful computation capabilities, which allow accurate
analysis even under out-of-order event arrival.

Beyond scalable processing, the challenge of accurate anomaly detection and intelligent classification
remains significant. Log data often contains noise, missing fields, irregular patterns, and domain-
specific variations, making single-model prediction approaches unreliable in many real-world
conditions. To address this limitation, ensemble learning techniques provide a robust solution by
combining multiple predictive models to improve generalization and reduce false alarms. Ensembles
such as bagging, boosting, and stacking leverage model diversity to better capture complex system
behaviors and rare incident patterns, especially in cybersecurity and fault detection scenarios.

This study evaluates existing global log file analysis systems and proposes a design framework that
integrates distributed processing with ensemble-based intelligence. The framework supports
heterogeneous log formats, scalable ingestion, automated preprocessing, and enhanced anomaly
detection, ultimately enabling organizations to make faster, more informed operational decisions across
industries, healthcare, and large-scale network environments.

1. Importance of Log Files in Modern Systems : Log files record system events, errors,
transactions, and security-related incidents, making them essential for monitoring and understanding
system behavior. As digital infrastructure expands rapidly, organizations increasingly depend on
reliable log analysis solutions to detect failures, ensure security, and optimize overall performance.

2. Growth of Big Data and Need for Advanced Analytics : Today, massive volumes of digital
data are generated in critical domains such as social networks, e-commerce, healthcare, education, and
environmental systems. This rapid growth has made big data mining an important technique for
extracting valuable insights that support decision-making and enable more personalized services. As a
result, many advanced computing frameworks for large-scale data analysis have been developed.

3. Adoption of Big Data Frameworks for Log Analysis : Traditional log analysis tools cannot
handle large-scale, heterogeneous, and continuously generated logs in real time. To overcome this
limitation, big data technologies such as Apache Hadoop, Apache Spark, and Apache Flink are
widely used for scalable and efficient log processing.

4. Why Apache Flink is Suitable for Log Analytics : Apache Flink is a mature, open-source
distributed stream processing framework designed for large-scale analytics. It supports both bounded
data (batch logs) and unbounded data streams (real-time logs), enabling low-latency and
high-throughput processing. Logs contain structured entries describing system activities and incidents,
including security-related events, making Flink highly suitable for continuous monitoring and anomaly
detection.

5. Anomaly Detection in Distributed Logs Using Flink : This research focuses on identifying
anomalies in large-scale logs collected from distributed environments using Flink. Flink ensures
reliability through fault tolerance mechanisms such as:

Periodic checkpointing, where application state is stored persistently for automatic recovery during
failures.

Savepoints, which store consistent execution states to allow stopping, resuming, upgrading, or
restarting Flink jobs without losing progress.

Both checkpointing and savepoints work asynchronously, enabling continuous processing without
interrupting the flow of incoming log data.

6. Motivation for a Generic Multi-Log Analyzer: Many existing log analyzers in the market can
process only one specific type of log file. Therefore, the main objective of this system is to develop a
generic log analyzer capable of supporting multiple log formats and improving productivity through
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Flink-based distributed processing. By using Apache Flink, the system becomes more efficient in
processing diverse log datasets.

7. Integration with Kafka for Real-Time Streaming: In the proposed framework, logs are
collected and streamed through Kafka and then processed using Apache Flink. This integration allows
continuous data ingestion, real-time orchestration, and generation of meaningful insights. Performance
evaluation also confirms that the combined Flink—Kafka approach enhances scalability and supports
real-world use cases effectively.

8. Role of Machine Learning and Ensemble Techniques: To further improve accuracy and
robustness, ensemble learning techniques can be applied to log analysis. By combining multiple
predictive models trained using different methods or subsets of data, ensemble approaches improve
anomaly detection and generalization compared to single-model methods. This makes ensemble
learning valuable for large-scale and complex log environments.

Log File Analysis Overview (Step-by-Step)
The overall log analysis process follows these main steps:

Data Collection: Collecting logs from multiple sources such as applications, web servers, databases,
and networks.

Preprocessing: Cleaning, filtering, and structuring logs for analysis.

Storage and Management: Storing logs using distributed platforms such as Hadoop or cloud storage
systems.

Analysis and Visualization: Applying statistical analysis, machine learning, and visualization tools
to extract insights.

Real-Time Monitoring: Using stream processing frameworks like Flink for continuous monitoring
and alerts.

Research Work

Large-scale data analytics has become essential because modern systems continuously generate
massive volumes of heterogeneous data, including logs from networks, servers, applications, industrial
devices, and healthcare platforms. Processing such datasets efficiently requires big data technologies
that balance speed, accuracy, scalability, and cost-effectiveness. However, designing systems
that are simultaneously large-scale, adaptive, fault-tolerant, accurate, and error-free remains
challenging due to the complexity of distributed environments and the unpredictable nature of real-
world data streams [1], [2]. As a result, a wide range of big data tools and frameworks have emerged to
address these requirements, including Hadoop, MapReduce, HPCC, Storm, Qubole,
Cassandra, CouchDB, Pentaho, Flink, and Cloudera, among others [1]. These tools support
advanced processing capabilities such as large-scale storage, distributed computation, machine
learning integration, and real-time analytics across diverse applications [3], [4].

Among these technologies, Apache Hadoop has been widely adopted as a foundational framework
for big data analysis because it enables data processing directly where the data is stored, minimizing
transfer overhead and improving efficiency [2], [5]. Hadoop’s architecture combines the Hadoop
Distributed File System (HDFS) for distributed storage and MapReduce for parallel batch
processing, enabling organizations to store large volumes of structured and unstructured log data across
clusters and analyze them efficiently [2], [6]. HDFS provides a reliable storage layer by splitting files
into blocks and replicating them across nodes, ensuring scalability and fault tolerance in large
deployments [7]. At the same time, MapReduce supports batch-oriented processing by dividing
computation into map and reduce tasks, allowing log aggregation, historical trend identification, and
pattern extraction such as security threats or error frequency analysis [8], [9]. In addition, Hadoop
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ecosystems often integrate tools such as Hive and Pig, enabling SQL-like queries and script-based
analysis for extracting insights from stored log datasets [10], [11]. Despite its strengths, Hadoop-based
log analysis typically suffers from high latency and is less suited for real-time monitoring due to the
batch processing nature and operational complexity of setup and maintenance [12], [13].

A major challenge within Hadoop environments is job scheduling, particularly for MapReduce tasks
where resource allocation, deadline requirements, data locality, and execution time significantly
influence performance [14]. Research in Hadoop scheduling highlights that MapReduce schedulers can
be grouped into categories such as resource-aware, deadline-aware, data-locality-aware,
learning-aware, budget-aware, and makespan-aware, each designed to optimize specific
performance objectives [1], [15]. These schedulers differ in their goals, algorithms, and evaluation
approaches, and their effectiveness depends heavily on workload characteristics and cluster
configurations [16], [17]. This demonstrates that efficient scheduling is a key factor in improving
Hadoop-based log analytics performance, especially under heavy data loads [18].

In this research work, three major big data technologies are considered for log analysis: Hadoop,
Spark, and Flink. Hadoop is primarily useful for storage and batch analytics, where the goal is
to process large historical log datasets cost-effectively [2], [19]. For example, Hadoop supports log
storage, aggregation, and pattern mining across months or years of data, making it well suited for
compliance auditing and historical incident analysis [20]. However, when organizations require faster
insights, Hadoop’s limitations in real-time processing become more visible [12], [21].

To overcome latency issues, Apache Spark is often used because of its in-memory computation
engine, which accelerates log processing by keeping intermediate results in memory rather than
repeatedly reading from disk [22]. Spark supports both batch and near real-time analytics through
components such as Spark Core, Spark Streaming, Spark SQL, and MLIib, enabling use cases
such as fraud detection, network security monitoring, log pattern mining, and anomaly detection using
machine learning [22], [23]. Spark provides unified analytics and broad API support (Python, Scala,
Java, SQL), but typically requires higher memory resources and introduces additional operational
complexity compared to Hadoop [22], [23].

Finally, Apache Flink is a powerful distributed processing framework designed for stateful
computations over both bounded (batch) and unbounded (streaming) data streams. Flink supports
unified stream and batch processing, advanced state management, low-latency processing, and
high fault tolerance, making it especially effective for real-time log analytics such as monitoring,
alerting, IoT log processing, and predictive maintenance [3], [4], [23]. Flink’s event-time processing
model enables accurate computation even when log events arrive out of order, which is common in
distributed systems [4], [23]. Moreover, its scalable parallel execution and flexible APIs—including
DataStream, DataSet, SQL, and Table APIs—allow organizations to build robust and efficient log
analysis pipelines across multiple domains [3], [23].

Table 1 Comparative Analysis of Hadoop, Spark, and Flink for Log Analysis

Feature Hadoop Apache Spark Apache Flink
(MapReduce)

Primary Batch processing Batch + Streaming | Streaming-first + Batch

Processing Model (micro-batch)

Latency High (minutes) Low (seconds; micro- | Ultra-low (milliseconds—

batch) seconds)

Best Suited For Historical log | Fast analytics, near | Real-time event
analysis, archival | real-time monitoring | processing, continuous
datasets monitoring
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SQL

Processing Speed Slower (disk-based) | Very fast (in-memory | Very  fast  (pipelined
execution) streaming + in-memory
state)
Real-Time Log | No Yes (micro-batching) | Yes (true streaming)
Support
Handling Not supported Supported via Spark | Built-in (native stream
Continuous Streaming processing)
Streams
Fault Tolerance Strong (data | Strong (RDD lineage | Strong (checkpointing +
replication + re- | recovery) state recovery)
execution)
Stateful Processing | Limited Supported Excellent (native stateful
(structured operators)
streaming)
Event-Time Weak / Not natural Moderate (structured | Excellent (native event-
Processing streaming) time + watermarks)
Scalability Very high (large | High High (optimized parallel
clusters) execution)
Storage Support HDFS mainly HDFS, S3, HBase, | HDFS, S3, Kafka, others
others
Ease of Setup Complex Easier than Hadoop Moderate—Complex
Ease of Use | Moderate—Hard Easier (high-level | Moderate (requires
(Programming) APIs) stream concepts)
Programming APIs | Java, Pig, Hive Scala, Python, Java, | Java, Scala, SQL, Table

API

time

batch (not true real-
time)

Machine Learning | Limited Strong (MLIib) Growing (integration with

Support ML pipelines)

Typical Log Use | Batch log | Pattern mining, | Fraud detection, anomaly

Cases aggregation, offline | anomaly  detection, | detection, alerting, IoT
reporting interactive analytics monitoring

Resource Usage Low-cost but slower | Higher memory | Efficient but requires

required tuning for state

Cost Effectiveness | Best for cheap batch | Good for fast analytics | Best for real-time

processing (needs memory) intelligence (needs
tuning)
Main Limitation High latency, no real- | Streaming is micro- | More complex to

implement and manage
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3. Aim and Objectives

The aim of this research is to develop a scalable and efficient log analysis system that can examine
multiple types oflog files collected from worldwide sources using Apache Flink. The proposed
approach emphasizes real-time processing, parallel execution, and scalability, so that large volumes of
log data can be analyzed effectively on standard computer hardware. Since modern systems generate
diverse logs such as firewall logs, mail logs, server logs, cloud logs, and IoT logs, the system is designed
to support heterogeneous formats and produce meaningful insights for monitoring, security, and
operational decision-making.

The primary objective of this study is to design and implement an intelligent log analysis
framework capable of processing diverse log formats while supporting both real-time analytics
and historical trend analysis. To achieve this, the framework focuses on building an end-to-end
pipeline that includes log collection, ingestion, processing, storage, visualization, and alerting. The
system is intended to enable faster detection of anomalies and security threats, improve reliability
through fault tolerance mechanisms, and generate actionable insights through graphical reporting.

The specific objectives include building an efficient log ingestion pipeline using tools such as Kafka,
Fluentd, or Logstash, and designing a normalization layer that converts structured, semi-structured,
and unstructured log data into a common schema. The framework will support stream processing
using Flink (or Spark Streaming) for real-time monitoring and anomaly detection, while also enabling
batch processing using Hadoop or Spark for historical analysis. To ensure scalability, distributed
storage solutions such as HDFS, Amazon S3, and Elasticsearch will be integrated, along with indexing
and query optimization methods for faster retrieval. In addition, the system aims to incorporate
machine learning techniques for anomaly detection, fraud detection, and predictive analytics using
tools such as Spark MLIib, TensorFlow, or Flink ML. Furthermore, visualization dashboards and
automated alerting mechanisms will be implemented through Grafana, Kibana, or Superset to support
real-time incident response.

Another key objective is to take full advantage of Apache Flink’s strengths—particularly its event-
driven stream processing, stateful computation, checkpointing, fault tolerance, and
scalability—to improve the efficiency and reliability of log analysis. Finally, the study will benchmark
Flink’s performance against other frameworks such as Hadoop and Spark to evaluate its suitability for
global-scale log analytics. Overall, the research aims to deliver a robust, fault-tolerant, and scalable
system capable of processing massive log streams continuously and generating timely insights for
different real-world domains.

4. Proposed Methodology

For this research endeavour, a variety of widely used log file formats collected from global sources were

examined. The proposed approach requires that the Apache Flink framework first be used to
evaluate and validate log files, after which their key contents are analyzed and presented through
graphical visualization. This combination of real-time processing and graphical interpretation is
highly valuable for supporting decision-making in hospital management, industrial operations,
and other domains that rely on large-scale log data.

1. Significance of Using Apache Flink for Large Log Datasets: Apache Flink is a powerful
stream-processing framework that is well suited for handling large and complex log datasets. Its
scalable, fault-tolerant, and real-time architecture allows organizations to process continuous
streams of log records with low latency and high throughput. As a result, Flink supports improved
operational efficiency, faster detection of anomalies or security threats, and the extraction of actionable
insights from large volumes of log data.
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2. Role of Java in Enhancing Data Analysis Efficiency: Java improves the functionality and
efficiency of log data analysis through several key features. First, it offers rich built-in data structures
such as arrays, lists, sets, and maps, which support efficient data organization and processing. Second,
Java provides strong multithreading capabilities, enabling parallel execution of tasks and faster
handling of large datasets. Finally, Java integrates smoothly with major big data frameworks such as
Apache Hadoop, Apache Spark, and Apache Flink, allowing developers to build robust and efficient
analytics systems within these ecosystems.

3. Importance of Graphical Representation for Decision-Making: Graphical representation
plays a crucial role in interpreting complex log data for effective decision-making in both hospitals and
industries. Visual tools such as charts, graphs, and dashboards simplify large datasets and highlight
trends, patterns, and anomalies. For example, doctors can use visual summaries to monitor patient-
related events and device alerts, while industrial managers can identify system failures, production
bottlenecks, and performance inefficiencies. Therefore, visualization enhances clarity, improves
operational awareness, and supports timely data-driven decisions.

4. Examples of Practical Implementations: Several hospitals and industries have implemented
log-based monitoring systems to improve management practices, such as real-time security auditing,
patient device monitoring, predictive maintenance, and system performance tracking. These
implementations demonstrate the effectiveness of combining large-scale log processing with
visualization for operational improvement.

5. Future Developments in Log Data Analysis Technologies: Future improvements in log
analysis technologies may include the integration of machine learning and AI-based anomaly
detection, edge computing for faster processing at the data source, and more intelligent dashboards
that provide predictive insights. These advancements can further enhance automation, scalability, and
decision support in both industry and hospital environments.

‘ Log1 | | Log2 | | Logn |

Data
Aggregation

A 4 v A

Namenode
Script Script
Job

Scheduler

[mtenas] [Dmancse]  [Datenoss]

Data
Analytics I

HDFsS

!

Reporting Data Access Web Service

Figure 1. System Architecture of Hadoop and Map Reduce.
Step-Wise Explanation of Diagram 1: Hadoop-Based Log File Analysis Architecture

Diagram 1 illustrates a log file analysis system architecture designed using Hadoop-based
technologies. The architecture processes large-scale logs collected from multiple sources and generates
meaningful reports through distributed storage and computation. The major components are explained
step by step as follows:
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Step 1: Data Aggregation (Log Collection)

Log data is generated from various systems such as Log1, Log2, ..., Logn.

These logs are collected and ingested into the processing system for further analysis.

The aggregation layer ensures that log data from multiple sources is available in one pipeline.
Step 2: Data Storage in HDFS

After ingestion, all collected logs are stored in the Hadoop Distributed File System (HDFS).

HDFS uses a NameNode to manage metadata (file locations and structure) and multiple DataNodes
to store log blocks.

This distributed storage provides reliability, scalability, and fault tolerance for large datasets.
Step 3: Data Analytics (Distributed Processing)
Once stored in HDFS, the log files are processed using distributed computing frameworks.

Processing tasks are executed through scripts and analytics engines such as MapReduce, Apache
Spark, or similar big data tools.

These frameworks extract insights such as patterns, summaries, trends, and anomalies from log
datasets.

Step 4: Job Scheduling and Workflow Automation

A Job Scheduler is used to automate and manage the execution of log processing tasks.

It schedules recurring jobs, monitors execution, and ensures workflow consistency.

Tools such as Apache Oozie, Apache Airflow, or even Cron jobs may be used for scheduling.
Step 5: Reporting and Data Access

After processing, the analytics results are made available through a Data Access Web Service.
This service enables users to query processed log outputs and generate reports or dashboards.

Reporting supports decision-making for system administrators, hospital management, and industrial
operations.

Algorithm 1: Hadoop MapReduce—Based Global Log File Analysis (Batch Mode)

Input: Heterogeneous raw log files (Firewall, Web, Server, Mail, Call data)
Output: Aggregated summaries, frequency metrics, anomaly counts, stored analysis results in HDFS

Steps:

1: Start

2: Initialize Hadoop cluster services (NameNode, DataNode, ResourceManager, NodeManager)
3: Configure HDFS parameters (block size, replication factor, storage paths)

4: Collect log files from distributed sources: Log,, Log,, ..., Log,

5: Create HDFS directories by log category (e.g., /logs/firewall/, /logs/web/, /logs/mail/)

6: Upload logs into HDFS using distributed storage commands

7: Preprocessing Stage

8: for each log file in HDFS do

9: Read log file line-by-line

10:  Remove duplicates and empty records
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11:

12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:

23:

24:
25:
26:
27:
28:

29:

30:
31
32:
33:
34:

Handle invalid timestamps and missing critical fields
Normalize each record into standard schema
Generate intermediate key-value format:
Key « (IP/User/EventType/TimeWindow)
Value < 1 (or event metadata)

end for

MapReduce Stage

Define Mapper function

for each log record do
Parse required fields (timestamp, IP, event type, status)
Emit intermediate pair (Key’ 1)

end for

Shuffle and sort intermediate outputs by key (Hadoop internal operation)

Define Reducer function

for each unique Keydo
Compute aggregation: Total < Y.Value
Emit final output pair (Key Total)

end for

Store reducer output to HDFS directory /output/log_summary/

Post-Processing Stage (Optional)

Execute additional MapReduce jobs for trends, anomalies, and top-N queries
Export results to Hive/HBase/ElasticSearch for reporting

Generate dashboards and summary reports

End

Algorithm 2: Apache Spark—Based Log File Analysis (In-Memory Batch + Streaming)

Input: Raw logs from HDFS/S3/Kafka (structured, semi-structured, unstructured)
Output: Fast log summaries, anomaly indicators, streaming alerts, stored metrics

Steps

1: Start
2: Initialize Spark environment (SparkSession, executors, memory, cluster mode)
3: Load input logs from storage source:

4:

5: Convert logs into Spark DataFrames/Datasets using schema inference or predefined schema

HDFS/S3 for batch mode, Kafka for streaming mode

6: Data Cleaning and Normalization Stage
7: Remove corrupted entries, null timestamps, and duplicate records
8: Standardize timestamps into common time zone (UTC)

9: Parse log formats (JSON/CSV/XML/Syslog/Custom) and extract structured fields:
10:

(timestamp, source, level, eventType, IP/user, message, status)

11: Batch Analytics (Spark Core / Spark SQL)

12: Perform distributed in-memory transformations: filter(), select(), groupBy(), agg()

13:

14:
15: Store batch results into distributed output storage (HDFS/S3/HBase/ElasticSearch)

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

Compute frequency-based summaries (Top IPs, Top Users, Error counts)
Compute time-window trends using window() aggregations

properly cited.

3498



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

16: Streaming Analytics (Optional: Structured Streaming)

17: if real-time logs are available then

18: Read log stream from Kafka topics

19:  Apply watermarking and sliding/tumbling windows

20: Compute continuous metrics and anomaly triggers

21: if anomaly condition is satisfied then

22: Generate alert record and push to alert channel/dashboard

23: endif

24: Write streaming outputs into sink (ElasticSearch/Cassandra/PostgreSQL)
25: end if

26: Machine Learning Extension (Optional: Spark MLIib)

27: Extract features (TF-IDF, categorical encoding, frequency vectors)
28: Train or apply anomaly detection / classification models

29: Store prediction results for visualization and reporting

30: Generate dashboards and reports using Kibana/Grafana/Power BI
31: End

High-Level Proposed System Architecture (Flink + Java + Visualization)

DATA SOURCES
Hospitals * Industry * Global Logs
(JSON/CSV/XML/Syslog/Custom)

INGESTION LAYER
Kafka / NiFi / REST API / File Watchers

RAW STORAGE
HDFS / S3 / Object Storage
(Immutable logs for audit & replay)

APACHE FLINK PROCESSING (Java)
SECURITY & »1) Log Evaluation Job: validate, detect format, schema, quality score, routeq—

GOVERNANCE 2) Analytics Job: windowing, stateful KPIs, ancmaly detection, alerts ORCHESTRATION
RBAC Airflow
Encryption v K8s Cronjobs
Masking Flink

Audit PROCESSED STORAGE Scheduler
Compliance Elasticsearch/OpenSearch * Druid/ClickHouse = PostgreSQL

DATA ACCESS SERVICES
Spring Boot REST APIs * Role-based Access
L 1

DASHBOARDS & REPORTING
Grafana « Kibana * Superset « Power Bl / Custom Ul

Figure 2. High-level proposed system architecture

Figure 2 illustrates a high-level proposed system architecture for large-scale log file evaluation and
graphical analysis using Apache Flink and Java. In this architecture, log data generated from multiple
sources such as hospitals, industrial systems, and global platforms (in formats like JSON, CSV, XML,
Syslog, and custom logs) is first collected through an ingestion layer using Kafka, NiFi, REST APIs, or
file watchers. The ingested logs are stored in raw form within distributed storage such as HDFS or S3
for audit and replay purposes. Apache Flink, implemented with Java, then performs two major tasks:
(1) log evaluation to validate formats, detect schemas, calculate data quality, and route logs accordingly,
and (2) analytics processing to compute window-based KPIs, identify anomalies, and generate alerts in
real time. The processed outputs are stored in analytical databases such as Elasticsearch/OpenSearch,
Druid/ClickHouse, and PostgreSQL, and then exposed through Spring Boot REST APIs with role-based
access control. Finally, the results are presented through visualization platforms such as Grafana,
Kibana, Superset, Power BI, or custom dashboards to support effective decision-making in hospital and
industry management, while security and governance (RBAC, encryption, masking, auditing,
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compliance) and orchestration tools (Airflow, Kubernetes CronJobs, Flink scheduler) ensure reliability,
automation, and secure operations across the pipeline.

Algorithm 3: Flink-Based Log Evaluation and Graphical Analytics Pipeline

Input:
Raw log streams/files L = {l;, L,, ..., [, }from hospitals, industries, and global systems

Output:
Validated logs L,,, analytics results R, anomaly alerts A4, and graphical dashboards D

Steps

Initialize system components

: Configure ingestion sources (Kafka / REST / File Watchers)

: Configure raw storage (HDFS/S3) and processed storage (Elastic/Druid/PostgreSQL)
: Deploy Flink cluster with state backend and checkpointing enabled

: Ingest Logs

: for each incoming log record [; € Ldo
Send [;to ingestion layer

Store [;in Raw Storage (HDFS/S3)
: end for

© XN U hw N H

10: Log Evaluation Stage (Flink Job 1)

11: for each log record [/;do

12: Detect log format f;(JSON/CSV/XML/Syslog/Custom)
13: Extract schema s;and mandatory fields

14: if [;is invalid OR missing timestamp/critical fields then
15: Route [;to Error Topic / Reject Store

16: else

17: Compute log quality score g;

18: Enrich metadata (source, type, device, department, etc.)
19: Append validated log to L,

20: endif

21: end for

22: Log Analytics Stage (Flink Job 2)

23: for each validated log [,, € L,do

24: Apply event-time alignment and watermarking

25: Perform window-based aggregation (time windows: min/hour/day)
26: Compute KPIs (failure rate, access counts, downtime, utilization, etc.)
27: Perform anomaly detection using thresholds/pattern rules

28: if anomaly detected then

20: Generate alert a;and push to Alert Channel

30: Add ajto A

31: endif

32: Store metrics and summaries into Processed Storage
33: end for

34: Data Access and Visualization

35: Expose processed results via Spring Boot REST APIs

36: Generate dashboards Dusing Grafana/Kibana/Superset/Power BI

37: Return dashboards, reports, and alerts to hospital/industry decision-makers
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End Algorithm

5. Mathematical Equations for Log File Analysis
A. Firewall Log Analysis (Blocked IP Frequency and Source-IP Entropy)

In firewall log analysis, two common statistical measures are (i) the frequency of blocked source
IPs, and (ii) the entropy of source IP distribution. The blocked IP frequency quantifies how
often a particular IP address is blocked relative to the total number of block events, which helps identify
suspicious or repeatedly offending sources [1]. Let Ndenote the total number of blocked events in the
log, and let n(ip,)represent the number of times source IP ip,is blocked. Then, the frequency of a blocked
IP is computed as:

fap) =282 ()

N

For example, if n(ip,) = 3, n(ip,) = 1, and n(ip,) = 6, then N = 3 + 1+ 6 = 10, resulting in f(ip,) =
0.3, f(ip,) = 0.1, and f(ip,) = 0.6. In addition, entropy is widely used to measure the uncertainty or

randomness in the distribution of source IPs; low entropy suggests that traffic is concentrated from a
few sources, whereas high entropy indicates widely distributed traffic, which may be associated with
scanning or distributed attacks [2]. If p(ip,)is the probability of observing IP ip,, then the Shannon

entropy of the source IP distribution is given by:

H=-Y" p(ip)log,p(ip,) (2)

where mis the number of distinct source IPs and p(ip,) = f(ip,)-

B. Mail Log Analysis (Sender Frequency and Bayesian Spam Detection)

For mail log analysis, a basic but effective metric is the frequency of senders, which indicates how
active a particular sender is compared with overall email traffic [1]. Let Mbe the total number of emails
and m(s;)be the number of emails sent by sender s;. Then sender frequency is defined as:

m(s;)
M

f(s) = (3)

Forinstance, if M = 1000and Sender A sends m(4) = 50, then f(4) = 0.05(5%), while if Sender B sends
m(B) = 200, then f(B) = 0.20(20%). Beyond basic frequency measures, Bayes’ theorem is widely
applied in spam filtering to compute the probability that an email is spam given its observed content
(e.g., words in the email) [3]. Using Bayes’ rule, the posterior spam probability is computed as:

P(x | spam)P(spam)

P(spam | x) = P00 (4)

where xdenotes the observed email content, P(spam)is the prior spam probability, P(x | spam)is the
likelihood of observing content xin spam, and P(x)is the marginal probability of observing content x.
For classification, the marginal term can be expanded using the law of total probability [3]:

P(x) = P(x | spam)P(spam) + P(x | ham)P (ham) (5)
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These probability-based models provide a mathematically grounded approach for detecting spam and

identifying suspicious sender behavior in large-scale mail logs [3].

Algorithm 4: Log Evaluation and Statistical Analysis for Firewall and Mail Logs

Notation

Ls: Firewall log dataset (block events)

L,,: Mail log dataset (email events)

N: Total number of blocked events in L,

M: Total number of emails in L,,

J: Set of distinct source IPs in L,

S: Set of distinct senders in L,,

n(ip): Count of blocked events for IP ip

m(s): Count of emails sent by sender s

f(@ip): Frequency of blocked IP ip

f(s): Frequency of sender s

p(ip): Probability of observing ipin block events
H: Shannon entropy of source IP distribution

x: Observed email content features (e.g., word set)
P(spam), P(ham): Prior probabilities

P(x | spam), P(x | ham): Likelihoods

P(spam | x): Posterior probability of spam

Input
Firewall logs L¢(block events with source IPs)
Mail logs L,,,(email events with sender + content features)

Priors P(spam), P(ham)and likelihood model parameters

Output

Blocked-IP frequency map {f (ip)}
Source-IP entropy H

Sender frequency map {f (s)}

Spam classification probability P(spam | x)for each email

Steps
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1: Initialize counts and sets
2:SetN «0,M « 0

3: Initialize hash maps n(-)for IP counts, and m(-)for sender counts

4: Initialize 7 « 0,5 « @

A. Firewall Log Processing (Frequency + Entropy)

5: for each firewall event e € Lydo

6: Extract source IP ip « e.srcIP

7: n(ip) « n(ip) + 1
8 N<N+1

9: J < JuU({ip}

10: end for

11: for each ip € 7do

12: Compute blocked IP frequency:
130 f(ip) ="
14: end for

15: Initialize entropy H < 0
16: for each ip € Jdo

17: Compute probability p(ip) < f(ip)
18: Update entropy:

19: H < H —p(ip)log ,(p(ip))

20: end for

B. Mail Log Processing (Sender Frequency + Bayesian Spam Probability)

21: for each mail event r € L,,do

22: Extract sender s « r.sender

23: Extract content features x « r.features

24: m(s) «m(s)+1

25: Me«M+1

26: S < SU{s}

27: Compute sender frequency:
. —me

28: f(s) ="

29: Compute spam posterior probability using Bayes:
. _ P(x|spam)P (spam)

30: P(Spam | x) - P(x|spam)P (spam)+P (x/ham)P (ham)

31: if P(spam | x) > tthen

32: Label email as Spam

33: else

34: Label email as Ham

35: endif

36: end for

37: Return {f(ip)}, H,{f (s)}, P(spam | x)
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End Algorithm

Flowchart: Firewall + Mail Log Analysis (Algorithm 1)

Input:
Firewall logs Lf, Mail logs Lm,
P(spam), P(ham), likelihood model

L1
Split
by Log Type
y - At Acessing:
Firewall Processing: Count emails per sender:
Count blocks per IP: mis)++, M++
nlip)++, N++ Extract features x
v v
Compute fréquenq’ Compute sender frequency:
f(\p):n(_lp)/N f(s)=m(s)/M
for eachipin| for each sender s
b4
Compute entropy: Compute spam probability:
H = -3 plip) log2 plip) Pispampa=
where plip)=flip) P(x|spam)P(spam)
/ [P(x|spam}P(spam}+P(x|ham)P(ham)]
A 4 A
output (Firewall): Decision:
Frequency map {f(ip)} If P(spam|x) = T - Spam

Entropy H End Else » Ham
Return all results

Figure 3. The complete processing workflow

Figure 3 represents the complete processing workflow for Algorithm 1, which performs mathematical
analysis on both firewall logs and mail logs to support large-scale log monitoring and decision-
making. The process begins by accepting inputs consisting of firewall log data L, mail log data L,,, and
probability parameters such as P(spam), P(ham), and likelihood models for spam detection. The
workflow then splits into two parallel branches based on log type: in the firewall log branch, the
system counts the number of blocked events for each source IP n(ip)and total blocked events N,
computes the frequency of each blocked IP using f(ip) = n(ip)/N, and then calculates the source-IP
entropy H = —Yp(ip)log , p(ip)to quantify randomness in the distribution of blocked IPs. In the mail
log branch, the system counts emails per sender m(s)and total emails M, calculates sender frequency
using f(s) = m(s)/M, and estimates the probability that an email is spam through Bayes’ theorem
P(spam | x), followed by a decision step that classifies each email as spam or ham based on a threshold
7. Finally, the flowchart ends by returning all computed results, including blocked-IP frequency maps,
entropy values, sender frequencies, and spam classification outputs for further reporting and dashboard
visualization.

6. Experimental Work
Single Cluster Node (Pseudo-Distributed Mode) Setup
I. Terminology

When configuring Hadoop on a single machine, it is important to use correct terminology. A single-
node (pseudo-distributed) cluster means that all Hadoop services (daemons) run on one physical
system, but they behave as if they are operating in a distributed environment. This mode uses HDFS
and allows users to test Hadoop features such as NameNode, DataNode, and MapReduce locally.

In contrast, Standalone mode refers to Hadoop’s default configuration where Hadoop runs as a single
Java process without HDFS. Standalone mode is mainly used for debugging and basic testing and does
not represent a distributed setup. Therefore, for a realistic local cluster simulation, pseudo-distributed
mode is the appropriate choice.
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II. Creating a Dedicated Hadoop System User

Although it is not mandatory, it is strongly recommended to create a dedicated user account specifically
for running Hadoop. This improves system organization and enhances security because Hadoop files
and processes remain separate from other applications and users. It also simplifies permission
management, backups, and troubleshooting.

To create a Hadoop group and a dedicated Hadoop user (for example, hduser), the following commands
can be used:

sudo addgroup hadoop

sudo adduser --ingroup hadoop hduser

These commands create:

a group named hadoop

a user named hduser assigned to the hadoop group
II1. Configuring SSH Access

Hadoop requires SSH access to manage nodes, even when running on a single-node cluster. In
pseudo-distributed mode, Hadoop daemons communicate through SSH to the local system. Therefore,
SSH access to localhost must be configured for the hduser account.

Step 1: Generate an SSH Key

Login as hduser and generate an RSA key pair without a password:
su - hduser

ssh-keygen -t rsa -P "

An empty passphrase is used here so that Hadoop can automatically access SSH without asking for user
input each time. Although passwordless keys are not recommended for normal secure systems, they are
commonly used for Hadoop cluster operations.

Step 2: Enable SSH Login to Localhost

Copy the public key into the authorized keys list:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

ssh localhost

When connecting the first time, the system will ask:

Are you sure you want to continue connecting (yes/no)?
Type yes to allow the connection.

IV. Disabling IPv6

On Ubuntu systems, Hadoop may bind to IPv6 addresses when network configurations use values like
0.0.0.0. If the system is not connected to an IPv6 network, enabling IPv6 provides no benefit and can
cause networking problems in Hadoop. Therefore, disabling IPv6 is recommended for smooth Hadoop
operation.

To disable IPv6, open the file:
sudo nano /etc/sysctl.conf

Then add the following lines at the end:
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net.ipv6.conf.all.disable_ipv6 =1
net.ipv6.conf.default.disable_ipv6 =1
net.ipv6.conf.lo.disable_ipv6 =1
To confirm whether IPv6 is disabled:
cat /proc/sys/net/ipv6/conf/all/disable_ipv6
Output 0 — IPv6 enabled
Output 1 — IPv6 disabled
V. Hadoop Installation

Download Hadoop from the official Apache mirror and extract it into a suitable directory. A common
installation path is:

/usr/local/hadoop
After extraction, change the ownership of Hadoop files so the dedicated Hadoop user can manage them:
sudo chown -R hduser:hadoop /usr/local/hadoop

This ensures that all Hadoop directories and files are accessible to the hduser account and the hadoop
group.

Figure 4. Running Single Cluster Node

To begin the distributed setup, two single-node Hadoop clusters must first be configured and
successfully executed. In this arrangement, the Hadoop configuration is modified so that one machine
is designated as the Master node (which also functions as a Slave node for local processing), while
the second machine is configured as a Slave node. This initial setup ensures that both systems
are operational before expanding to a fully distributed cluster environment.

For firewall log analysis, an application titled “Applet Viewer: maini.class” is used to process and
visualize the log data, as summarized in the corresponding output image. The application provides a
clear overview of network activity by presenting key traffic statistics. In the Top 5 Hosts section, the
internal IP addresses that generated the highest number of connection attempts (HITS) are displayed.
Among these, host 192.168.0.6 recorded the highest activity with 112 hits, followed by host
192.168.0.7 with 56 hits. The Day-Wise Analysis table presents the distribution of traffic hits
across specific dates in November 2023, where the highest traffic was observed on November 20
and November 22, each recording 64 hits. Additionally, the Action State chart illustrates the
proportion of firewall decisions, showing how traffic was handled by the firewall. The results indicate
that 12.3% of traffic was marked as OPEN (allowed), 27.3% was recorded as CLOSE (actively denied,
typically with a reset response), and the majority, 60.3%, was classified as DROP, meaning the packets
were silently blocked and discarded without any notification to the source.
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Figure 6. Propose System analysis log file in time

Figure 6 illustrates the relationship between log file size (MB) and processing time (minutes) for
three different log types weblog, serverlog, and firewall log across three experimental datasets (Set-1 to
Set-3). The results show a clear increase in processing time as file size grows, indicating higher
computational demand for larger datasets. In Set-1, the file sizes are 60 MB (weblog), 68 MB (serverlog),
and 61 MB (firewall log), with processing times of 3.3, 3.2, and 3 minutes respectively. In Set-2, the sizes
increase to 80 MB (weblog), 80 MB (serverlog), and 76 MB (firewall log), with corresponding times of
3.5, 3.3, and 3 minutes. The highest workload occurs in Set-3, where file sizes rise to 102 MB (weblog),
136 MB (serverlog), and 121 MB (firewall log), resulting in processing times of 4, 5.4, and 3 minutes
respectively. Overall, the figure highlights that server logs require the most processing time at larger file
sizes, while firewall logs remain comparatively faster, demonstrating differences in computational
complexity across log types.

~. Conclusion

Log file analysis is a critical component of modern IT systems because it enables organizations to
monitor performance, detect security threats, and support data-driven decision-making. Based on the
proposed algorithms, firewall logs were effectively analyzed by computing blocked IP frequency and
entropy, which helped identify repeated offenders and traffic randomness. Similarly, mail logs were
processed using sender frequency and Bayesian spam probability to classify suspicious emails
accurately. The results show that as log file size increases, processing time also grows, with server logs
requiring the highest time in large datasets, while firewall logs remained comparatively faster. These
findings highlight the importance of scalable processing frameworks. Real-time technologies such as
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Apache Flink and Spark provide low-latency insights, while Hadoop remains valuable for batch analysis
of historical logs. Future work should focus on automation, intelligent anomaly detection, and enhanced
scalability.
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