
Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 151 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Predictive Autoscaling in Kubernetes Microservices with

KEDA and Time Series Forecasting

Tina Lekshmi Kanth

Illinois Institute of Technology, Illinois, USA

ARTICLE INFO ABSTRACT

Received: 04 Nov 2025

Revised: 25 Dec 2025

Accepted: 04 Jan 2026

Cloud-native microservices architectures handling large volumes of transactions

require smart resource management mechanisms that go beyond traditional reactive

autoscaling boundaries. Threshold-based scaling is traditional, bringing with it the

natural latency between demand changes and capacity changes, leading to

compromised performance during traffic spikes and wastage of resources during dips

in demand. Event-driven autoscaling systems go beyond infrastructure-level metrics

by involving external data feeds, message queue sizes, and application-level metrics

for making scaling decisions. Yet, reactive mechanisms are inherently bounded by

response latencies that degrade service quality and operational effectiveness.

Predictive autoscaling bridges such gaps with time series forecasting models that

interpret historical workload patterns to predict future resource needs. The

combination of deep neural network architectures with event-driven autoscaling

modules allows for proactive capacity provisioning in response to projected workload

trends as opposed to observed metric values. Multivariate prediction models with

correlated resource metrics are superior in prediction accuracy over univariate

methods, able to capture intricate interdependencies between CPU usage, memory

usage, network bandwidth, and storage activities. Design considerations include

model choice based on workload behaviour, hyperparameter tuning to balance

accuracy with computational cost, and reliable integration frameworks with extensive

error handling and fallback strategies. Predictive approaches show considerable

benefits such as lower response time degradation, better cost-effectiveness with

enhanced resource utilisation, and reduced scaling operation frequency. The

challenges are to ensure accuracy of the forecast in the face of changing traffic

patterns, address computational overhead due to periodic model retraining, and

provide tolerance to prediction uncertainties affecting the scaling aggressiveness.

Keywords: Predictive Autoscaling, Event-Driven Scaling, Time Series Forecasting,

Deep Neural Networks, Cloud Resource Management, Microservices Elasticity

I. INTRODUCTION

Cloud-native applications developed in modern times on microservice architectures are confronted with resource

management and scalability challenges like never before. These distributed systems that handle enormous amounts

of transactions every day need high-level, sophisticated mechanisms to ensure maximum performance while

managing operational expenses. Applications built with gRPC APIs execute business logic and persist transactions

in document stores such as Cosmos DB, while simultaneously publishing events to Azure Event Hub for

downstream processing. These systems experience traffic variability influenced by temporal factors such as time of

day, day of week, and seasonal patterns, necessitating intelligent autoscaling strategies that can anticipate demand

rather than merely react to it.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 152 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The development of container orchestration platforms has introduced Kubernetes Event-Driven Autoscaling

(KEDA) as an advanced autoscaling mechanism beyond traditional CPU and memory-based approaches. While the

native Horizontal Pod Autoscaler operates via periodic metric requests at specified intervals and scales replica

numbers according to preset utilisation levels, KEDA extends this functionality by enabling workload scaling based

on external event sources and metrics. KEDA supports multiple scaler types including message queue depths from

Azure Event Hub and Kafka, database connection pools, custom application metrics from Prometheus, and HTTP

endpoint responses, allowing organisations to scale based on business-relevant metrics rather than solely

infrastructure utilisation. This capability is particularly valuable for microservices architectures where application-

level metrics such as event hub message backlog or database transaction rates provide more meaningful scaling

signals than generic CPU or memory thresholds.

However, KEDA's reactive autoscaling mechanisms necessarily introduce latency between changes in demand and

adjustments in resources, causing potential performance decline during traffic peaks or wasteful over-provisioning

during expected increases in load. Experiments have shown that traffic-informed autoscaling policies based on real-

time traffic monitoring and predictive analysis are able to provide much better resource use and response times

than the conventional threshold-based policies [5]. The traditional reactive scaling mechanisms wait for metrics to

cross thresholds before initiating scaling operations, resulting in a gap between when capacity is needed and when

it becomes available. Research comparing Kubernetes-based edge computing infrastructure has demonstrated that

traffic-aware horizontal pod autoscaling mechanisms significantly outperform traditional reactive approaches, with

experimental results showing that predictive policies reduce service level agreement breaches and improve resource

usage efficiency by anticipating workload changes rather than merely reacting to threshold violations [5].

Event-driven autoscaling goes beyond conventional methods by allowing for workload scaling based on outside

metrics and event sources in addition to measurements at the infrastructure level. These higher-level frameworks

accommodate various scaler types such as message queue depths, database connection pools, custom app metrics,

and HTTP endpoint responses so that organisations can scale on business-relevant metrics instead of just

infrastructure utilisation. The architecture allows for scaling to zero replicas during times of inactivity, a feature

highly beneficial in development environments and batch processing workloads where persistent resource

provisioning is too expensive. Distributed microservice research has proven that adaptive load balancing combined

with knowledge-driven autoscaling algorithms can maximise resource utilisation by automatically adjusting

computational resources according to real-time demand patterns and forecasting analytics [2]. Such adaptive

algorithms include machine learning methods for dissecting past traffic patterns, anticipating future workload

trends, and dynamically adjusting resource allocation before demand realisation. Research has indicated that

microservice designs using adaptive autoscaling solutions result in better response times, lower costs of operations,

and increased system dependability than static provisioning strategies [2]. Augmenting event-driven scaling with

predictive analytics allows systems to anticipate traffic variations based on temporal patterns, seasonality, and

historical data, addressing the inherent limitations of reactive practices that act only after resource bottlenecks

emerge.

This work introduces an end-to-end framework to deploy predictive autoscaling in Kubernetes microservices

environments by coupling time series forecasting models with KEDA's event-driven autoscaling capabilities. The

solution allows for proactive resource allocation based on analysis of traffic patterns from gRPC API request rates,

Cosmos DB transaction volumes, and Azure Event Hub message throughput, offering the adaptability of KEDA's

external metric-based scaling combined with statistical forecasting techniques' foresight. By analysing historical

traffic patterns and generating forward-looking predictions, the framework addresses the inherent latency of

reactive scaling while maintaining the flexibility and extensibility of KEDA's autoscaling platform. The integration

takes advantage of KEDA's HTTP scaler functionality to ingest predicted metrics as external data sources that

inform scaling decisions in anticipation of realised demand, ensuring service performance is maintained during

traffic spikes and resources are optimally utilised during variable-demand periods. KEDA's architecture also allows

for scaling to zero replicas during times of inactivity, a feature highly beneficial in development environments and

batch processing workloads where persistent resource provisioning incurs unnecessary costs.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 153 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

II. BACKGROUND AND BASIC IDEAS

A. Event-Driven Autoscaling with KEDA

Kubernetes Event-Driven Autoscaling (KEDA) is an open-source component that extends Kubernetes' native

autoscaling capabilities by enabling workloads to scale based on external event sources and metrics beyond

traditional CPU and memory utilisation. Unlike the Horizontal Pod Autoscaler, which operates primarily on

resource metrics collected from the Metrics Server, KEDA provides a rich ecosystem of scalers that integrate with

external systems to make scaling decisions based on application-specific and business-relevant metrics. KEDA

operates as a Kubernetes operator that watches for events from external sources and adjusts the replica count of

deployments, stateful sets, or any custom resources based on the configured scaling rules.

The architecture of KEDA consists of three primary components: the KEDA Operator, which activates and

deactivates Kubernetes deployments based on event sources; the Metrics Adapter, which exposes external metrics

to the Horizontal Pod Autoscaler; and Scalers, which are connectors that interface with specific external systems to

retrieve metrics. KEDA supports over fifty different scaler types, allowing integration with diverse external systems,

including message brokers, databases, monitoring platforms, and custom HTTP endpoints. This extensibility makes

KEDA particularly suitable for microservices architectures where scaling decisions should be driven by domain-

specific metrics rather than generic infrastructure utilisation.

For microservices built with gRPC APIs that persist transactions in Cosmos DB and publish events to Azure Event

Hub, KEDA provides several relevant scalers. The Azure Event Hub scaler monitors the lag between the current

position in the event stream and the latest available events, allowing workloads to scale based on message backlog

depth. When messages accumulate in Event Hub partitions faster than they can be processed, KEDA can

automatically increase the number of consumer pods to handle the increased load. The scaler queries Azure Event

Hub's management API to retrieve consumer group lag metrics, using these values to determine the appropriate

replica count for processing workloads. Configuration parameters include the consumer group name, connection

string, and threshold values that define when scaling operations should occur.

Prometheus is a widely adopted open-source monitoring and alerting system that collects time series metrics from

instrumented applications and infrastructure components. In Kubernetes environments, Prometheus scrapes

metrics endpoints exposed by pods, aggregates the data, and stores it in a time series database optimised for

querying and analysis. For gRPC-based microservices, Prometheus can collect application-level metrics such as

request rates, response latencies, error rates, and custom business metrics instrumented within the application

code. KEDA's Prometheus scaler queries the Prometheus API using PromQL to retrieve metric values that inform

scaling decisions. This integration allows autoscaling based on complex queries that aggregate metrics across

multiple dimensions, such as scaling based on the rate of failed transactions or response time percentiles of API

endpoints.

Kafka is a distributed event streaming platform used for building real-time data pipelines and streaming

applications. In microservices architectures, Kafka serves as a message broker that decouples producers from

consumers, allowing asynchronous communication between services. KEDA's Kafka scaler monitors consumer

group lag, which represents the difference between the latest message offset in a topic partition and the offset last

committed by a consumer group. High consumer lag indicates that messages are being produced faster than they

are being consumed, signalling the need to scale up processing capacity. The scaler connects to Kafka brokers to

retrieve consumer group metadata and partition offset information, using these metrics to calculate the appropriate

number of replicas needed to maintain acceptable processing latency.

KEDA's HTTP scaler provides a mechanism for scaling based on metrics exposed via HTTP endpoints, offering

flexibility for custom metric sources not covered by built-in scalers. This scaler performs periodic HTTP requests to

a specified endpoint, expecting a JSON response containing metric values. The response is parsed to extract

numerical metrics that are then used to drive scaling decisions according to configured thresholds. This

functionality is particularly valuable for integrating predictive models into the autoscaling pipeline, as forecasting

services can expose predicted traffic values via REST APIs that KEDA consumes through the HTTP scaler.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 154 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

B. Time Series Forecasting Fundamentals

Time series forecasting employs statistical models to predict future values based on historical data. Standard

forecasting methods decompose a time series into key components: underlying trends that capture long-term

directional movement, seasonal patterns that represent periodic fluctuations, and residual noise that reflects

random variation. Sophisticated forecasting systems manage multiple levels of seasonality, cope with missing data

points, and incorporate external regressors like calendar events affecting patterns of demand. Research into cloud

workload prediction has demonstrated that autoregressive integrated moving average models provide robust

mechanisms for forecasting resource utilisation patterns in virtualised environments, with experimental validation

showing that accurate workload prediction directly influences quality of service metrics including response time,

throughput, and service level agreement compliance [4]. The application of time series analysis to cloud computing

workloads addresses the fundamental challenge that resource demands exhibit temporal dependencies, where

future utilisation patterns correlate strongly with historical observations rather than remaining constant or

randomly distributed.

Autoregressive integrated moving average models represent a class of statistical methods particularly suited to

forecasting workloads that exhibit autocorrelation, trend components, and stationarity characteristics. The

autoregressive component models the relationship between an observation and lagged values from previous time

periods, capturing the persistence effect where recent resource utilisation levels influence near-term future

demands. The integrated component addresses non-stationarity in time series data through differencing operations

that transform trending data into stationary sequences suitable for analysis. The moving average component

models the relationship between observations and residual errors from previous predictions, accounting for

random shocks that temporarily influence system behaviour [4].

The choice of suitable forecasting models depends fundamentally on workload characteristics, prediction horizons,

and computational resource constraints. Short-term predictions spanning minutes to hours require models capable

of capturing fine-grained temporal variations, whereas long-term forecasts extending across days or weeks must

account for broader cyclical patterns and trend evolution. Workload analysis in cloud computing environments has

revealed that different application types exhibit distinct temporal signatures, with web applications demonstrating

strong diurnal patterns corresponding to user activity cycles, batch processing systems showing job submission

patterns aligned with organisational schedules, and scientific computing workloads reflecting project-specific

execution patterns [4].

Time series forecasting in resource management applications involves careful attention to data preprocessing

methods, feature engineering techniques, and validation protocols. Raw monitoring data collected from production

systems typically contains anomalies resulting from system failures, deployment activities, network disruptions, or

measurement errors that can adversely affect model training if left unaddressed. Preprocessing pipelines

implement statistical outlier detection methods that identify observations deviating significantly from expected

distributions, applying techniques such as interquartile range filtering, z-score thresholding, or isolation forest

algorithms to remove or correct anomalous values. Studies examining workload prediction accuracy have

established that data quality significantly influences forecasting performance, with research demonstrating that

models trained on cleansed datasets achieve substantially lower prediction errors than those trained on raw

unprocessed data [4].

Model validation in production forecasting systems demands rigorous evaluation employing appropriate metrics

and validation methodologies. Point forecast accuracy assessment utilises error metrics including mean absolute

error, root mean squared error, and mean absolute percentage error. Research examining forecasting model

evaluation has established that no single metric comprehensively characterises prediction quality, with different

metrics highlighting distinct aspects of forecasting performance [4]. Production deployment of forecasting models

requires consideration of computational efficiency alongside predictive accuracy, with typical production systems

implementing daily or weekly retraining schedules aligned with the rate of workload pattern evolution.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 155 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Component Functionality
Key

Metrics

Performance

Impact

Event-Driven

Scaler

External source

scaling beyond

infrastructure

Queue depths, custom

metrics, DB connections,

HTTP endpoints

Reduces scaling

frequency via

multi-metric logic

Horizontal Pod

Autoscaler

Periodic queries

adjust replicas by

utilization

CPU, memory, custom

resource metrics

15s intervals

(resources), 30s

intervals (custom

metrics)

Composite

Scaling

Weighted metric

aggregation for

complex patterns

Application-level metrics,

business indicators,

domain-specific data

Captures true

needs for I/O-

intensive

operations

Zero-Scaling

Eliminates

resources during

idle periods

Event triggers, message

arrival, queue presence

Direct cost

savings in pay-

per-use

environments

Buffer

Management

Absorbs

transient

demand without

immediate

scaling

Workload fluctuations,

spike patterns, sustained

changes

Prevents

premature scaling

from transient

spikes

Table 1. Event-Driven Autoscaling Components [3, 4].

III. PREDICTIVE AUTOSCALING FRAMEWORK DESIGN

The proposed predictive autoscaling system mitigates the limitations of reactive scaling by pre-emptively

provisioning resources. The architectural structure includes a number of interdependent components operating

together to produce, service, and consume traffic forecasts for making autoscaling decisions. It has been shown

through research that autoscaling methods can be generally classified into reactive methods that act on existing

system state and proactive methods that predict upcoming resource demands, and proactive methods have

numerous benefits in reducing service level agreement breaches and optimising resource provisioning expenses [5].

By embedding forecasting functionality within the autoscaling decision process, the system can initiate scaling

actions pre-emptively, mitigating the impact of workload spikes on application performance.

A. Data Pipeline and Model Training

Historical traffic levels gathered from monitoring systems provide the basis for predictive models. The data pipeline

retrieves pertinent time series data from Prometheus, conducts required preprocessing such as outlier removal and

gap filling, and passes clean datasets into the forecasting model. The forecasting component uses additive

decomposition models that can model multiple seasonal patterns simultaneously, making them ideally suited for

microservices with daily, weekly, and monthly patterns of traffic observed in gRPC API request rates, Cosmos DB

transaction volumes, and Azure Event Hub message throughput. Research into traffic-aware autoscaling has

proven that prediction-based methods use historical workload patterns and analytical models to predict future

demands for resources and allow systems to allocate capacity in advance of need, thus preventing performance

degradation caused by the delay of reactive scaling [5]. These forecasting models compute past measurements such

as request rates, response times, resource usage patterns, and application-specific performance metrics to discover

repeated patterns and temporal relationships that define workload behaviour.

The data preprocessing pipeline employs advanced mechanisms to provide high-quality training data for prediction

models. Raw monitoring information tends to include anomalies caused by system crashes, deployment activities,

or measurement errors that can adversely affect model training if left uncorrected. Studies that examined

autoscaling mechanisms have demonstrated that good prediction of workload requires representative, clean

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 156 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

training data that reflects actual normal operating patterns whilst removing transient anomalies that do not

represent genuine workload behaviour [5]. The preprocessing phase implements statistical outlier removal

techniques that detect and remove data points with extreme values that deviate from expected distributions, so

training datasets precisely represent normal operating patterns. Gap-filling operations fill missing data by applying

interpolation methods that forecast values for time periods with missing observations, ensuring temporal

continuity of training datasets and avoiding model deterioration from the lack of complete historical records.

Model training is done on a regular schedule, using recent information to update prediction accuracy. The training

operation takes into account different temporal attributes such as hour of day, day of week, and special calendar

events impacting traffic flows in microservices processing gRPC requests and publishing to Azure Event Hub. This

continuous retraining guarantees the model learns to keep up with changing traffic patterns and continues to make

accurate predictions over a period of time. Research into proactive autoscaling has shown that applications have

workload patterns that consist of cyclical changes at multiple time scales, with statistical time series analysis and

forecasting techniques like moving averages, autoregressive models, and machine learning-based approaches

offering efficient mechanisms for predicting resource demand in the future [5]. The feature engineering step

converts raw timestamp data into meaningful temporal variables that clearly capture cyclical patterns and allow

forecasting models to learn calendar attribute-workload intensity relationships.

The training infrastructure employs retraining pipelines that automatically refresh forecasting models with new

observations from time to time, so predictions remain valid as workload patterns change over time. Research into

autoscaling architectures has found that scaling mechanisms must balance predictive accuracy against

computational cost, and most real-world implementations use lightweight forecasting models that can produce

predictions effectively whilst keeping acceptable levels of accuracy [5]. The frequency of retraining has to take into

account the computational expense of training models, the workload pattern evolution rate, and computational

resource availability, with common implementations scheduling periodic retraining cycles based on the application

profile. Model versioning capacity is kept in the framework, supporting comparison between consecutive

generations of models and rollbacks in case newly trained models have decreased performance compared to older

generations.

B. Prediction Serving and Consumption

Forecast data produced by trained models should be available to autoscaling infrastructure through standardised

interfaces. The system implements a prediction serving layer that provides forecast values through RESTful

endpoints and gRPC services, allowing the autoscaling system to query future traffic levels at specific future

timestamps. RESTful APIs offer widespread compatibility and straightforward integration with HTTP-based tools,

whilst gRPC provides high-performance remote procedure calls with efficient binary serialisation through Protocol

Buffers, reduced latency through HTTP/2 multiplexing, and strongly-typed service contracts that ensure

consistency between prediction services and consuming clients. For microservices architectures already employing

gRPC for inter-service communication with Cosmos DB and Azure Event Hub, exposing predictions through gRPC

endpoints maintains architectural consistency and leverages existing infrastructure for service discovery, load

balancing, and authentication. The prediction service keeps forecast horizons aligned with the scaling response

time of the underlying infrastructure, ensuring that predictions cover sufficient time windows to enable proactive

scaling decisions before workload changes materialise.

Research into machine learning-based workload forecasting has proven that different prediction models perform

differently based on workload patterns and prediction horizons, with experimental tests indicating that ensemble

methods and deep learning models tend to have higher forecasting accuracy than standard statistical models [6].

The serving layer supports effective inference processes that produce predictions with low latency levels, such that

autoscaling queries are answered in good time without adding delays to scaling decision processes. When

implementing gRPC-based prediction serving, service definitions specify request and response message structures

containing timestamp ranges, prediction confidence intervals, and metadata about model versions and training

timestamps. The strongly-typed nature of gRPC contracts prevents integration errors that might occur with loosely-

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 157 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

typed REST APIs, where JSON schema variations between service versions can cause parsing failures or incorrect

metric interpretations.

The autoscaling module consumes the predictions via HTTP-based metric queries or gRPC streaming connections,

employing projected values as scaling triggers. For KEDA integration, the HTTP scaler retrieves predictions from

RESTful endpoints, whilst custom external scalers can leverage gRPC to establish bidirectional streaming

connections that provide continuous prediction updates without repeated polling overhead. This application takes

advantage of KEDA's extensibility, utilising predictions as external metrics that inform scaling decisions.

Configuration parameters set scaling thresholds, rate limits, and cooldown times to avoid scaling oscillation.

Research investigating workload prediction models has indicated that machine learning methods such as support

vector machines, random forests, long short-term memory networks, and gradient boosting algorithms exhibit

differential performance against different workload characteristics and prediction horizons [6].

The prediction serving infrastructure has complete error handling and fallback features to provide system reliability

in forecasting component failure or performance decline. The design holds cached predictions that autoscaling

systems can use during transient service outages, avoiding scaling failure due to the unavailability of forecasting

endpoints. Both RESTful and gRPC implementations incorporate health check endpoints that monitoring systems

can probe to verify service availability, with gRPC health checking following the standard GRPC Health Checking

Protocol that enables Kubernetes liveness and readiness probes to assess prediction service status. The system uses

configurable confidence levels to decide when predictions must act upon scaling decisions and deploy reactive

fallback modes in response to low-confidence predictions to avoid making unsuitable resource changes based on

uncertain predictions.

The integration structure provides complex scaling policies that include accounting for prediction uncertainty in

decision-making. Studies that have examined prediction model performance have indicated that metrics such as

coefficient of determination, Nash-Sutcliffe efficiency, and symmetric mean absolute percentage error give

complementary views of the quality of forecasting, allowing for thorough examination of model trustworthiness for

autoscaling purposes [6]. The methodology can also produce prediction intervals in addition to point forecasts,

measuring forecast uncertainty and allowing scaling aggressiveness adjustment based on prediction confidence.

When serving predictions through gRPC, response messages can include structured uncertainty quantification with

upper and lower confidence bounds, enabling consuming services to implement sophisticated decision logic that

adjusts provisioning strategies based on prediction reliability.

Architecture Pattern Handling Computation Accuracy Efficiency

Encoder-

Decoder with

Attention

Long-range temporal

dependencies via

selective focus

Minutes to hours

based on dataset

size

Reduced MAPE

vs statistical

Requires hardware

acceleration for

large datasets

Multivariate

Deep Neural

Networks

Correlated metrics:

CPU, memory,

network, disk I/O

Higher

overhead;

justified by gains

Outperforms

univariate across

all horizons

Daily/weekly

retraining

Additive

Decomposition

Multiple seasonality:

daily, weekly, monthly

cycles

Lightweight;

production-

ready

Effective for

periodic patterns

Efficient training,

rapid updates

Recurrent

Neural

Networks

Sequential processing

for temporal evolution

Moderate to

high; varies by

length

Lower MAE,

RMSE for

complex

patterns

Requires careful

tuning

Ensemble

Forecasting

Combines multiple

architectures

Multiplied across

models

More stable;

reduces errors

Parallelization

mitigates overhead

Table 2. Time Series Forecasting Model Architectures [5, 6].

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 158 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IV. IMPLEMENTATION CONSIDERATIONS

A. Prophet Model Selection and Configuration

Effective predictive autoscaling depends on careful model selection that aligns with workload characteristics

observed in microservices architectures. Prophet, developed by Meta, represents an additive regression model

specifically designed for forecasting time series data with strong seasonal patterns and multiple levels of

seasonality. The model decomposes time series into trend, seasonality, and holiday components, making it

particularly suitable for cloud workloads that exhibit daily, weekly, and monthly traffic patterns characteristic of

applications built with gRPC APIs processing business transactions. Prophet's ability to handle missing data

robustly, accommodate irregular sampling intervals, and incorporate domain knowledge through holiday calendars

addresses common challenges in production monitoring environments where data collection systems may

experience intermittent failures or sampling irregularities.

The Prophet model implements an additive formulation where predictions combine a piecewise linear or logistic

growth trend component, multiple Fourier series terms capturing seasonal patterns at different frequencies, and

user-specified holiday effects that account for traffic anomalies during special events. Research examining

workload patterns in cloud environments has demonstrated that applications processing transactions through

Cosmos DB and publishing events to Azure Event Hub display pronounced temporal patterns with peak usage

during business hours, reduced activity during nights and weekends, and seasonal variations corresponding to

business cycles. Prophet's flexible trend component accommodates both linear growth patterns and saturating

growth curves, with automatic changepoint detection identifying moments when trend characteristics shift due to

application updates or changing user behaviours. The seasonality components employ Fourier series

representations that model multiple overlapping seasonal patterns simultaneously, capturing the complex

interaction between hourly, daily, and weekly patterns that characterise microservices workloads.

Configuration parameter optimization is crucial when deploying Prophet for predictive autoscaling in Kubernetes

environments. The changepoint prior scale parameter controls the flexibility of the trend component, with higher

values allowing the model to fit more aggressively to trend changes, whilst lower values produce smoother, more

conservative trend estimates. The seasonality prior scale parameter governs the strength of seasonal patterns,

balancing between capturing genuine cyclical behaviour and avoiding overfitting to noise in historical data.

Research into deep neural network architectures for cloud workload forecasting has shown that encoder-decoder

frameworks with attention mechanisms excel at modelling temporal dependencies in resource usage patterns,

demonstrating improved mean absolute percentage error compared to conventional statistical forecasting

techniques [7].

Prophet's handling of multiple seasonality components requires careful specification of Fourier order parameters

that determine the complexity of seasonal patterns. Daily seasonality typically requires higher Fourier orders to

capture intricate variations in traffic across different hours, whilst weekly seasonality uses moderate orders

sufficient to distinguish between weekday and weekend behaviour. The model supports custom seasonality

definitions for domain-specific patterns, such as quarterly business cycles or fiscal year patterns that influence

transaction volumes processed through gRPC endpoints and stored in Cosmos DB. Holiday and special event

handling enables explicit modelling of traffic anomalies during known exceptional periods, including organisation-

specific events such as product launches, maintenance windows, or promotional campaigns.

Uncertainty quantification represents a critical aspect of Prophet's output that directly influences autoscaling

decisions. The model generates prediction intervals through Monte Carlo simulation, sampling from posterior

distributions of model parameters to produce a range of plausible future scenarios. Research has shown that

multivariate deep neural networks trained on datasets incorporating CPU utilisation, memory usage, network

traffic, and disk operations consistently outperform univariate models trained on single metrics. Experimental

results further demonstrate higher predictive accuracy across forecast horizons, from short-term to long-term

predictions [7]. For KEDA integration, wide prediction intervals during periods of high uncertainty trigger more

conservative scaling policies that provision additional buffer capacity, whilst narrow intervals during stable periods

enable aggressive resource optimisation.

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 159 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

B. Integration Architecture with KEDA

The connection between Prophet forecasting components and KEDA autoscaling infrastructure requires robust

error correction and fallback mechanisms to ensure system reliability. The integration architecture implements a

prediction serving layer that exposes Prophet forecasts through both RESTful APIs and gRPC services, enabling

KEDA's HTTP scaler to retrieve predicted metrics. The serving layer implements caching mechanisms that store

recent predictions, allowing autoscaling systems to continue operating during transient forecasting service outages.

Health check endpoints following both HTTP standards and the gRPC Health Checking Protocol enable Kubernetes

liveness and readiness probes to monitor prediction service status.

The design of fallback mechanisms requires careful consideration of transition logic between predictive and

reactive modes. When Prophet predictions become unavailable due to service failures or maintenance activities, the

system gracefully degrades to KEDA's native reactive scaling based on real-time metrics from Prometheus, Azure

Event Hub lag measurements, or Kafka consumer group offsets. Research comparing anomaly detection

approaches in cloud computing settings has proved that machine learning algorithms scrutinising time series

patterns can detect instances of divergent behaviour from normal operational patterns, providing early

identification of system problems before negative effects on quality of service materialise [8].

The framework incorporates comprehensive logging and observability features enabling post-hoc analysis of scaling

decisions and prediction accuracy. The logging infrastructure captures complete context for every scaling decision,

including timestamps, Prophet prediction values with uncertainty intervals, actual observed metrics from

Prometheus and Azure Event Hub, detected anomalies, and corresponding KEDA scaling actions. Research has

shown that systematic inspection of logged data through machine learning methods can discover patterns

associating prediction errors with specific workload characteristics, enabling model-specific enhancements and

configuration adjustments that improve forecasting accuracy over time [8].

Componen

t
Function Key Parameters Integration Impact

Data

Acquisition

Extracts metrics,

prepares clean

datasets

Outlier thresholds, gap

filling, aggregation

intervals

Time-series

DBs, metric

APIs

Handles errors,

deployment

anomalies

Model

Training

Periodic updates

with recent

observations

Learning rates, network

depth, and seasonality

modes

Automated

pipelines,

versioning

Balances

overhead vs

accuracy

Prediction

Serving

Exposes forecasts

via REST

endpoints

Forecast horizons, cache

policies, rate limits

HTTP queries,

health checks

Minimal latency

inference

Autoscaling

Integration

Consumes

predictions as

external metrics

Scaling thresholds,

cooldowns, confidence

levels

Event-driven

scaler, fallback

logic

Prevents

oscillations

Health

Monitoring

Tracks prediction

quality, availability

Error thresholds, alert

parameters

Logging,

observability

Proactive

intervention

Table 3. Framework Implementation Components [5, 7, 8].

V. BENEFITS AND CHALLENGES

Predictive autoscaling has significant advantages over reactive methods alone. Proactive resource provision

eliminates latency between changes in demand and capacity, reducing application responsiveness during traffic

spikes. Cost-effectiveness is enhanced through more effective patterns of resource utilisation, reducing predictively

ahead of time before traffic falls off, instead of waiting for load reduction. Research investigating self-aware

microservices architectures built on Kubernetes event-driven frameworks has demonstrated that KEDA-based

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 160 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

autoscaling systems incorporating observability and adaptive decision-making capabilities can significantly

improve resource utilisation efficiency whilst maintaining quality of service commitments, with experimental

results indicating superior performance compared to conventional reactive autoscaling mechanisms [9]. Research

on the analysis of elasticity control systems has proven that predictive mechanisms diminish the rate of scaling

activities through projecting workload variations and managing resources in advance, thus avoiding the overhead of

periodic instance provisioning and deprovisioning cycles.

Predictive autoscaling benefits in terms of performance are seen in a variety of aspects of system operation.

Research has determined that event-driven autoscaling with KEDA dramatically lowers response time degradation

under traffic surges by enabling proactive capacity provisioning based on external metrics and event sources, with

self-aware microservices architectures proving capable of handling workload variations through intelligent scaling

decisions informed by real-time application state and predictive analytics [9]. The incorporation of smart buffering

controls that hold demand fluctuations temporarily is especially beneficial towards avoiding excessive premature

scaling choices caused by transient workload bursts that are not indicative of persistent demand shifts. Research

evaluating KEDA scaling configurations has shown that adjustable scaling parameters, including cooldown periods,

polling intervals, and threshold values, allow fine-grained control over scaling responsiveness, with conservative

settings offering higher tolerance for transient demand changes, whilst aggressive configurations enable rapid

capacity adjustments for applications requiring immediate response to workload variations [9].

Cost optimisation is yet another key benefit of predictive autoscaling deployments. Studies on resource allocation

efficiency have shown that self-aware microservices leveraging KEDA's event-driven autoscaling with predictive

forecasting provide better cost-performance trade-offs than reactive threshold-based solutions, with experimental

results demonstrating reduced resource wastage through intelligent capacity provisioning informed by application-

level metrics and predicted workload patterns [9]. The potential to predict workload decreases is especially

advantageous in pay-per-use cloud environments, where each extra minute of unnecessary resource provisioning

has direct implications for operational expense. Experimental assessments performed over varied workload

patterns have indicated that smart autoscaling frameworks minimise mean resource over-provisioning whilst

minimising the rate of service level agreement breaches simultaneously, accomplishing the twin goals of cost

minimisation and fulfilment of performance guarantee requirements. Research has illustrated that the cost savings

increase significantly for applications with predictable periodic patterns, where precise forecasting facilitates

aggressive optimisation techniques.

The combination of predictive autoscaling with sophisticated elasticity control mechanisms maximises optimisation

potential. Studies evaluating self-aware microservices architectures have demonstrated that KEDA-based systems

combining multiple scaling triggers with different time horizons enable sophisticated capacity planning

approaches, with short-term reactive scalers responding to immediate metric thresholds whilst longer-term

predictive components manage resource allocation based on forecasted demand patterns from Prophet models [9].

The hierarchical control design breaks concerns into prompt response to present conditions and planning for future

needs, allowing systems to retain responsiveness whilst seeking cost optimisation goals. Research on multi-

timescale control methods has recorded that the integration of reactive and predictive methods produces better

outcomes than systems based solely on reactions or predictions, where the reactive layer offers safety guarantees

amid prediction error, whilst the predictive layer facilitates proactive optimisation amidst stable conditions.

Yet, challenges in implementation are keeping prediction accurate as traffic develops, controlling the computational

expense of periodic retraining of the model, and coping with prediction failure that may result in erroneous scaling

decisions. Prediction confidence has to be weighed against scaling aggressiveness, possibly with uncertainty

estimates included within scaling decision-making. Studies considering event-driven autoscaling challenges have

shown that microservices workloads exhibit high variability and non-stationary behaviour, complicating accurate

resource provisioning, with research demonstrating that KEDA's extensible scaler architecture accommodates the

diverse scaling requirements across different application types by enabling custom metrics and domain-specific

scaling logic [9]. Experimental comparisons have shown that elasticity control systems need to balance several

conflicting goals, such as response time reduction, cost savings, and scaling operation frequency limitation, and

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 161 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

different configurations are optimal depending on the priorities of the application and service level agreement

requirements.

The computational overhead of supporting predictive autoscaling systems is a major practical constraint. Studies

examining self-aware microservices architectures have confirmed that KEDA-based autoscaling systems require

continuous monitoring, metric collection, and decision-making processes that incur computational overhead, with

costs depending on scaler complexity, metric polling frequencies, and the number of external systems integrated

into scaling decisions [9]. Real-time workload analysis and prediction generation needs make constant

computational requirements that need to be accounted for in overall system expenses. Research into control system

performance has indicated that lightweight prediction models and optimised polling frequencies can reduce

overhead whilst ensuring efficient elasticity control, although more advanced prediction methods involving heavy

computation may allow for accuracy gains that offset their increased resource usage for performance-critical

applications or applications of high operating expense.

Prediction errors lead to scaling decision risks that can have adverse effects on both performance and expense.

Studies examining advanced forecasting methods such as NeuralProphet, which extends Prophet's additive model

with neural network components for improved accuracy, have shown that prediction errors in capacity planning

lead either to over-provisioning resources, resulting in unnecessary cost increments, or under-provisioning

resources, causing performance degradation and possible service level agreement breaches [10]. Experiments with

self-adaptive capacity planning systems have revealed that unpredictability in forecasting workload calls for

judicious design of scaling policies that take reliability in forecasts into consideration whilst setting levels of

resource allocation. Experimental assessments have found that using confidence intervals in capacity planning

decisions allows more resilient resource provisioning strategies with varying safety margins depending on

prediction uncertainty, with systems having greater resource buffers when there is high forecast uncertainty and

tighter optimisation opportunities when predictions are certain.

The task of balancing prediction confidence with scaling aggressiveness demands advanced decision logic with

consideration of many factors. Studies investigating adaptive capacity planning with NeuralProphet and related

forecasting techniques have proven that self-tuning systems that have the capability of altering their behaviour

depending on experienced prediction accuracy and system performance yield better outcomes than those based on

static configuration methods [10]. Research examining feedback-based adaptation mechanisms has demonstrated

that systems tracking the correlation between predictions and true workloads can self-tune their scaling policy to

match prevailing forecasting accuracy, scaling more aggressively when predictions turn out to be correct and

conservatively when prediction inaccuracies rise. The adaptive solution solves the inherent problem that optimal

scaling aggressiveness changes over time with changing workload patterns and prediction accuracy, allowing

systems to have proper behaviour without the need for constant manual reconfiguration.

Dimension Advantages Benefits Challenges Mitigation

Performanc

e

Eliminates latency

via proactive

provisioning

Response time

improvements, cold

start elimination

Maintaining

accuracy as

patterns evolve

Automated

retraining,

ensembles

Cost

Efficiency

Early detection of

declining demand

for proactive scale-

down

15-30% cost

reductions vs reactive

Managing

retraining

computational

overhead

Lightweight

models,

optimized

frequency

Resource

Utilization

Reduces average

over-provisioning

via accurate capacity

planning

Lower resource

waste, improved

efficiency

Handling

prediction errors

causing

misallocation

Uncertainty

estimates,

adaptive buffers

Scaling Minimizes scaling Reduced provisioning Balancing multiple Multi-objective

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 162 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Stability operation frequency

by anticipating

changes

cycle overhead,

decreased churn

competing

objectives

optimization,

hierarchical

control

Service

Reliability

Maintains capacity

before demand

surges

SLA violation

reduction,

consistency

Prediction

uncertainty

causing capacity

shortfalls

Fallback

mechanisms,

hybrid

strategies

Table 4. Predictive Autoscaling Advantages and Challenges [5, 6, 9, 10].

CONCLUSION

Predictive autoscaling is a revolutionary leap in cloud resource management of microservices architecture, solving

essentially the reactive constraint that holds back conventional autoscaling mechanisms. The combination of

advanced time series forecasting models with KEDA's event-driven scaling infrastructure supports predictive

provisioning that eradicates performance slowdown due to latency, whilst minimising operational expenditures

through smart capacity planning. Prophet's additive decomposition model with support for multiple seasonalities

and attention mechanism-based deep neural network architectures delivers unparalleled accuracy in extracting

intricate temporal relationships and correlations between workloads, far outperforming typical statistical

forecasting techniques for microservices processing gRPC requests, persisting transactions in Cosmos DB, and

publishing events to Azure Event Hub. The framework for implementation includes end-to-end data pipelines for

metric gathering from Prometheus and preprocessing, model training infrastructure with automatic retraining and

systematic hyperparameter tuning, and prediction serving layers exposing forecasts via RESTful and gRPC

interfaces consumable by KEDA's HTTP scaler and custom external scalers. Buffer management and adaptive

control allow system resilience through the absorption of transient workload spikes and adaptation of scaling

behaviour in relation to observed prediction quality. Experimental assessments under diverse workload patterns

show substantial gains in consistency of response time, efficiency in resource utilisation, and cost savings over

reactive threshold-based techniques. Sophisticated fallback mechanisms are integrated into the architecture to

provide graceful degradation to reactive scaling upon forecasting system failures or accuracy deterioration, without

loss of service reliability, whilst still achieving optimisation goals. Directions forward involve ensemble forecasting

that blends across various model structures, including NeuralProphet for improved robustness, reinforcement

learning solutions providing continuous policy improvement on the basis of operational experience, and hybrid

systems combining quantitative forecasts with qualitative domain expertise for applications with intricate calendar-

dependent demand behaviour.

REFERENCES

[1] Raghu Ramakrishnan et al., "Azure Data Lake Store: A Hyperscale Distributed File Service for Big Data

Analytics," ACM. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/3035918.3056100

[2] Akeem Ogundipe, "Adaptive Load Balancing and Auto Scaling Algorithms for Resource Optimization in

Distributed Microservices-based Cloud Applications," ResearchGate, 2024. [Online]. Available:

https://www.researchgate.net/publication/392251867_Adaptive_Load_Balancing_and_Auto_Scaling_Algori

thms_for_Resource_Optimization_in_Distributed_Microservices_based_Cloud_Applications

[3] Yao Lu et al., "RVLBPNN: A Workload Forecasting Model for Smart Cloud Computing," Scientific

Programming, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/pdf/10.1155/2016/5635673 [4]

Rodrigo N. Calheiros et al., "Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications’

QoS," IEEE Transactions on Cloud Computing, 2015. [Online]. Available:

https://clouds.cis.unimelb.edu.au/papers/WorkloadPredictCloud2015.pdf

[5] LE HOANG PHUC et al., "Traffic-Aware Horizontal Pod Autoscaler in Kubernetes-Based Edge Computing

Infrastructure," IEEE Access, 2023. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9709810

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9709810
https://dl.acm.org/doi/pdf/10.1145/3035918.3056100
https://www.researchgate.net/publication/392251867_Adaptive_Load_Balancing_and_Auto_Scaling_Algorithms_for_Resource_Optimization_in_Distributed_Microservices_based_Cloud_Applications
https://www.researchgate.net/publication/392251867_Adaptive_Load_Balancing_and_Auto_Scaling_Algorithms_for_Resource_Optimization_in_Distributed_Microservices_based_Cloud_Applications
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2016/5635673
https://ieeexplore.ieee.org/document/7056546
https://ieeexplore.ieee.org/document/7056546
https://clouds.cis.unimelb.edu.au/papers/WorkloadPredictCloud2015.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9709810

Journal of Information Systems Engineering and Management
2026, 11(1s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 163 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[6] Deepika Saxena et al., "Performance Analysis of Machine Learning Centered Workload Prediction Models for

Cloud," arXiv, 2023. [Online]. Available: https://arxiv.org/pdf/2302.02452

[7] MINXIAN XU et al., "esDNN: Deep Neural Network Based Multivariate Workload Prediction in Cloud

Computing Environments," Communications of the ACM, 2022. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3524114

[8] Abdel-Rahman Al-Ghuwairi et al., "Intrusion detection in cloud computing based on time series anomalies

utilizing machine learning," Journal of Cloud Computing, 2023. [Online]. Available:

https://link.springer.com/content/pdf/10.1186/s13677-023-00491-x.pdf

[9] Kofi Mensah and Ama Serwaa, "Building Self-Aware Microservices with Kubernetes Event-Driven

Architecture," ResearchGate, 2023. [Online]. Available: https://www.researchgate.net/profile/Victor-

Ogunrinde/publication/392524917_Building_Self-Aware_Microservices_with_Kubernetes_Event-

Driven_Architecture/links/684717236b5a287c304a0f95/Building-Self-Aware-Microservices-with-

Kubernetes-Event-Driven-Architecture.pdf

[10] Oskar Triebe et al., "NeuralProphet: Explainable Forecasting at Scale," arXiv, 2021. [Online]. Available:

https://arxiv.org/pdf/2111.15397

https://arxiv.org/pdf/2302.02452
https://dl.acm.org/doi/pdf/10.1145/3524114
https://link.springer.com/content/pdf/10.1186/s13677-023-00491-x.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8784043
https://www.researchgate.net/profile/Victor-Ogunrinde/publication/392524917_Building_Self-Aware_Microservices_with_Kubernetes_Event-Driven_Architecture/links/684717236b5a287c304a0f95/Building-Self-Aware-Microservices-with-Kubernetes-Event-Driven-Architecture.pdf
https://www.researchgate.net/profile/Victor-Ogunrinde/publication/392524917_Building_Self-Aware_Microservices_with_Kubernetes_Event-Driven_Architecture/links/684717236b5a287c304a0f95/Building-Self-Aware-Microservices-with-Kubernetes-Event-Driven-Architecture.pdf
https://www.researchgate.net/profile/Victor-Ogunrinde/publication/392524917_Building_Self-Aware_Microservices_with_Kubernetes_Event-Driven_Architecture/links/684717236b5a287c304a0f95/Building-Self-Aware-Microservices-with-Kubernetes-Event-Driven-Architecture.pdf
https://www.researchgate.net/profile/Victor-Ogunrinde/publication/392524917_Building_Self-Aware_Microservices_with_Kubernetes_Event-Driven_Architecture/links/684717236b5a287c304a0f95/Building-Self-Aware-Microservices-with-Kubernetes-Event-Driven-Architecture.pdf
https://www.researchgate.net/profile/Yexi-Jiang/publication/235968845_Self-Adaptive_Cloud_Capacity_Planning/links/00b49514fb109aaeae000000/Self-Adaptive-Cloud-Capacity-Planning.pdf
https://www.researchgate.net/profile/Yexi-Jiang/publication/235968845_Self-Adaptive_Cloud_Capacity_Planning/links/00b49514fb109aaeae000000/Self-Adaptive-Cloud-Capacity-Planning.pdf
https://arxiv.org/pdf/2111.15397

