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autoscaling boundaries. Threshold-based scaling is traditional, bringing with it the
natural latency between demand changes and capacity changes, leading to
compromised performance during traffic spikes and wastage of resources during dips
in demand. Event-driven autoscaling systems go beyond infrastructure-level metrics
by involving external data feeds, message queue sizes, and application-level metrics
for making scaling decisions. Yet, reactive mechanisms are inherently bounded by
response latencies that degrade service quality and operational effectiveness.
Predictive autoscaling bridges such gaps with time series forecasting models that
interpret historical workload patterns to predict future resource needs. The
combination of deep neural network architectures with event-driven autoscaling
modules allows for proactive capacity provisioning in response to projected workload
trends as opposed to observed metric values. Multivariate prediction models with
correlated resource metrics are superior in prediction accuracy over univariate
methods, able to capture intricate interdependencies between CPU usage, memory
usage, network bandwidth, and storage activities. Design considerations include
model choice based on workload behaviour, hyperparameter tuning to balance
accuracy with computational cost, and reliable integration frameworks with extensive
error handling and fallback strategies. Predictive approaches show considerable
benefits such as lower response time degradation, better cost-effectiveness with
enhanced resource utilisation, and reduced scaling operation frequency. The
challenges are to ensure accuracy of the forecast in the face of changing traffic
patterns, address computational overhead due to periodic model retraining, and
provide tolerance to prediction uncertainties affecting the scaling aggressiveness.
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I. INTRODUCTION

Cloud-native applications developed in modern times on microservice architectures are confronted with resource
management and scalability challenges like never before. These distributed systems that handle enormous amounts
of transactions every day need high-level, sophisticated mechanisms to ensure maximum performance while
managing operational expenses. Applications built with gRPC APIs execute business logic and persist transactions
in document stores such as Cosmos DB, while simultaneously publishing events to Azure Event Hub for
downstream processing. These systems experience traffic variability influenced by temporal factors such as time of
day, day of week, and seasonal patterns, necessitating intelligent autoscaling strategies that can anticipate demand
rather than merely react to it.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 151

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2026, 11(18)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

The development of container orchestration platforms has introduced Kubernetes Event-Driven Autoscaling
(KEDA) as an advanced autoscaling mechanism beyond traditional CPU and memory-based approaches. While the
native Horizontal Pod Autoscaler operates via periodic metric requests at specified intervals and scales replica
numbers according to preset utilisation levels, KEDA extends this functionality by enabling workload scaling based
on external event sources and metrics. KEDA supports multiple scaler types including message queue depths from
Azure Event Hub and Kafka, database connection pools, custom application metrics from Prometheus, and HTTP
endpoint responses, allowing organisations to scale based on business-relevant metrics rather than solely
infrastructure utilisation. This capability is particularly valuable for microservices architectures where application-
level metrics such as event hub message backlog or database transaction rates provide more meaningful scaling
signals than generic CPU or memory thresholds.

However, KEDA's reactive autoscaling mechanisms necessarily introduce latency between changes in demand and
adjustments in resources, causing potential performance decline during traffic peaks or wasteful over-provisioning
during expected increases in load. Experiments have shown that traffic-informed autoscaling policies based on real-
time traffic monitoring and predictive analysis are able to provide much better resource use and response times
than the conventional threshold-based policies [5]. The traditional reactive scaling mechanisms wait for metrics to
cross thresholds before initiating scaling operations, resulting in a gap between when capacity is needed and when
it becomes available. Research comparing Kubernetes-based edge computing infrastructure has demonstrated that
traffic-aware horizontal pod autoscaling mechanisms significantly outperform traditional reactive approaches, with
experimental results showing that predictive policies reduce service level agreement breaches and improve resource
usage efficiency by anticipating workload changes rather than merely reacting to threshold violations [5].

Event-driven autoscaling goes beyond conventional methods by allowing for workload scaling based on outside
metrics and event sources in addition to measurements at the infrastructure level. These higher-level frameworks
accommodate various scaler types such as message queue depths, database connection pools, custom app metrics,
and HTTP endpoint responses so that organisations can scale on business-relevant metrics instead of just
infrastructure utilisation. The architecture allows for scaling to zero replicas during times of inactivity, a feature
highly beneficial in development environments and batch processing workloads where persistent resource
provisioning is too expensive. Distributed microservice research has proven that adaptive load balancing combined
with knowledge-driven autoscaling algorithms can maximise resource utilisation by automatically adjusting
computational resources according to real-time demand patterns and forecasting analytics [2]. Such adaptive
algorithms include machine learning methods for dissecting past traffic patterns, anticipating future workload
trends, and dynamically adjusting resource allocation before demand realisation. Research has indicated that
microservice designs using adaptive autoscaling solutions result in better response times, lower costs of operations,
and increased system dependability than static provisioning strategies [2]. Augmenting event-driven scaling with
predictive analytics allows systems to anticipate traffic variations based on temporal patterns, seasonality, and
historical data, addressing the inherent limitations of reactive practices that act only after resource bottlenecks
emerge.

This work introduces an end-to-end framework to deploy predictive autoscaling in Kubernetes microservices
environments by coupling time series forecasting models with KEDA's event-driven autoscaling capabilities. The
solution allows for proactive resource allocation based on analysis of traffic patterns from gRPC API request rates,
Cosmos DB transaction volumes, and Azure Event Hub message throughput, offering the adaptability of KEDA's
external metric-based scaling combined with statistical forecasting techniques' foresight. By analysing historical
traffic patterns and generating forward-looking predictions, the framework addresses the inherent latency of
reactive scaling while maintaining the flexibility and extensibility of KEDA's autoscaling platform. The integration
takes advantage of KEDA's HTTP scaler functionality to ingest predicted metrics as external data sources that
inform scaling decisions in anticipation of realised demand, ensuring service performance is maintained during
traffic spikes and resources are optimally utilised during variable-demand periods. KEDA's architecture also allows
for scaling to zero replicas during times of inactivity, a feature highly beneficial in development environments and
batch processing workloads where persistent resource provisioning incurs unnecessary costs.
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II. BACKGROUND AND BASIC IDEAS
A. Event-Driven Autoscaling with KEDA

Kubernetes Event-Driven Autoscaling (KEDA) is an open-source component that extends Kubernetes' native
autoscaling capabilities by enabling workloads to scale based on external event sources and metrics beyond
traditional CPU and memory utilisation. Unlike the Horizontal Pod Autoscaler, which operates primarily on
resource metrics collected from the Metrics Server, KEDA provides a rich ecosystem of scalers that integrate with
external systems to make scaling decisions based on application-specific and business-relevant metrics. KEDA
operates as a Kubernetes operator that watches for events from external sources and adjusts the replica count of
deployments, stateful sets, or any custom resources based on the configured scaling rules.

The architecture of KEDA consists of three primary components: the KEDA Operator, which activates and
deactivates Kubernetes deployments based on event sources; the Metrics Adapter, which exposes external metrics
to the Horizontal Pod Autoscaler; and Scalers, which are connectors that interface with specific external systems to
retrieve metrics. KEDA supports over fifty different scaler types, allowing integration with diverse external systems,
including message brokers, databases, monitoring platforms, and custom HTTP endpoints. This extensibility makes
KEDA particularly suitable for microservices architectures where scaling decisions should be driven by domain-
specific metrics rather than generic infrastructure utilisation.

For microservices built with gRPC APIs that persist transactions in Cosmos DB and publish events to Azure Event
Hub, KEDA provides several relevant scalers. The Azure Event Hub scaler monitors the lag between the current
position in the event stream and the latest available events, allowing workloads to scale based on message backlog
depth. When messages accumulate in Event Hub partitions faster than they can be processed, KEDA can
automatically increase the number of consumer pods to handle the increased load. The scaler queries Azure Event
Hub's management API to retrieve consumer group lag metrics, using these values to determine the appropriate
replica count for processing workloads. Configuration parameters include the consumer group name, connection
string, and threshold values that define when scaling operations should occur.

Prometheus is a widely adopted open-source monitoring and alerting system that collects time series metrics from
instrumented applications and infrastructure components. In Kubernetes environments, Prometheus scrapes
metrics endpoints exposed by pods, aggregates the data, and stores it in a time series database optimised for
querying and analysis. For gRPC-based microservices, Prometheus can collect application-level metrics such as
request rates, response latencies, error rates, and custom business metrics instrumented within the application
code. KEDA's Prometheus scaler queries the Prometheus API using PromQL to retrieve metric values that inform
scaling decisions. This integration allows autoscaling based on complex queries that aggregate metrics across
multiple dimensions, such as scaling based on the rate of failed transactions or response time percentiles of API
endpoints.

Kafka is a distributed event streaming platform used for building real-time data pipelines and streaming
applications. In microservices architectures, Kafka serves as a message broker that decouples producers from
consumers, allowing asynchronous communication between services. KEDA's Kafka scaler monitors consumer
group lag, which represents the difference between the latest message offset in a topic partition and the offset last
committed by a consumer group. High consumer lag indicates that messages are being produced faster than they
are being consumed, signalling the need to scale up processing capacity. The scaler connects to Kafka brokers to
retrieve consumer group metadata and partition offset information, using these metrics to calculate the appropriate
number of replicas needed to maintain acceptable processing latency.

KEDA's HTTP scaler provides a mechanism for scaling based on metrics exposed via HTTP endpoints, offering
flexibility for custom metric sources not covered by built-in scalers. This scaler performs periodic HTTP requests to
a specified endpoint, expecting a JSON response containing metric values. The response is parsed to extract
numerical metrics that are then used to drive scaling decisions according to configured thresholds. This
functionality is particularly valuable for integrating predictive models into the autoscaling pipeline, as forecasting
services can expose predicted traffic values via REST APIs that KEDA consumes through the HTTP scaler.
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B. Time Series Forecasting Fundamentals

Time series forecasting employs statistical models to predict future values based on historical data. Standard
forecasting methods decompose a time series into key components: underlying trends that capture long-term
directional movement, seasonal patterns that represent periodic fluctuations, and residual noise that reflects
random variation. Sophisticated forecasting systems manage multiple levels of seasonality, cope with missing data
points, and incorporate external regressors like calendar events affecting patterns of demand. Research into cloud
workload prediction has demonstrated that autoregressive integrated moving average models provide robust
mechanisms for forecasting resource utilisation patterns in virtualised environments, with experimental validation
showing that accurate workload prediction directly influences quality of service metrics including response time,
throughput, and service level agreement compliance [4]. The application of time series analysis to cloud computing
workloads addresses the fundamental challenge that resource demands exhibit temporal dependencies, where
future utilisation patterns correlate strongly with historical observations rather than remaining constant or
randomly distributed.

Autoregressive integrated moving average models represent a class of statistical methods particularly suited to
forecasting workloads that exhibit autocorrelation, trend components, and stationarity characteristics. The
autoregressive component models the relationship between an observation and lagged values from previous time
periods, capturing the persistence effect where recent resource utilisation levels influence near-term future
demands. The integrated component addresses non-stationarity in time series data through differencing operations
that transform trending data into stationary sequences suitable for analysis. The moving average component
models the relationship between observations and residual errors from previous predictions, accounting for
random shocks that temporarily influence system behaviour [4].

The choice of suitable forecasting models depends fundamentally on workload characteristics, prediction horizons,
and computational resource constraints. Short-term predictions spanning minutes to hours require models capable
of capturing fine-grained temporal variations, whereas long-term forecasts extending across days or weeks must
account for broader cyclical patterns and trend evolution. Workload analysis in cloud computing environments has
revealed that different application types exhibit distinct temporal signatures, with web applications demonstrating
strong diurnal patterns corresponding to user activity cycles, batch processing systems showing job submission
patterns aligned with organisational schedules, and scientific computing workloads reflecting project-specific
execution patterns [4].

Time series forecasting in resource management applications involves careful attention to data preprocessing
methods, feature engineering techniques, and validation protocols. Raw monitoring data collected from production
systems typically contains anomalies resulting from system failures, deployment activities, network disruptions, or
measurement errors that can adversely affect model training if left unaddressed. Preprocessing pipelines
implement statistical outlier detection methods that identify observations deviating significantly from expected
distributions, applying techniques such as interquartile range filtering, z-score thresholding, or isolation forest
algorithms to remove or correct anomalous values. Studies examining workload prediction accuracy have
established that data quality significantly influences forecasting performance, with research demonstrating that
models trained on cleansed datasets achieve substantially lower prediction errors than those trained on raw
unprocessed data [4].

Model validation in production forecasting systems demands rigorous evaluation employing appropriate metrics
and validation methodologies. Point forecast accuracy assessment utilises error metrics including mean absolute
error, root mean squared error, and mean absolute percentage error. Research examining forecasting model
evaluation has established that no single metric comprehensively characterises prediction quality, with different
metrics highlighting distinct aspects of forecasting performance [4]. Production deployment of forecasting models
requires consideration of computational efficiency alongside predictive accuracy, with typical production systems
implementing daily or weekly retraining schedules aligned with the rate of workload pattern evolution.
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Table 1. Event-Driven Autoscaling Components [3, 4].
III. PREDICTIVE AUTOSCALING FRAMEWORK DESIGN

The proposed predictive autoscaling system mitigates the limitations of reactive scaling by pre-emptively
provisioning resources. The architectural structure includes a number of interdependent components operating
together to produce, service, and consume traffic forecasts for making autoscaling decisions. It has been shown
through research that autoscaling methods can be generally classified into reactive methods that act on existing
system state and proactive methods that predict upcoming resource demands, and proactive methods have
numerous benefits in reducing service level agreement breaches and optimising resource provisioning expenses [5].
By embedding forecasting functionality within the autoscaling decision process, the system can initiate scaling
actions pre-emptively, mitigating the impact of workload spikes on application performance.

A. Data Pipeline and Model Training

Historical traffic levels gathered from monitoring systems provide the basis for predictive models. The data pipeline
retrieves pertinent time series data from Prometheus, conducts required preprocessing such as outlier removal and
gap filling, and passes clean datasets into the forecasting model. The forecasting component uses additive
decomposition models that can model multiple seasonal patterns simultaneously, making them ideally suited for
microservices with daily, weekly, and monthly patterns of traffic observed in gRPC API request rates, Cosmos DB
transaction volumes, and Azure Event Hub message throughput. Research into traffic-aware autoscaling has
proven that prediction-based methods use historical workload patterns and analytical models to predict future
demands for resources and allow systems to allocate capacity in advance of need, thus preventing performance
degradation caused by the delay of reactive scaling [5]. These forecasting models compute past measurements such
as request rates, response times, resource usage patterns, and application-specific performance metrics to discover
repeated patterns and temporal relationships that define workload behaviour.

The data preprocessing pipeline employs advanced mechanisms to provide high-quality training data for prediction
models. Raw monitoring information tends to include anomalies caused by system crashes, deployment activities,
or measurement errors that can adversely affect model training if left uncorrected. Studies that examined
autoscaling mechanisms have demonstrated that good prediction of workload requires representative, clean
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training data that reflects actual normal operating patterns whilst removing transient anomalies that do not
represent genuine workload behaviour [5]. The preprocessing phase implements statistical outlier removal
techniques that detect and remove data points with extreme values that deviate from expected distributions, so
training datasets precisely represent normal operating patterns. Gap-filling operations fill missing data by applying
interpolation methods that forecast values for time periods with missing observations, ensuring temporal
continuity of training datasets and avoiding model deterioration from the lack of complete historical records.

Model training is done on a regular schedule, using recent information to update prediction accuracy. The training
operation takes into account different temporal attributes such as hour of day, day of week, and special calendar
events impacting traffic flows in microservices processing gRPC requests and publishing to Azure Event Hub. This
continuous retraining guarantees the model learns to keep up with changing traffic patterns and continues to make
accurate predictions over a period of time. Research into proactive autoscaling has shown that applications have
workload patterns that consist of cyclical changes at multiple time scales, with statistical time series analysis and
forecasting techniques like moving averages, autoregressive models, and machine learning-based approaches
offering efficient mechanisms for predicting resource demand in the future [5]. The feature engineering step
converts raw timestamp data into meaningful temporal variables that clearly capture cyclical patterns and allow
forecasting models to learn calendar attribute-workload intensity relationships.

The training infrastructure employs retraining pipelines that automatically refresh forecasting models with new
observations from time to time, so predictions remain valid as workload patterns change over time. Research into
autoscaling architectures has found that scaling mechanisms must balance predictive accuracy against
computational cost, and most real-world implementations use lightweight forecasting models that can produce
predictions effectively whilst keeping acceptable levels of accuracy [5]. The frequency of retraining has to take into
account the computational expense of training models, the workload pattern evolution rate, and computational
resource availability, with common implementations scheduling periodic retraining cycles based on the application
profile. Model versioning capacity is kept in the framework, supporting comparison between consecutive
generations of models and rollbacks in case newly trained models have decreased performance compared to older
generations.

B. Prediction Serving and Consumption

Forecast data produced by trained models should be available to autoscaling infrastructure through standardised
interfaces. The system implements a prediction serving layer that provides forecast values through RESTful
endpoints and gRPC services, allowing the autoscaling system to query future traffic levels at specific future
timestamps. RESTful APIs offer widespread compatibility and straightforward integration with HTTP-based tools,
whilst gRPC provides high-performance remote procedure calls with efficient binary serialisation through Protocol
Buffers, reduced latency through HTTP/2 multiplexing, and strongly-typed service contracts that ensure
consistency between prediction services and consuming clients. For microservices architectures already employing
gRPC for inter-service communication with Cosmos DB and Azure Event Hub, exposing predictions through gRPC
endpoints maintains architectural consistency and leverages existing infrastructure for service discovery, load
balancing, and authentication. The prediction service keeps forecast horizons aligned with the scaling response
time of the underlying infrastructure, ensuring that predictions cover sufficient time windows to enable proactive
scaling decisions before workload changes materialise.

Research into machine learning-based workload forecasting has proven that different prediction models perform
differently based on workload patterns and prediction horizons, with experimental tests indicating that ensemble
methods and deep learning models tend to have higher forecasting accuracy than standard statistical models [6].
The serving layer supports effective inference processes that produce predictions with low latency levels, such that
autoscaling queries are answered in good time without adding delays to scaling decision processes. When
implementing gRPC-based prediction serving, service definitions specify request and response message structures
containing timestamp ranges, prediction confidence intervals, and metadata about model versions and training
timestamps. The strongly-typed nature of gRPC contracts prevents integration errors that might occur with loosely-
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typed REST APIs, where JSON schema variations between service versions can cause parsing failures or incorrect
metric interpretations.

The autoscaling module consumes the predictions via HTTP-based metric queries or gRPC streaming connections,
employing projected values as scaling triggers. For KEDA integration, the HTTP scaler retrieves predictions from
RESTful endpoints, whilst custom external scalers can leverage gRPC to establish bidirectional streaming
connections that provide continuous prediction updates without repeated polling overhead. This application takes
advantage of KEDA's extensibility, utilising predictions as external metrics that inform scaling decisions.
Configuration parameters set scaling thresholds, rate limits, and cooldown times to avoid scaling oscillation.
Research investigating workload prediction models has indicated that machine learning methods such as support
vector machines, random forests, long short-term memory networks, and gradient boosting algorithms exhibit
differential performance against different workload characteristics and prediction horizons [6].

The prediction serving infrastructure has complete error handling and fallback features to provide system reliability
in forecasting component failure or performance decline. The design holds cached predictions that autoscaling
systems can use during transient service outages, avoiding scaling failure due to the unavailability of forecasting
endpoints. Both RESTful and gRPC implementations incorporate health check endpoints that monitoring systems
can probe to verify service availability, with gRPC health checking following the standard GRPC Health Checking
Protocol that enables Kubernetes liveness and readiness probes to assess prediction service status. The system uses
configurable confidence levels to decide when predictions must act upon scaling decisions and deploy reactive
fallback modes in response to low-confidence predictions to avoid making unsuitable resource changes based on
uncertain predictions.

The integration structure provides complex scaling policies that include accounting for prediction uncertainty in
decision-making. Studies that have examined prediction model performance have indicated that metrics such as
coefficient of determination, Nash-Sutcliffe efficiency, and symmetric mean absolute percentage error give
complementary views of the quality of forecasting, allowing for thorough examination of model trustworthiness for
autoscaling purposes [6]. The methodology can also produce prediction intervals in addition to point forecasts,
measuring forecast uncertainty and allowing scaling aggressiveness adjustment based on prediction confidence.
When serving predictions through gRPC, response messages can include structured uncertainty quantification with
upper and lower confidence bounds, enabling consuming services to implement sophisticated decision logic that
adjusts provisioning strategies based on prediction reliability.

Architecture | Pattern Handling Computation Accuracy Efficiency
Encoder- . Long-rangc? terr}poral Minutes to hours Reduced MAPE Requlres.hardware
Decoder with dependencies via based on dataset - acceleration for
. . . vs statistical

Attention selective focus size large datasets
Multivariate Correlated metrics: Higher Outperforms .

L Daily/weekly
Deep Neural CPU, memory, overhead; univariate across retrainin
Networks network, disk I/0O justified by gains | all horizons &
Additive Ml.ﬂtlp le seasonality: nghtwe.l ght; Effective for Efficient training,

.\ daily, weekly, monthly | production- . 1 .
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Table 2. Time Series Forecasting Model Architectures [5, 6].
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IV. IMPLEMENTATION CONSIDERATIONS
A. Prophet Model Selection and Configuration

Effective predictive autoscaling depends on careful model selection that aligns with workload characteristics
observed in microservices architectures. Prophet, developed by Meta, represents an additive regression model
specifically designed for forecasting time series data with strong seasonal patterns and multiple levels of
seasonality. The model decomposes time series into trend, seasonality, and holiday components, making it
particularly suitable for cloud workloads that exhibit daily, weekly, and monthly traffic patterns characteristic of
applications built with gRPC APIs processing business transactions. Prophet's ability to handle missing data
robustly, accommodate irregular sampling intervals, and incorporate domain knowledge through holiday calendars
addresses common challenges in production monitoring environments where data collection systems may
experience intermittent failures or sampling irregularities.

The Prophet model implements an additive formulation where predictions combine a piecewise linear or logistic
growth trend component, multiple Fourier series terms capturing seasonal patterns at different frequencies, and
user-specified holiday effects that account for traffic anomalies during special events. Research examining
workload patterns in cloud environments has demonstrated that applications processing transactions through
Cosmos DB and publishing events to Azure Event Hub display pronounced temporal patterns with peak usage
during business hours, reduced activity during nights and weekends, and seasonal variations corresponding to
business cycles. Prophet's flexible trend component accommodates both linear growth patterns and saturating
growth curves, with automatic changepoint detection identifying moments when trend characteristics shift due to
application updates or changing user behaviours. The seasonality components employ Fourier series
representations that model multiple overlapping seasonal patterns simultaneously, capturing the complex
interaction between hourly, daily, and weekly patterns that characterise microservices workloads.

Configuration parameter optimization is crucial when deploying Prophet for predictive autoscaling in Kubernetes
environments. The changepoint prior scale parameter controls the flexibility of the trend component, with higher
values allowing the model to fit more aggressively to trend changes, whilst lower values produce smoother, more
conservative trend estimates. The seasonality prior scale parameter governs the strength of seasonal patterns,
balancing between capturing genuine cyclical behaviour and avoiding overfitting to noise in historical data.
Research into deep neural network architectures for cloud workload forecasting has shown that encoder-decoder
frameworks with attention mechanisms excel at modelling temporal dependencies in resource usage patterns,
demonstrating improved mean absolute percentage error compared to conventional statistical forecasting
techniques [7].

Prophet's handling of multiple seasonality components requires careful specification of Fourier order parameters
that determine the complexity of seasonal patterns. Daily seasonality typically requires higher Fourier orders to
capture intricate variations in traffic across different hours, whilst weekly seasonality uses moderate orders
sufficient to distinguish between weekday and weekend behaviour. The model supports custom seasonality
definitions for domain-specific patterns, such as quarterly business cycles or fiscal year patterns that influence
transaction volumes processed through gRPC endpoints and stored in Cosmos DB. Holiday and special event
handling enables explicit modelling of traffic anomalies during known exceptional periods, including organisation-
specific events such as product launches, maintenance windows, or promotional campaigns.

Uncertainty quantification represents a critical aspect of Prophet's output that directly influences autoscaling
decisions. The model generates prediction intervals through Monte Carlo simulation, sampling from posterior
distributions of model parameters to produce a range of plausible future scenarios. Research has shown that
multivariate deep neural networks trained on datasets incorporating CPU utilisation, memory usage, network
traffic, and disk operations consistently outperform univariate models trained on single metrics. Experimental
results further demonstrate higher predictive accuracy across forecast horizons, from short-term to long-term
predictions [7]. For KEDA integration, wide prediction intervals during periods of high uncertainty trigger more
conservative scaling policies that provision additional buffer capacity, whilst narrow intervals during stable periods
enable aggressive resource optimisation.
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B. Integration Architecture with KEDA

The connection between Prophet forecasting components and KEDA autoscaling infrastructure requires robust
error correction and fallback mechanisms to ensure system reliability. The integration architecture implements a
prediction serving layer that exposes Prophet forecasts through both RESTful APIs and gRPC services, enabling
KEDA's HTTP scaler to retrieve predicted metrics. The serving layer implements caching mechanisms that store
recent predictions, allowing autoscaling systems to continue operating during transient forecasting service outages.
Health check endpoints following both HTTP standards and the gRPC Health Checking Protocol enable Kubernetes
liveness and readiness probes to monitor prediction service status.

The design of fallback mechanisms requires careful consideration of transition logic between predictive and
reactive modes. When Prophet predictions become unavailable due to service failures or maintenance activities, the
system gracefully degrades to KEDA's native reactive scaling based on real-time metrics from Prometheus, Azure
Event Hub lag measurements, or Kafka consumer group offsets. Research comparing anomaly detection
approaches in cloud computing settings has proved that machine learning algorithms scrutinising time series
patterns can detect instances of divergent behaviour from normal operational patterns, providing early
identification of system problems before negative effects on quality of service materialise [8].

The framework incorporates comprehensive logging and observability features enabling post-hoc analysis of scaling
decisions and prediction accuracy. The logging infrastructure captures complete context for every scaling decision,
including timestamps, Prophet prediction values with uncertainty intervals, actual observed metrics from
Prometheus and Azure Event Hub, detected anomalies, and corresponding KEDA scaling actions. Research has
shown that systematic inspection of logged data through machine learning methods can discover patterns
associating prediction errors with specific workload characteristics, enabling model-specific enhancements and
configuration adjustments that improve forecasting accuracy over time [8].

Componen . .
I; Function Key Parameters Integration Impact
Data Extracts metrics, Outlier thresholds, gap Time-series Handles errors,
Acquisition | Prepares clean filling, aggregation DBs, metric deployment
q datasets intervals APIs anomalies

Model Periodic updates Learning rates, network | Automated Balances
Trainin with recent depth, and seasonality pipelines, overhead vs

& observations modes versioning accuracy

- Exposes forecasts . . ..
Prediction . Forecast horizons, cache | HTTP queries, Minimal latency
. via REST . . .. .
Serving . policies, rate limits health checks inference
endpoints
. Consumes Scaling thresholds, Event-driven
Autoscaling . . Prevents
. predictions as cooldowns, confidence scaler, fallback a1
Integration . . oscillations
external metrics levels logic

Health Tracks prediction | Error thresholds, alert Logging, Proactive
Monitoring | quality, availability | parameters observability intervention

Table 3. Framework Implementation Components [5, 7, 8].

V. BENEFITS AND CHALLENGES

Predictive autoscaling has significant advantages over reactive methods alone. Proactive resource provision
eliminates latency between changes in demand and capacity, reducing application responsiveness during traffic
spikes. Cost-effectiveness is enhanced through more effective patterns of resource utilisation, reducing predictively
ahead of time before traffic falls off, instead of waiting for load reduction. Research investigating self-aware
microservices architectures built on Kubernetes event-driven frameworks has demonstrated that KEDA-based
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autoscaling systems incorporating observability and adaptive decision-making capabilities can significantly
improve resource utilisation efficiency whilst maintaining quality of service commitments, with experimental
results indicating superior performance compared to conventional reactive autoscaling mechanisms [9]. Research
on the analysis of elasticity control systems has proven that predictive mechanisms diminish the rate of scaling
activities through projecting workload variations and managing resources in advance, thus avoiding the overhead of
periodic instance provisioning and deprovisioning cycles.

Predictive autoscaling benefits in terms of performance are seen in a variety of aspects of system operation.
Research has determined that event-driven autoscaling with KEDA dramatically lowers response time degradation
under traffic surges by enabling proactive capacity provisioning based on external metrics and event sources, with
self-aware microservices architectures proving capable of handling workload variations through intelligent scaling
decisions informed by real-time application state and predictive analytics [9]. The incorporation of smart buffering
controls that hold demand fluctuations temporarily is especially beneficial towards avoiding excessive premature
scaling choices caused by transient workload bursts that are not indicative of persistent demand shifts. Research
evaluating KEDA scaling configurations has shown that adjustable scaling parameters, including cooldown periods,
polling intervals, and threshold values, allow fine-grained control over scaling responsiveness, with conservative
settings offering higher tolerance for transient demand changes, whilst aggressive configurations enable rapid
capacity adjustments for applications requiring immediate response to workload variations [9].

Cost optimisation is yet another key benefit of predictive autoscaling deployments. Studies on resource allocation
efficiency have shown that self-aware microservices leveraging KEDA's event-driven autoscaling with predictive
forecasting provide better cost-performance trade-offs than reactive threshold-based solutions, with experimental
results demonstrating reduced resource wastage through intelligent capacity provisioning informed by application-
level metrics and predicted workload patterns [9]. The potential to predict workload decreases is especially
advantageous in pay-per-use cloud environments, where each extra minute of unnecessary resource provisioning
has direct implications for operational expense. Experimental assessments performed over varied workload
patterns have indicated that smart autoscaling frameworks minimise mean resource over-provisioning whilst
minimising the rate of service level agreement breaches simultaneously, accomplishing the twin goals of cost
minimisation and fulfilment of performance guarantee requirements. Research has illustrated that the cost savings
increase significantly for applications with predictable periodic patterns, where precise forecasting facilitates
aggressive optimisation techniques.

The combination of predictive autoscaling with sophisticated elasticity control mechanisms maximises optimisation
potential. Studies evaluating self-aware microservices architectures have demonstrated that KEDA-based systems
combining multiple scaling triggers with different time horizons enable sophisticated capacity planning
approaches, with short-term reactive scalers responding to immediate metric thresholds whilst longer-term
predictive components manage resource allocation based on forecasted demand patterns from Prophet models [9].
The hierarchical control design breaks concerns into prompt response to present conditions and planning for future
needs, allowing systems to retain responsiveness whilst seeking cost optimisation goals. Research on multi-
timescale control methods has recorded that the integration of reactive and predictive methods produces better
outcomes than systems based solely on reactions or predictions, where the reactive layer offers safety guarantees
amid prediction error, whilst the predictive layer facilitates proactive optimisation amidst stable conditions.

Yet, challenges in implementation are keeping prediction accurate as traffic develops, controlling the computational
expense of periodic retraining of the model, and coping with prediction failure that may result in erroneous scaling
decisions. Prediction confidence has to be weighed against scaling aggressiveness, possibly with uncertainty
estimates included within scaling decision-making. Studies considering event-driven autoscaling challenges have
shown that microservices workloads exhibit high variability and non-stationary behaviour, complicating accurate
resource provisioning, with research demonstrating that KEDA's extensible scaler architecture accommodates the
diverse scaling requirements across different application types by enabling custom metrics and domain-specific
scaling logic [9]. Experimental comparisons have shown that elasticity control systems need to balance several
conflicting goals, such as response time reduction, cost savings, and scaling operation frequency limitation, and
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different configurations are optimal depending on the priorities of the application and service level agreement
requirements.

The computational overhead of supporting predictive autoscaling systems is a major practical constraint. Studies
examining self-aware microservices architectures have confirmed that KEDA-based autoscaling systems require
continuous monitoring, metric collection, and decision-making processes that incur computational overhead, with
costs depending on scaler complexity, metric polling frequencies, and the number of external systems integrated
into scaling decisions [9]. Real-time workload analysis and prediction generation needs make constant
computational requirements that need to be accounted for in overall system expenses. Research into control system
performance has indicated that lightweight prediction models and optimised polling frequencies can reduce
overhead whilst ensuring efficient elasticity control, although more advanced prediction methods involving heavy
computation may allow for accuracy gains that offset their increased resource usage for performance-critical
applications or applications of high operating expense.

Prediction errors lead to scaling decision risks that can have adverse effects on both performance and expense.
Studies examining advanced forecasting methods such as NeuralProphet, which extends Prophet's additive model
with neural network components for improved accuracy, have shown that prediction errors in capacity planning
lead either to over-provisioning resources, resulting in unnecessary cost increments, or under-provisioning
resources, causing performance degradation and possible service level agreement breaches [10]. Experiments with
self-adaptive capacity planning systems have revealed that unpredictability in forecasting workload calls for
judicious design of scaling policies that take reliability in forecasts into consideration whilst setting levels of
resource allocation. Experimental assessments have found that using confidence intervals in capacity planning
decisions allows more resilient resource provisioning strategies with varying safety margins depending on
prediction uncertainty, with systems having greater resource buffers when there is high forecast uncertainty and
tighter optimisation opportunities when predictions are certain.

The task of balancing prediction confidence with scaling aggressiveness demands advanced decision logic with
consideration of many factors. Studies investigating adaptive capacity planning with NeuralProphet and related
forecasting techniques have proven that self-tuning systems that have the capability of altering their behaviour
depending on experienced prediction accuracy and system performance yield better outcomes than those based on
static configuration methods [10]. Research examining feedback-based adaptation mechanisms has demonstrated
that systems tracking the correlation between predictions and true workloads can self-tune their scaling policy to
match prevailing forecasting accuracy, scaling more aggressively when predictions turn out to be correct and
conservatively when prediction inaccuracies rise. The adaptive solution solves the inherent problem that optimal
scaling aggressiveness changes over time with changing workload patterns and prediction accuracy, allowing
systems to have proper behaviour without the need for constant manual reconfiguration.

Dimension Advantages Benefits Challenges Mitigation
Eliminates latency Response time Maintaining Automated
Performanc . . . .
. via proactive improvements, cold | accuracy as retraining,
provisioning start elimination patterns evolve ensembles
Early detection of Managing Lightweight
Cost declining demand 15-30% cost retraining models,
Efficiency for proactive scale- reductions vs reactive | computational optimized
down overhead frequency
Reduces average Handlin, .
.. g Lower resource .. & Uncertainty
Resource over-provisioning . prediction errors .
e L. . . waste, improved . estimates,
Utilization via accurate capacity . causing .
. efficiency . . adaptive buffers
planning misallocation
Scaling Minimizes scaling Reduced provisioning | Balancing multiple | Multi-objective

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

161



Journal of Information Systems Engineering and Management
2026, 11(18)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Stability operation frequency | cycle overhead, competing optimization,
by anticipating decreased churn objectives hierarchical
changes control
o . D Prediction Fallback
. Maintains capacity SLA violation . .
Service . uncertainty mechanisms,
L before demand reduction, . . .
Reliability surges consistenc causing capacity hybrid
8 Y shortfalls strategies

Table 4. Predictive Autoscaling Advantages and Challenges [5, 6, 9, 10].

CONCLUSION

Predictive autoscaling is a revolutionary leap in cloud resource management of microservices architecture, solving
essentially the reactive constraint that holds back conventional autoscaling mechanisms. The combination of
advanced time series forecasting models with KEDA's event-driven scaling infrastructure supports predictive
provisioning that eradicates performance slowdown due to latency, whilst minimising operational expenditures
through smart capacity planning. Prophet's additive decomposition model with support for multiple seasonalities
and attention mechanism-based deep neural network architectures delivers unparalleled accuracy in extracting
intricate temporal relationships and correlations between workloads, far outperforming typical statistical
forecasting techniques for microservices processing gRPC requests, persisting transactions in Cosmos DB, and
publishing events to Azure Event Hub. The framework for implementation includes end-to-end data pipelines for
metric gathering from Prometheus and preprocessing, model training infrastructure with automatic retraining and
systematic hyperparameter tuning, and prediction serving layers exposing forecasts via RESTful and gRPC
interfaces consumable by KEDA's HTTP scaler and custom external scalers. Buffer management and adaptive
control allow system resilience through the absorption of transient workload spikes and adaptation of scaling
behaviour in relation to observed prediction quality. Experimental assessments under diverse workload patterns
show substantial gains in consistency of response time, efficiency in resource utilisation, and cost savings over
reactive threshold-based techniques. Sophisticated fallback mechanisms are integrated into the architecture to
provide graceful degradation to reactive scaling upon forecasting system failures or accuracy deterioration, without
loss of service reliability, whilst still achieving optimisation goals. Directions forward involve ensemble forecasting
that blends across various model structures, including NeuralProphet for improved robustness, reinforcement
learning solutions providing continuous policy improvement on the basis of operational experience, and hybrid
systems combining quantitative forecasts with qualitative domain expertise for applications with intricate calendar-
dependent demand behaviour.
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