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Most of genuine information based on healthcare, food habits and Ayurveda is imbibed in Modi 

script and very few people are remaining who understand Modi script reading and writing. This 

motivates us to work with Modi script. After going through the deep literature review, we found 

InceptionV3 and Residual framework (ResNet152) need to experiment on Modi script dataset. 

The main objective of the system is to develop an incremental learning model which starts 

identifying from individual characters with acceptable accuracy, which further trained and 

tested for words followed by sentences, group of sentences. We are the first one to experiment 

with whole Modi script character set which covers 360 class labels comprising 35 consonants 

and 10 vowels which was collected using different people. The individual characters are cut, 

labelled manually and pre-processed using Otsu, Savaula and To-zero binarization techniques. 

The model is further explored by adding InceptionResNetV2 framework for classification. 

Initially the model shows overfitting behaviour as discussed in section 5.2. To regularize the 

model, first experiment is done using augmented dataset which also not able to show 

satisfactory results and took un-conventional time for training. Further, drop-out approach is 

induced which shows good hyper-parameter tuning as shown in table 6. Due to drop-out layers, 

training is extended till 300 epochs to get better results. After training using drop-out 

technique, the model is showing proportionate increase in training and validation accuracy. At 

the same time, it is showing considerable consistent decrease in training and validation loss. 

This gives us intuition that the newly developed hybrid model helps to reduce overfitting and 

learns appropriately. The developed incremental model is tested on Modi words where all 

words are mostly classified correctly except the character “sa” which is in-correctly classified as 

banacha “na” sinch both the characters look similar. 

Keywords: Deep learning, InceptionV3, Residual Network, Modi Script, To-zero, Sauvola, 

Otsu, Binarization, segmentation, classification 

 

1. Introduction 

Handwritten text recognition has a prominent role, among others, in business, healthcare or cultural heritage 

preservation. Slowly, while computer systems replace handwritten documents in day-to-day practices of today, still 

there exists very large body of documents that have been handwritten and should be digitized. This must be done, 

among others, to assure preservation of content as pen-and-paper documents have limited lifespan (due to normal 

ageing and degradation). Here, digitization must involve not only creation of images (which is required primarily 

for historical manuscripts, which are work of art in their own right, and preserving them as images is required), but 

also extraction of their actual content/text (needed for further processing/searching/storage). For the latter, text 

images are usually converted into a machine-encoded form, using Optical Character Recognition (OCR). Recently, a 

lot of work has been devoted to recognition of printed, as well as handwritten characters and still there is need to 
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focus due to rapid development of industries and academic fields, higher demand for recognition accuracy and 

recognition efficiency of HCR. The current deep learning methods still have room for further development. 

2. III. State of the Art 

2.1 After going through the rigorous literature following selected papers help to give direction to our research as 

discussed in table 1. 

Table 1: Literature review highlights 

Sr. 

No. 

Paper Details Techniques used Major findings 

1 Dave, N. (2015). Segmentation methods for 

handwritten character 

recognition. International journal of signal 

processing, image processing and pattern 

recognition, 8(4), 155-164.[25] 

Pixel Counting and 

Histogram approach are 

discussed  

Histogram approach 

more suitable for 

handwritten text 

2 Husham, S., Mustapha, A., Mostafa, S. A., Al-

Obaidi, M. K., Mohammed, M. A., 

Abdulmaged, A. I., & George, S. T. (2020). 

Comparative analysis between active contour 

and Otsu thresholding segmentation 

algorithms in segmenting brain tumor 

magnetic resonance imaging. Journal of 

Information Technology Management. [23] 

 

Active Contour and Otsu 

thresholding methods 

are discussed on MRI 

images 

Active Contour 

performs well over 

Otsu thresholding 

3 Raynaud, G., Chane, C. S., Jacob, P., & 

Histace, A. (2019, February). Active Contour 

Segmentation based on Histograms and 

Dictionary Learning for Video Capsule Image 

Analysis. In VISIGRAPP.[24] 

Active Contour based on 

Histogram and 

Dictionary Learning 

Active Contour based 

on Histogram 

performs well on 

experime    nted 

images 

4 Jindal, U., Gupta, S., Jain, V., & Paprzycki, M. 

(2020). Offline Handwritten Gurumukhi 

Character Recognition System Using Deep 

Learning. In Advances in Bioinformatics, 

Multimedia, and Electronics Circuits and 

Signals (pp. 121-133). Springer, 

Singapore.[17]  

CNN 

(Gurumukhi characters) 

Training data accuracy 

is 98.32%, the testing 

data accuracy is 

74.66%. on 35 

characters 

5 Mustafa, W. A., & Kader, M. M. M. A. (2018, 

June). Binarization of document images: A 

comprehensive review. In Journal of Physics: 

Conference Series (Vol. 1019, No. 1, p. 

012023). IOP Publishing. [19] 

7 binarization 

techniques used 

Otsu and Gradient 

based threshold 

perform well 

6 Guha, R., Das, N., Kundu, M., Nasipuri, M., & 

Santosh, K. C. (2020). Devnet: an efficient 

CNN architecture for handwritten devanagari 

character recognition. International Journal 

of Pattern Recognition and Artificial 

Intelligence, 34(12), 2052009.  [20] 

Different variants of 

CNN discussed 

DevNet shows 

efficient though 

InceptionV3 and 

RestNet50 also gives 

effective results 
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7 Wang, Y., Xiao, W., & Li, S. (2021, April). 

Offline Handwritten Text Recognition Using 

Deep Learning: A Review. In Journal of 

Physics: Conference Series (Vol. 1848, No. 1, 

p. 012015). IOP Publishing.[21] 

Deep learning concept 

for OHHR discussed 

Deep learning 

techniques seems 

effective in the last 

decades 

8 Szegedy, Christian, et al. "Inception-v4, 

inception-resnet and the impact of residual 

connections on learning." Thirty-first AAAI 

conference on artificial intelligence. 2017.[22] 

Inception-ResNet 

hybrid concept 

introduced 

Inception-ResNet V2 

seems effective 

9 Li, Z., Wu, Q., Xiao, Y., Jin, M., & Lu, H. 

(2020). Deep Matching Network for 

Handwritten Chinese Character Recognition. 

Pattern Recognition, 107471. [18] 

CNN with local SoftMax 

regression algorithm to 

reduce the computation 

and memory usage in 

training iteration. 

(Chinese characters) 

Matching network has 

a very promising 

generalization ability. 

10 Ram, S., Gupta, S., & Agarwal, B. (2018). 

Devanagri character recognition model using 

deep convolution neural network. Journal of 

Statistics and Management Systems, 21(4), 

593-599.[1] 

DL approach on 

devnagri script 

Optimization of 

network by using best 

hyperparameters for 

the network 

11 C. Chandankhede, “Offline MODI script 

character recognition using deep learning 

techniques,” 2023. Chandankhede, C., & 

Sachdeo, R. (2023). Offline MODI script 

character recognition using deep learning 

techniques. Multimedia Tools and 

Applications, 1-12 [2] 

Deep learning model 

using resnet152 and 

IncetionV3 is developed 

on Modi dataset 

Both algorithms 

perform good while 

training but shows 

overfitted behavior  

12 C. Chandankhede and R. Sachdeo, 

“Character Recognition using MODI script : 

Facts , Challenges and its future,” no. 

25389, pp. 25389–25395, 2020. [3] 

Review paper on Modi 

script 

Challenges, facts and 

future aspects of Modi 

lipi are discussed 

13 Alom, M. Z., Sidike, P., Hasan, M., Taha, T. 

M., & Asari, V. K. (2018). Handwritten bangla 

character recognition using the state-of-the-

art deep convolutional neural networks. 

Computational intelligence and neuroscience, 

2018. (Hindawi journal)[4] 

Use of dciscriminitive 

features with DCNN 

DenseNet shows best 

performer in 

classifying Bangla 

digits, alphabets, and 

special characters. 

14 Vaidya, R., Trivedi, D., Satra, S., & Pimpale, 

M. (2018, April). Handwritten character 

recognition using deep-learning. In 2018 

Second International Conference on 

Inventive Communication and Computational 

Technologies (ICICCT) (pp. 772-775). 

IEEE.[5] 

Developed image 

segmentation based 

HCR system 

Simple HCR system is 

developed using 

English characters 

with use of python 

libraries 

15 Jangid, M., & Srivastava, S. (2018). 

Handwritten devanagari character 

recognition using layer-wise training of deep 

convolutional neural networks and adaptive 

gradient methods. journal of imaging, 4(2), 

41.[6] 

layer-wise DCNN 

approach. 

The best recognition 

accuracy and a quicker 

convergence rate were 

obtained by using a 

layer-wise DCNN 

approach. 
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3. Proposed Approach 

As per [2], a deep learning approach is implemented using Resnet152 and InceptionV3. The data set collection, 

cutting, labelling and pre-processing of data is described in the paper [2]. Initially 10 modi characters are 

experimented using ResNet50 and InceptionV3 model. Later dataset is increased and experimented with 

ResNet152, InceptionV3. Again in further step the experimentation is done with combined features of Residual and 

Inception called InceptionResNetV2.  Key functionality of Inception-ResNet is output of inception module is added 

to input from previous layer. 

As per algorithms discussed in chapter 3, Inception V2 and V3 reduce computational cost by factorizing the filters. 

Though Inception V2 and V3 have same work theory, Inception V3 has improvement like it optimizes 7x7 filters 

and label smoothing. InceptionResNet is a hybrid framework inspired by both Inception and ResNet. 

InceptionResNetV1 has a computational cost that is like that of InceptionV3 and InceptionresNetV2 has 

computational cost similar to InceptionV4[14]. So we choose InceptionV3 and InceptionResnetV2 for further 

experiment.  

After doing classification using these 3 algorithms, the model seems overfitted which was regularized using drop-

out module. As shown in graphs after training phase without drop-out, Finally, we added the module for testing 

Modi handwritten words. As per figure 1 shows training behaviour at 20 epochs using ResNet152+Otsu, 

ResNet+Savaula and ResNet_Tozero. In figure 1, with increase in trailing accuracy, training loss is increasing 

gradually and though training loss is decreasing acceptably but validation loss is increasing exponentially which 

shows the overfitted behaviour. The similar behaviour of the model was observed for InceptionV3 and 

InceptionResNet algorithms as well. The quantitive analysis is shown in table 2. It results in poor detection of 

unknown characters while testing the model. So initially we experimented with augmented dataset but as dataset 

size was increased almost 4 times than existing data images, so training time was increased un-conventionally.  

Then the drop-out induced framework is designed and experimented which had shown the satisfactory behaviour 

as shown in graphs of figure 2. The final modified version of proposed framework is represented as in figure 3. The 

implementation is divided into two major modules classification model word detection module. 

We have discussed the working model of our framework using algorithm discussed in section 4. 

 

Figure 1: Training vs validation accuracy and training vs validation loss before drop-out for ResNet152 at 20 epochs 
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Figure 2: Training vs validation accuracy and training vs validation loss after drop-out for ResNet152 at 20 epochs 

 

Figure 3: Modi barakhadi characters recognition framework 

4. Implementation details 

The whole framework is implemented as per following algorithm on python environment. Initially Input 

folder with 360 labelled subfolders is loaded for training. For training we have used total 7221 images and for 

testing we used total 1786 images. Labelling is di=one as per marathi character set. Then pre-processing of all 

images in training folder is done using 3 binarization techniques namely Otsu, Sauvola and Tozero. Next step 

is training the model using train set as per created mode discussed in step iv. The model is trained for regular 

interval of epochs 10 20, 30, 50, 100, 200, and 300 epochs.  The trained model is tested using pre-processed 
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test set. We have trained the model till 300 epochs as due to drop-out techniques training is done gradually. 

1. Algorithm: Image Classification using InceptionV3 / ResNet152 / InceptionResNetV2 algorithms 

2. Input: Test images from test folder 

3. Output: Prediction result in percentage of prediction accuracy 

4. Steps: 

a. Arrange character images in folders. System will identify every folder name as classification label. 

b. Pre-process 

i. Pre-process images using 3 different thresholds: Otsu, Sauvola, Tozero 

c. Training 

i. Use pre-processed images from Pre-Process folder for every threshold. 

ii. Load every image from pre-process folder. 

iii. Create train and validation dataset.  

iv. Create Model as per algorithm: 

1. Image Size: 256 X 256 

2. Dense using Activation: Relu 

3. Add Extra Convolution 2D layers (Filters: 64 & 128). 

4. Add 3 dense layers (Units: 1024, 512 & 256). 

5. Add Dropout 0.3 and then 0.2. 

v. Compile model 

1. Optimizer: adam 

2. loss: SparseCategoricalCrossentropy 

3. metrics: accuracy 

vi. Fit Model 

1. Epoch Count: 10, 20, 30, 50, 100, 200, 300 

2. Validation split: 0.33. 

vii. Save Model 

d. Prediction 

i. Load test images 

ii. Pre-process images using 3 different thresholds: Otsu, Sauvola, Tozero 

iii. Load model 

iv. Predict images.  

v. Show result. 

5. Experimental details and discussion 

First experiment is done using un-processed images. Since the results of un-processed images wasnot 

satisfactory, we proceed with pre-processing of images.  

5.1 RestNet152, InceptionV3 and InceptionResNetV2 results after pre-processing 

Total training images are 7721 and 1786 images are used for testing to build all models. Model is built using 

combination of classification algorithms ResNet152, InceptionV3 and InceptionResNetV2 with binarized 

thresholding Otsu, Sauvola and Tozero. So performance evaluation of all 9 combinations are discussed in following 

sections. 

5.1.1 ResNet152+Otsu, ResNet152+Sauvola Framework and ResNet152+To zero Framework 

The three frameworks ResNet152+Otsu, ResNet152+Sauvola, ResNet152+To-zero frameworks are trained first for 

10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal change 

validation accuracy. Also, while training loss is decreasing but validation loss suddenly start falling. This shows the 

situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 2. ResNet152+Tozero 

at 20 and 30 epochs performing better during training and testing as well. 
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Table 2: ResNet152 comparative test results before drop-out 

Algorithm  No. of 

Epoch 

Train_Acc Avg_Test_Acc Precision 

ResNet152  

+ Otsu 

 

10 96.00 87.90 0.75 

15 97.76 77.93 0.78 

20 99.84 91.60 0.81 

30    99.84 94.47 0.7939 

ResNet152  

+ Sauvola 

 

10 97.42 85.4 .59 

15 99.77 84.38 0.744 

20 99.81 85.40 0.75 

30 98.92 90.70 0.6567 

ResNet152  

+ tozero 

 

10 96.76 98.69 0.795 

15 96.45 97.06 0.74 

20 98.59 99.37 0.81 

30 98.90 99.73 0.8113 

 

5.1.2 InceptionV3+Otsu, InceptionV3+Sauvola and InceptionV3+To zero Framework 

The three frameworks InceptionV3+Otsu, InceptionV3+Sauvola, InceptionV3+To-zero frameworks are trained first 

for 10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal 

change validation accuracy. Also while training loss is decreasing but validation loss suddenly start falling. This 

shows the situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 3. 

InceptionV3+Tozero is performing good during training and testing as well. 

Table 3: Comparative study of InceptionV3 Observations at different epochs 

Algorithm  No. of 

Epoch 

Train_Acc Avg_Test_Acc Precision 

InceptionV3 

+ Otsu 

10 99.82 95.03 0.79 

15 99.77 82.60 0.78 

20 99.84 92.75 0.81 

30 99.80 98.13 0.8113 

InceptionV3 

+ Sauvola 

10 99.82 83.06 0.67 

15 99.80 82.60 0.78 

20 99.80 83.74 0.73 

30 99.70 89.58 0.6517 

InceptionV3 

+ tozero 

10 98.92 99.68 0.80 

15 98.52 99.49 0.80 

20 98.90 99.69 0.80 

30 98.92 99.71 0.8029 

 

5.1.3 InceptionResNetV2+Otsu, InceptionResNetV2+Sauvola and InceptionResNetV2+To zero 

Framework 

The three frameworks InceptionV3+Otsu, InceptionV3+Sauvola, InceptionV3+To-zero frameworks are trained first 

for 10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal 

change validation accuracy. Also, while training loss is decreasing but validation loss suddenly starts falling. This 

shows the situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 4. 

InceptionV3+Tozero is performing pretty good during training and testing as well at 20 and 30 epochs. 
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Table 4: Comparative study InceptionResNetV2 Observations at different epochs 

Algorithm  No. of 

Epoch 

Train_Acc Avg_Test_Acc Precision 

InceptionResNet-

V2 + Otsu 

10 91.17 83.96 0.77 

15 94.04 66.70 0.78 

20 98.75 90.68 0.7827 

30 98.59 91.78 0.789 

InceptionResNet-

V2 + Sauvola 

10 93.04 76.71 0.64 

15 94.51 73.86 0.74 

20 98.78 83.58 0.78 

30 97.82 87.46 0.6825 

InceptionResNet-

V2 + To-zero 

10 91.55 95.48 0.77 

15 86.65 92.80 0.78 

20 96.53 97.36 0.83 

30 98.49 98.84 0.824 

 

After testing Modi words written by different set of people with the current build model by all above combination 

of algorithms, we are unable to get satisfactory results. So we decided to go regularization using Drop-out to 

minimize overfitting. 

5.2 At 30 epochs performance with Drop-out and without drop-out 

As we got good training and test results before applying drop-out till 30 epochs as shown in table 5, but model was 

unable to give satisfactory predition results for unknown word samples. Also there is huge difference between 

training and validation accuracy. Parallaly, training and validation loss is moving in opposite direction which 

indicates poor parameter tuning as shown in table 5. So we decided to treat the model using drop-out. But due to 

drop-out till 30 epochs we are unable to get good training results as shown in table 6. It pushes us to train the 

model with more number of epochs. After training the model step-wise we started getting the good training 

accuracy. From table 6, it is observed that, training accuracy is increasing stepwise in coordination with validation 

accuracy, this shows good hyper-parameter tuning while traing the model. Table 5 shows good training accuracy at 

30 epochs but validation accuracy is increasing very slowly compared to validation accuracy shown in table 6 which 

is showing results after drop-out.  

Table 5: Performance of all 3 algorithm Without Drop-out at 30 epochs 

Algorithm Without Drop-out 

Tr-acc Tr-loss Val-acc Val_loss 

InceptionV3+otsu 0.998096 0.002919 0.040859 12.84438 

InceptionV3+sauvola 0.997057 0.012719 0.047091 13.58673 

InceptionV3+tozero 0.989268 0.025455 0.062327 10.98617 

ResNet152+otsu 0.998442 0.002916 0.094183 14.78234 

ResNet152+sauvola 0.989268 0.036535 0.078255 15.27467 

ResNet152+tozero 0.989095 0.024092 0.09903 15.97871 

IncResNetV2+otsu 0.985979 0.048614 0.246537 8.962371 

IncResNetV2+sauvola 0.978189 0.063744 0.195291 10.13233 

IncResNetV2+tozero 0.98494 0.051075 0.191828 11.77448 
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Table 6: Performance of all 3 algorithm with Drop-out at 30 epochs 

Algorithm With Drop-out 

Tr-acc Tr-loss Val-acc Val_loss 

InceptionV3+otsu 0.287 2.219274 0.179363 3.476355 

InceptionV3+sauvola 0.280595 2.270522 0.164127 3.620318 

InceptionV3+tozero 0.249957 2.45479 0.171053 3.360918 

ResNet152+otsu 0.527956 1.4283 0.310942 2.886939 

ResNet152+sauvola 0.498702 1.530909 0.270083 3.566783 

ResNet152+tozero 0.581963 1.266787 0.325485 3.122474 

IncResNetV2+otsu 0.505799 1.512043 0.274931 3.079045 

IncResNetV2+sauvola 0.715769 0.847796 0.467452 2.530933 

IncResNetV2+tozero 0.75038 0.743861377 0.4972 2.456124306 

 

5.3 Performance of training accuracy and loss at different epochs with different algorithm after 

Drop-out 

This section discusses the results obtained after drop-out normalization. As we used drop-out techniques which 

makes the network sparse, so we need to experiment with more no. of epochs to get better results. Here we have 

done experiment with 30, 50, 100, 200 and 300 epochs as shown in section 5.3.1, 5.3.2 and 5.3.3. After training 

using drop-out technique, the model is showing proportionate increase in training and validation accuracy. At the 

same time, it is showing considerable consistent decrease in training and validation loss. This gives us intuition that 

the newly developed hybrid model helps to reduce overfitting and learns appropriately. The developed hybrid 

model will be tested on Modi words classification in the chapter 6 to implement incremental learning approach. 

5.3.1 ResNet152 comparative test results after drop-out 

This section discusses about the comparative performance of ResNet152 with Otsu, Sauvola and Tozero techniques 

at 10, 30,50,100 and 300 epochss respectively. Table 7, 8 and 9 shows the performance of training and test 

accuracy after drop-out using ResNet152 framework. From the results, it is observed that ResNet152+Tozero at 100 

and 300 epochs gives good precision.  

Table 7: ResNet152 + Otsu performance after drop-out 

Algorithm  No. of 

Epoch 

Train_Acc Val_acc Avg_Test_Acc Precision 

ResNet152 

+ Otsu 

10 02.82 02.15 2.31 0.0392 

30 52.79 31.09 48.59 0.5145 

50 86.38 43.42 81.44 0.6601 

100 94.13 40.30 86.88 0.6853 

300 97.17 54.98 81.95 0.6052 
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Table 8: ResNet152 + Sauvola performance after drop-out 

Algorithm  No. of 

Epoch 

Train_Acc Val_acc Avg_Test_Acc Precision 

ResNet152  

+ Sauvola 

10 05.02 04.64 4.49 0.0459 

30 49.87 27.00 50.77 0.3404 

50 84.32 40.65 77.20 0.6304 

100 94.59 43.63 90.25 0.6752 

300 97.04 36.22 87.39 0.6002 

 

Table 9: ResNet152 + To-zero performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test

_Acc 

Precision 

ResNet152+ 

Tozero 

10 05.09 0.0685 11.50 0.0666 

30 58.19 32.54 76.39 0.5929 

50 81.99 30.96 88.51 0.6825 

100 94.82 47.09 96.24 0.8236 

300 96.37 45.08 97.38 0.7839 

 

5.3.2 InceptionV3 comparative test results after drop-out 

This section discusses about the comparative performance of InceptionV3 with To-zero, Sauvola and 

Tozero techniques at 10, 30,50,100 and 300 epochss respectively. Table 10, 11 and 12 shows the 

performance of training and test accuracy after drop-out using InceptionV3 framework. From the results, it 

is observed that InceptionV3+Tozero at 300 epochs gives better precision. 

Table 10: InceptionV3 + Otsu Otsu performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test_Acc Precision 

InceptionV3 

+ Otsu 

10 2.8 2.14 2.31 0.039 

30 28.7 17.93 29.54 0.245 

50 63.44 30.68 58.05 0.356 

100 88.31 37.67 77.67 0.5823 

300 97.21 32.75 91.10 0.7072 

 

Table 11:  InceptionV3 + Sauvola Otsu performance after drop-out 

Algorithm        No. of 

Epoch 

Train_Acc Val_acc Avg_Test_Acc Precision 

InceptionV3 10 2.7 2.28 4.52 0.0285 
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+ Sauvola 30 28.06 16.14 34.55 0.2021 

50 57.71 28.67 59.59 0.3992 

100 94.43 32.55 80.12 0.5055 

300 96.92 43.21 90.37 0.6859 

 

Table 12: InceptionV3 + To-zero Otsu performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test_Acc Precision 

InceptionV3 

+ Tozero 

10 2.38 2.0 7.04 0.0235 

30 24.99 17.10 45.09 0.2099 

50 62.09 27.98 77.94 0.5229 

100 94.23 43.07 93.63 0.6987 

300 97.92 49.72 98.14 0.8113 

 

5.3.3 InceptionReNetV2 comparative test results after drop-out 

This section discusses about the comparative performance of InceptionResNetV2 with Otsu, Sauvola and 

Tozero techniques at 10, 30,50,100 and 300 epochss respectively. Table 13, 14 and 15 shows the 

performance of training and test accuracy after drop-out using InceptionResNetV2 framework. From the 

results, it is observed that InceptionResNetV2+Otsu and InceptionResNetV2+Tozero at 300 epochs gives 

good precision. 

Table 13: IncResNetV2+ Otsu Otsu performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test

_Acc 

Precision 

IncResNetV2+ 

Otsu 

10 07.89 09.62 9.31 0.1153 

30 50.58 27.49 42.92 0.4367 

50 85.33 47.85 80.15 0.7811 

100 94.13 53.05 84.81 0.7620 

300 97.99 57.62 94.38 0.8488 

 

Table 14: IncResNetV2+ Sauvola Otsu performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test_

Acc 

Precision 

IncResNetV2+ 

Sauvola 

10 10.09 13.36 13.46 0.1472 

30 71.58 46.74 67.09 0.6433 

50 86.79 54.78 80.78 0.7318 

100 94.72 52.35 89.44 0.7648 
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300 97.57 53.95 91.03 0.7726 

 

Table 15: IncResNetV2+ To-zero Otsu performance after drop-out 

Algorithm No. of 

Epoch 

Train_Acc Val_acc Avg_Test_A

cc 

Precision 

IncResNetV2 

+ Tozero 

10 10.94 12.81 27.79 0.1668 

30 75.04 49.72 88.37 0.7536 

50 87.22 52.15 95.05 0.8298 

100 93.80 52.71 95.98 0.8214 

300 97.56 55.47 98.16 0.8230 

 

6. Modi word segmentation and prediction in marathi 

As part of last module of the project, word are collected written by different people. Collected samples are 

segmented using active contour mehtod. The selected segmented individual words are classified using develeoped 

module. Figure 4 shows few word written in Modi. 

 

Figure 4: Un-processed sample Modi words 

6.1 Word detection results 

In this section, word detection in marathi is discussed using developed model for character recognition. In section 

6.1, we have tested the few words namely “Varad”, “Desai” and “Vaibhav” using final hybrid model. Here all words 

are mostly classified correctly except the character “sa” which is in-correctly classified as banacha “na” sinch both 

the characters look similar as shown in table 16, 17, 18. 
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Table 16: Word “varad” is tested using InceptionResNetV2+Otsu algorithm at 300 epochs 

File Label Accuracy 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Varad/Va.png VA-varun 99.62 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Varad/Da.png DA-daut 43.91 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Varad/Ra.png RA-ravi 87.52 

 

Table 17: Word “Desai” is testd using InceptionResNetV2+Otsu algorithm at 300 epochs 

File Label Accuracy 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Desai/De.png DE-daut 49.38 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Desai/Sa.png 

NA-

banacha 96.7 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Desai/ee.png 3 i-imarat 99.69 

 

Table 18: Word “Vaibhav” is testd using InceptionResNetV2+Otsu algorithm at 300 epochs 

File Label Accuracy 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Vaibhav/Va.png 

VA-

varun 51.27 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Vaibhav/Vai.png VAI 22.72 

/content/drive/MyDrive/Modi 

Lipi/Dataset/Contours/Vaibhav/Bha.png 

BHA-

bhatji 28.49 

 

7. Conclusion and Future Scope 

The developed model is tested with Modi lipi words to learn incrementally written by different set of people. 

We have tried to developed an robust incremental learning model which is tested using Modi characters, and 

words written by different set of people. As of now for Modi lipi, people worked with only basic character set of 

consonants and vowels with deep learning approach, we are the first to work with whole Modi lipi barakhadi 

with 360 classes. Overall an interesting technical and non-technical journey to work with Modi character set. 

As part of future scope, we can work further on characters which are facing issue with classification with 

current model. Increase the size of dataset written by more people and more set of words. 

The model can extend to test and upgrade as per need for testing handwritten Modi statements. As part of 

future scope, we can work further on characters which are facing issue with classification using current model. 

The model can extend to test and upgrade as per need for testing handwritten Modi statements. 
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