
Journal of Information Systems Engineering and Management
2025, 10(10s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modi Script Handwritten Character Classification using

Drop-out Induced Incremental Learning Approach

1Chaitali Chandankhede, 2Rajneeshkaur Sachdeo, 3Urmila Shrawankar, 4Nisha Wankhade, 5Girish Talmale
1Dr. Vishwanath Karad MIT World Peace University, Pune, India

2MIT-ADT University, Pune, India
3Ramdeobaba University (RBU), Nagpur, India

4Yeshwantrao Chavan College of Engineering, Nagpur
5G H Raisoni College of Engineering Nagpur, India

1https://orcid.org/0000-0002-1291-6636, 2https://orcid.org/0009-0002-5387-5671,
3https://orcid.org/0000-0003-4523-9501, 4https://orcid.org/0000-0002-8964-5459,

5https://orcid.org/0000-0002-0180-5228

ARTICLE INFO ABSTRACT

Received: 08 Nov 2024

Revised: 26 Dec 2024

Accepted: 10 Jan 2025

Most of genuine information based on healthcare, food habits and Ayurveda is imbibed in Modi

script and very few people are remaining who understand Modi script reading and writing. This

motivates us to work with Modi script. After going through the deep literature review, we found

InceptionV3 and Residual framework (ResNet152) need to experiment on Modi script dataset.

The main objective of the system is to develop an incremental learning model which starts

identifying from individual characters with acceptable accuracy, which further trained and

tested for words followed by sentences, group of sentences. We are the first one to experiment

with whole Modi script character set which covers 360 class labels comprising 35 consonants

and 10 vowels which was collected using different people. The individual characters are cut,

labelled manually and pre-processed using Otsu, Savaula and To-zero binarization techniques.

The model is further explored by adding InceptionResNetV2 framework for classification.

Initially the model shows overfitting behaviour as discussed in section 5.2. To regularize the

model, first experiment is done using augmented dataset which also not able to show

satisfactory results and took un-conventional time for training. Further, drop-out approach is

induced which shows good hyper-parameter tuning as shown in table 6. Due to drop-out layers,

training is extended till 300 epochs to get better results. After training using drop-out

technique, the model is showing proportionate increase in training and validation accuracy. At

the same time, it is showing considerable consistent decrease in training and validation loss.

This gives us intuition that the newly developed hybrid model helps to reduce overfitting and

learns appropriately. The developed incremental model is tested on Modi words where all

words are mostly classified correctly except the character “sa” which is in-correctly classified as

banacha “na” sinch both the characters look similar.

Keywords: Deep learning, InceptionV3, Residual Network, Modi Script, To-zero, Sauvola,

Otsu, Binarization, segmentation, classification

1. Introduction

Handwritten text recognition has a prominent role, among others, in business, healthcare or cultural heritage

preservation. Slowly, while computer systems replace handwritten documents in day-to-day practices of today, still

there exists very large body of documents that have been handwritten and should be digitized. This must be done,

among others, to assure preservation of content as pen-and-paper documents have limited lifespan (due to normal

ageing and degradation). Here, digitization must involve not only creation of images (which is required primarily

for historical manuscripts, which are work of art in their own right, and preserving them as images is required), but

also extraction of their actual content/text (needed for further processing/searching/storage). For the latter, text

images are usually converted into a machine-encoded form, using Optical Character Recognition (OCR). Recently, a

lot of work has been devoted to recognition of printed, as well as handwritten characters and still there is need to

401

J INFORM SYSTEMS ENG, 10(10s)

focus due to rapid development of industries and academic fields, higher demand for recognition accuracy and

recognition efficiency of HCR. The current deep learning methods still have room for further development.

2. III. State of the Art

2.1 After going through the rigorous literature following selected papers help to give direction to our research as

discussed in table 1.

Table 1: Literature review highlights

Sr.

No.

Paper Details Techniques used Major findings

1 Dave, N. (2015). Segmentation methods for

handwritten character

recognition. International journal of signal

processing, image processing and pattern

recognition, 8(4), 155-164.[25]

Pixel Counting and

Histogram approach are

discussed

Histogram approach

more suitable for

handwritten text

2 Husham, S., Mustapha, A., Mostafa, S. A., Al-

Obaidi, M. K., Mohammed, M. A.,

Abdulmaged, A. I., & George, S. T. (2020).

Comparative analysis between active contour

and Otsu thresholding segmentation

algorithms in segmenting brain tumor

magnetic resonance imaging. Journal of

Information Technology Management. [23]

Active Contour and Otsu

thresholding methods

are discussed on MRI

images

Active Contour

performs well over

Otsu thresholding

3 Raynaud, G., Chane, C. S., Jacob, P., &

Histace, A. (2019, February). Active Contour

Segmentation based on Histograms and

Dictionary Learning for Video Capsule Image

Analysis. In VISIGRAPP.[24]

Active Contour based on

Histogram and

Dictionary Learning

Active Contour based

on Histogram

performs well on

experime nted

images

4 Jindal, U., Gupta, S., Jain, V., & Paprzycki, M.

(2020). Offline Handwritten Gurumukhi

Character Recognition System Using Deep

Learning. In Advances in Bioinformatics,

Multimedia, and Electronics Circuits and

Signals (pp. 121-133). Springer,

Singapore.[17]

CNN

(Gurumukhi characters)

Training data accuracy

is 98.32%, the testing

data accuracy is

74.66%. on 35

characters

5 Mustafa, W. A., & Kader, M. M. M. A. (2018,

June). Binarization of document images: A

comprehensive review. In Journal of Physics:

Conference Series (Vol. 1019, No. 1, p.

012023). IOP Publishing. [19]

7 binarization

techniques used

Otsu and Gradient

based threshold

perform well

6 Guha, R., Das, N., Kundu, M., Nasipuri, M., &

Santosh, K. C. (2020). Devnet: an efficient

CNN architecture for handwritten devanagari

character recognition. International Journal

of Pattern Recognition and Artificial

Intelligence, 34(12), 2052009. [20]

Different variants of

CNN discussed

DevNet shows

efficient though

InceptionV3 and

RestNet50 also gives

effective results

402

J INFORM SYSTEMS ENG, 10(10s)

7 Wang, Y., Xiao, W., & Li, S. (2021, April).

Offline Handwritten Text Recognition Using

Deep Learning: A Review. In Journal of

Physics: Conference Series (Vol. 1848, No. 1,

p. 012015). IOP Publishing.[21]

Deep learning concept

for OHHR discussed

Deep learning

techniques seems

effective in the last

decades

8 Szegedy, Christian, et al. "Inception-v4,

inception-resnet and the impact of residual

connections on learning." Thirty-first AAAI

conference on artificial intelligence. 2017.[22]

Inception-ResNet

hybrid concept

introduced

Inception-ResNet V2

seems effective

9 Li, Z., Wu, Q., Xiao, Y., Jin, M., & Lu, H.

(2020). Deep Matching Network for

Handwritten Chinese Character Recognition.

Pattern Recognition, 107471. [18]

CNN with local SoftMax

regression algorithm to

reduce the computation

and memory usage in

training iteration.

(Chinese characters)

Matching network has

a very promising

generalization ability.

10 Ram, S., Gupta, S., & Agarwal, B. (2018).

Devanagri character recognition model using

deep convolution neural network. Journal of

Statistics and Management Systems, 21(4),

593-599.[1]

DL approach on

devnagri script

Optimization of

network by using best

hyperparameters for

the network

11 C. Chandankhede, “Offline MODI script

character recognition using deep learning

techniques,” 2023. Chandankhede, C., &

Sachdeo, R. (2023). Offline MODI script

character recognition using deep learning

techniques. Multimedia Tools and

Applications, 1-12 [2]

Deep learning model

using resnet152 and

IncetionV3 is developed

on Modi dataset

Both algorithms

perform good while

training but shows

overfitted behavior

12 C. Chandankhede and R. Sachdeo,

“Character Recognition using MODI script :

Facts , Challenges and its future,” no.

25389, pp. 25389–25395, 2020. [3]

Review paper on Modi

script

Challenges, facts and

future aspects of Modi

lipi are discussed

13 Alom, M. Z., Sidike, P., Hasan, M., Taha, T.

M., & Asari, V. K. (2018). Handwritten bangla

character recognition using the state-of-the-

art deep convolutional neural networks.

Computational intelligence and neuroscience,

2018. (Hindawi journal)[4]

Use of dciscriminitive

features with DCNN

DenseNet shows best

performer in

classifying Bangla

digits, alphabets, and

special characters.

14 Vaidya, R., Trivedi, D., Satra, S., & Pimpale,

M. (2018, April). Handwritten character

recognition using deep-learning. In 2018

Second International Conference on

Inventive Communication and Computational

Technologies (ICICCT) (pp. 772-775).

IEEE.[5]

Developed image

segmentation based

HCR system

Simple HCR system is

developed using

English characters

with use of python

libraries

15 Jangid, M., & Srivastava, S. (2018).

Handwritten devanagari character

recognition using layer-wise training of deep

convolutional neural networks and adaptive

gradient methods. journal of imaging, 4(2),

41.[6]

layer-wise DCNN

approach.

The best recognition

accuracy and a quicker

convergence rate were

obtained by using a

layer-wise DCNN

approach.

403

J INFORM SYSTEMS ENG, 10(10s)

3. Proposed Approach

As per [2], a deep learning approach is implemented using Resnet152 and InceptionV3. The data set collection,

cutting, labelling and pre-processing of data is described in the paper [2]. Initially 10 modi characters are

experimented using ResNet50 and InceptionV3 model. Later dataset is increased and experimented with

ResNet152, InceptionV3. Again in further step the experimentation is done with combined features of Residual and

Inception called InceptionResNetV2. Key functionality of Inception-ResNet is output of inception module is added

to input from previous layer.

As per algorithms discussed in chapter 3, Inception V2 and V3 reduce computational cost by factorizing the filters.

Though Inception V2 and V3 have same work theory, Inception V3 has improvement like it optimizes 7x7 filters

and label smoothing. InceptionResNet is a hybrid framework inspired by both Inception and ResNet.

InceptionResNetV1 has a computational cost that is like that of InceptionV3 and InceptionresNetV2 has

computational cost similar to InceptionV4[14]. So we choose InceptionV3 and InceptionResnetV2 for further

experiment.

After doing classification using these 3 algorithms, the model seems overfitted which was regularized using drop-

out module. As shown in graphs after training phase without drop-out, Finally, we added the module for testing

Modi handwritten words. As per figure 1 shows training behaviour at 20 epochs using ResNet152+Otsu,

ResNet+Savaula and ResNet_Tozero. In figure 1, with increase in trailing accuracy, training loss is increasing

gradually and though training loss is decreasing acceptably but validation loss is increasing exponentially which

shows the overfitted behaviour. The similar behaviour of the model was observed for InceptionV3 and

InceptionResNet algorithms as well. The quantitive analysis is shown in table 2. It results in poor detection of

unknown characters while testing the model. So initially we experimented with augmented dataset but as dataset

size was increased almost 4 times than existing data images, so training time was increased un-conventionally.

Then the drop-out induced framework is designed and experimented which had shown the satisfactory behaviour

as shown in graphs of figure 2. The final modified version of proposed framework is represented as in figure 3. The

implementation is divided into two major modules classification model word detection module.

We have discussed the working model of our framework using algorithm discussed in section 4.

Figure 1: Training vs validation accuracy and training vs validation loss before drop-out for ResNet152 at 20 epochs

404

J INFORM SYSTEMS ENG, 10(10s)

Figure 2: Training vs validation accuracy and training vs validation loss after drop-out for ResNet152 at 20 epochs

Figure 3: Modi barakhadi characters recognition framework

4. Implementation details

The whole framework is implemented as per following algorithm on python environment. Initially Input

folder with 360 labelled subfolders is loaded for training. For training we have used total 7221 images and for

testing we used total 1786 images. Labelling is di=one as per marathi character set. Then pre-processing of all

images in training folder is done using 3 binarization techniques namely Otsu, Sauvola and Tozero. Next step

is training the model using train set as per created mode discussed in step iv. The model is trained for regular

interval of epochs 10 20, 30, 50, 100, 200, and 300 epochs. The trained model is tested using pre-processed

405

J INFORM SYSTEMS ENG, 10(10s)

test set. We have trained the model till 300 epochs as due to drop-out techniques training is done gradually.

1. Algorithm: Image Classification using InceptionV3 / ResNet152 / InceptionResNetV2 algorithms

2. Input: Test images from test folder

3. Output: Prediction result in percentage of prediction accuracy

4. Steps:

a. Arrange character images in folders. System will identify every folder name as classification label.

b. Pre-process

i. Pre-process images using 3 different thresholds: Otsu, Sauvola, Tozero

c. Training

i. Use pre-processed images from Pre-Process folder for every threshold.

ii. Load every image from pre-process folder.

iii. Create train and validation dataset.

iv. Create Model as per algorithm:

1. Image Size: 256 X 256

2. Dense using Activation: Relu

3. Add Extra Convolution 2D layers (Filters: 64 & 128).

4. Add 3 dense layers (Units: 1024, 512 & 256).

5. Add Dropout 0.3 and then 0.2.

v. Compile model

1. Optimizer: adam

2. loss: SparseCategoricalCrossentropy

3. metrics: accuracy

vi. Fit Model

1. Epoch Count: 10, 20, 30, 50, 100, 200, 300

2. Validation split: 0.33.

vii. Save Model

d. Prediction

i. Load test images

ii. Pre-process images using 3 different thresholds: Otsu, Sauvola, Tozero

iii. Load model

iv. Predict images.

v. Show result.

5. Experimental details and discussion

First experiment is done using un-processed images. Since the results of un-processed images wasnot

satisfactory, we proceed with pre-processing of images.

5.1 RestNet152, InceptionV3 and InceptionResNetV2 results after pre-processing

Total training images are 7721 and 1786 images are used for testing to build all models. Model is built using

combination of classification algorithms ResNet152, InceptionV3 and InceptionResNetV2 with binarized

thresholding Otsu, Sauvola and Tozero. So performance evaluation of all 9 combinations are discussed in following

sections.

5.1.1 ResNet152+Otsu, ResNet152+Sauvola Framework and ResNet152+To zero Framework

The three frameworks ResNet152+Otsu, ResNet152+Sauvola, ResNet152+To-zero frameworks are trained first for

10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal change

validation accuracy. Also, while training loss is decreasing but validation loss suddenly start falling. This shows the

situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 2. ResNet152+Tozero

at 20 and 30 epochs performing better during training and testing as well.

406

J INFORM SYSTEMS ENG, 10(10s)

Table 2: ResNet152 comparative test results before drop-out

Algorithm No. of

Epoch

Train_Acc Avg_Test_Acc Precision

ResNet152

+ Otsu

10 96.00 87.90 0.75

15 97.76 77.93 0.78

20 99.84 91.60 0.81

30 99.84 94.47 0.7939

ResNet152

+ Sauvola

10 97.42 85.4 .59

15 99.77 84.38 0.744

20 99.81 85.40 0.75

30 98.92 90.70 0.6567

ResNet152

+ tozero

10 96.76 98.69 0.795

15 96.45 97.06 0.74

20 98.59 99.37 0.81

30 98.90 99.73 0.8113

5.1.2 InceptionV3+Otsu, InceptionV3+Sauvola and InceptionV3+To zero Framework

The three frameworks InceptionV3+Otsu, InceptionV3+Sauvola, InceptionV3+To-zero frameworks are trained first

for 10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal

change validation accuracy. Also while training loss is decreasing but validation loss suddenly start falling. This

shows the situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 3.

InceptionV3+Tozero is performing good during training and testing as well.

Table 3: Comparative study of InceptionV3 Observations at different epochs

Algorithm No. of

Epoch

Train_Acc Avg_Test_Acc Precision

InceptionV3

+ Otsu

10 99.82 95.03 0.79

15 99.77 82.60 0.78

20 99.84 92.75 0.81

30 99.80 98.13 0.8113

InceptionV3

+ Sauvola

10 99.82 83.06 0.67

15 99.80 82.60 0.78

20 99.80 83.74 0.73

30 99.70 89.58 0.6517

InceptionV3

+ tozero

10 98.92 99.68 0.80

15 98.52 99.49 0.80

20 98.90 99.69 0.80

30 98.92 99.71 0.8029

5.1.3 InceptionResNetV2+Otsu, InceptionResNetV2+Sauvola and InceptionResNetV2+To zero

Framework

The three frameworks InceptionV3+Otsu, InceptionV3+Sauvola, InceptionV3+To-zero frameworks are trained first

for 10,15,20 and 30 epochs. As per observations, training accuracy is increasing impressively with very nominal

change validation accuracy. Also, while training loss is decreasing but validation loss suddenly starts falling. This

shows the situation for overfitting. Comparative study performance of 3 algorithms discussed in Table 4.

InceptionV3+Tozero is performing pretty good during training and testing as well at 20 and 30 epochs.

407

J INFORM SYSTEMS ENG, 10(10s)

Table 4: Comparative study InceptionResNetV2 Observations at different epochs

Algorithm No. of

Epoch

Train_Acc Avg_Test_Acc Precision

InceptionResNet-

V2 + Otsu

10 91.17 83.96 0.77

15 94.04 66.70 0.78

20 98.75 90.68 0.7827

30 98.59 91.78 0.789

InceptionResNet-

V2 + Sauvola

10 93.04 76.71 0.64

15 94.51 73.86 0.74

20 98.78 83.58 0.78

30 97.82 87.46 0.6825

InceptionResNet-

V2 + To-zero

10 91.55 95.48 0.77

15 86.65 92.80 0.78

20 96.53 97.36 0.83

30 98.49 98.84 0.824

After testing Modi words written by different set of people with the current build model by all above combination

of algorithms, we are unable to get satisfactory results. So we decided to go regularization using Drop-out to

minimize overfitting.

5.2 At 30 epochs performance with Drop-out and without drop-out

As we got good training and test results before applying drop-out till 30 epochs as shown in table 5, but model was

unable to give satisfactory predition results for unknown word samples. Also there is huge difference between

training and validation accuracy. Parallaly, training and validation loss is moving in opposite direction which

indicates poor parameter tuning as shown in table 5. So we decided to treat the model using drop-out. But due to

drop-out till 30 epochs we are unable to get good training results as shown in table 6. It pushes us to train the

model with more number of epochs. After training the model step-wise we started getting the good training

accuracy. From table 6, it is observed that, training accuracy is increasing stepwise in coordination with validation

accuracy, this shows good hyper-parameter tuning while traing the model. Table 5 shows good training accuracy at

30 epochs but validation accuracy is increasing very slowly compared to validation accuracy shown in table 6 which

is showing results after drop-out.

Table 5: Performance of all 3 algorithm Without Drop-out at 30 epochs

Algorithm Without Drop-out

Tr-acc Tr-loss Val-acc Val_loss

InceptionV3+otsu 0.998096 0.002919 0.040859 12.84438

InceptionV3+sauvola 0.997057 0.012719 0.047091 13.58673

InceptionV3+tozero 0.989268 0.025455 0.062327 10.98617

ResNet152+otsu 0.998442 0.002916 0.094183 14.78234

ResNet152+sauvola 0.989268 0.036535 0.078255 15.27467

ResNet152+tozero 0.989095 0.024092 0.09903 15.97871

IncResNetV2+otsu 0.985979 0.048614 0.246537 8.962371

IncResNetV2+sauvola 0.978189 0.063744 0.195291 10.13233

IncResNetV2+tozero 0.98494 0.051075 0.191828 11.77448

408

J INFORM SYSTEMS ENG, 10(10s)

Table 6: Performance of all 3 algorithm with Drop-out at 30 epochs

Algorithm With Drop-out

Tr-acc Tr-loss Val-acc Val_loss

InceptionV3+otsu 0.287 2.219274 0.179363 3.476355

InceptionV3+sauvola 0.280595 2.270522 0.164127 3.620318

InceptionV3+tozero 0.249957 2.45479 0.171053 3.360918

ResNet152+otsu 0.527956 1.4283 0.310942 2.886939

ResNet152+sauvola 0.498702 1.530909 0.270083 3.566783

ResNet152+tozero 0.581963 1.266787 0.325485 3.122474

IncResNetV2+otsu 0.505799 1.512043 0.274931 3.079045

IncResNetV2+sauvola 0.715769 0.847796 0.467452 2.530933

IncResNetV2+tozero 0.75038 0.743861377 0.4972 2.456124306

5.3 Performance of training accuracy and loss at different epochs with different algorithm after

Drop-out

This section discusses the results obtained after drop-out normalization. As we used drop-out techniques which

makes the network sparse, so we need to experiment with more no. of epochs to get better results. Here we have

done experiment with 30, 50, 100, 200 and 300 epochs as shown in section 5.3.1, 5.3.2 and 5.3.3. After training

using drop-out technique, the model is showing proportionate increase in training and validation accuracy. At the

same time, it is showing considerable consistent decrease in training and validation loss. This gives us intuition that

the newly developed hybrid model helps to reduce overfitting and learns appropriately. The developed hybrid

model will be tested on Modi words classification in the chapter 6 to implement incremental learning approach.

5.3.1 ResNet152 comparative test results after drop-out

This section discusses about the comparative performance of ResNet152 with Otsu, Sauvola and Tozero techniques

at 10, 30,50,100 and 300 epochss respectively. Table 7, 8 and 9 shows the performance of training and test

accuracy after drop-out using ResNet152 framework. From the results, it is observed that ResNet152+Tozero at 100

and 300 epochs gives good precision.

Table 7: ResNet152 + Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_Acc Precision

ResNet152

+ Otsu

10 02.82 02.15 2.31 0.0392

30 52.79 31.09 48.59 0.5145

50 86.38 43.42 81.44 0.6601

100 94.13 40.30 86.88 0.6853

300 97.17 54.98 81.95 0.6052

409

J INFORM SYSTEMS ENG, 10(10s)

Table 8: ResNet152 + Sauvola performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_Acc Precision

ResNet152

+ Sauvola

10 05.02 04.64 4.49 0.0459

30 49.87 27.00 50.77 0.3404

50 84.32 40.65 77.20 0.6304

100 94.59 43.63 90.25 0.6752

300 97.04 36.22 87.39 0.6002

Table 9: ResNet152 + To-zero performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test

_Acc

Precision

ResNet152+

Tozero

10 05.09 0.0685 11.50 0.0666

30 58.19 32.54 76.39 0.5929

50 81.99 30.96 88.51 0.6825

100 94.82 47.09 96.24 0.8236

300 96.37 45.08 97.38 0.7839

5.3.2 InceptionV3 comparative test results after drop-out

This section discusses about the comparative performance of InceptionV3 with To-zero, Sauvola and

Tozero techniques at 10, 30,50,100 and 300 epochss respectively. Table 10, 11 and 12 shows the

performance of training and test accuracy after drop-out using InceptionV3 framework. From the results, it

is observed that InceptionV3+Tozero at 300 epochs gives better precision.

Table 10: InceptionV3 + Otsu Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_Acc Precision

InceptionV3

+ Otsu

10 2.8 2.14 2.31 0.039

30 28.7 17.93 29.54 0.245

50 63.44 30.68 58.05 0.356

100 88.31 37.67 77.67 0.5823

300 97.21 32.75 91.10 0.7072

Table 11: InceptionV3 + Sauvola Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_Acc Precision

InceptionV3 10 2.7 2.28 4.52 0.0285

410

J INFORM SYSTEMS ENG, 10(10s)

+ Sauvola 30 28.06 16.14 34.55 0.2021

50 57.71 28.67 59.59 0.3992

100 94.43 32.55 80.12 0.5055

300 96.92 43.21 90.37 0.6859

Table 12: InceptionV3 + To-zero Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_Acc Precision

InceptionV3

+ Tozero

10 2.38 2.0 7.04 0.0235

30 24.99 17.10 45.09 0.2099

50 62.09 27.98 77.94 0.5229

100 94.23 43.07 93.63 0.6987

300 97.92 49.72 98.14 0.8113

5.3.3 InceptionReNetV2 comparative test results after drop-out

This section discusses about the comparative performance of InceptionResNetV2 with Otsu, Sauvola and

Tozero techniques at 10, 30,50,100 and 300 epochss respectively. Table 13, 14 and 15 shows the

performance of training and test accuracy after drop-out using InceptionResNetV2 framework. From the

results, it is observed that InceptionResNetV2+Otsu and InceptionResNetV2+Tozero at 300 epochs gives

good precision.

Table 13: IncResNetV2+ Otsu Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test

_Acc

Precision

IncResNetV2+

Otsu

10 07.89 09.62 9.31 0.1153

30 50.58 27.49 42.92 0.4367

50 85.33 47.85 80.15 0.7811

100 94.13 53.05 84.81 0.7620

300 97.99 57.62 94.38 0.8488

Table 14: IncResNetV2+ Sauvola Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_

Acc

Precision

IncResNetV2+

Sauvola

10 10.09 13.36 13.46 0.1472

30 71.58 46.74 67.09 0.6433

50 86.79 54.78 80.78 0.7318

100 94.72 52.35 89.44 0.7648

411

J INFORM SYSTEMS ENG, 10(10s)

300 97.57 53.95 91.03 0.7726

Table 15: IncResNetV2+ To-zero Otsu performance after drop-out

Algorithm No. of

Epoch

Train_Acc Val_acc Avg_Test_A

cc

Precision

IncResNetV2

+ Tozero

10 10.94 12.81 27.79 0.1668

30 75.04 49.72 88.37 0.7536

50 87.22 52.15 95.05 0.8298

100 93.80 52.71 95.98 0.8214

300 97.56 55.47 98.16 0.8230

6. Modi word segmentation and prediction in marathi

As part of last module of the project, word are collected written by different people. Collected samples are

segmented using active contour mehtod. The selected segmented individual words are classified using develeoped

module. Figure 4 shows few word written in Modi.

Figure 4: Un-processed sample Modi words

6.1 Word detection results

In this section, word detection in marathi is discussed using developed model for character recognition. In section

6.1, we have tested the few words namely “Varad”, “Desai” and “Vaibhav” using final hybrid model. Here all words

are mostly classified correctly except the character “sa” which is in-correctly classified as banacha “na” sinch both

the characters look similar as shown in table 16, 17, 18.

412

J INFORM SYSTEMS ENG, 10(10s)

Table 16: Word “varad” is tested using InceptionResNetV2+Otsu algorithm at 300 epochs

File Label Accuracy

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Varad/Va.png VA-varun 99.62

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Varad/Da.png DA-daut 43.91

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Varad/Ra.png RA-ravi 87.52

Table 17: Word “Desai” is testd using InceptionResNetV2+Otsu algorithm at 300 epochs

File Label Accuracy

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Desai/De.png DE-daut 49.38

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Desai/Sa.png

NA-

banacha 96.7

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Desai/ee.png 3 i-imarat 99.69

Table 18: Word “Vaibhav” is testd using InceptionResNetV2+Otsu algorithm at 300 epochs

File Label Accuracy

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Vaibhav/Va.png

VA-

varun 51.27

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Vaibhav/Vai.png VAI 22.72

/content/drive/MyDrive/Modi

Lipi/Dataset/Contours/Vaibhav/Bha.png

BHA-

bhatji 28.49

7. Conclusion and Future Scope

The developed model is tested with Modi lipi words to learn incrementally written by different set of people.

We have tried to developed an robust incremental learning model which is tested using Modi characters, and

words written by different set of people. As of now for Modi lipi, people worked with only basic character set of

consonants and vowels with deep learning approach, we are the first to work with whole Modi lipi barakhadi

with 360 classes. Overall an interesting technical and non-technical journey to work with Modi character set.

As part of future scope, we can work further on characters which are facing issue with classification with

current model. Increase the size of dataset written by more people and more set of words.

The model can extend to test and upgrade as per need for testing handwritten Modi statements. As part of

future scope, we can work further on characters which are facing issue with classification using current model.

The model can extend to test and upgrade as per need for testing handwritten Modi statements.

413

J INFORM SYSTEMS ENG, 10(10s)

Acknowledgments

We are thankful to Bhartiya Itihas Sanshodhan Mandal, Pune (BISM) who had given chance to collect

handwritten Modi data from different related people.

Authors contribution statement

Both the authors contributed equally to collect data, to design the system, to implement and analyse the

system.

Data availability statement: Data used for the experiment is handwritten and created with help of writing

by different people, friends.

References

[1] Ram, S., Gupta, S., & Agarwal, B. (2018). Devanagri character recognition model using deep convolution

neural network. Journal of Statistics and Management Systems, 21(4), 593-599.

[2] C. Chandankhede, “Offline MODI script character recognition using deep learning techniques,” 2023.

Chandankhede, C., & Sachdeo, R. (2023). Offline MODI script character recognition using deep learning

techniques. Multimedia Tools and Applications, 1-12.

[3] C. Chandankhede and R. Sachdeo, “Character Recognition using MODI script : Facts , Challenges and its

future,” TEST Engineering and Management, no. 25389, pp. 25389–25395, 2020.

[4] Alom, M. Z., Sidike, P., Hasan, M., Taha, T. M., & Asari, V. K. (2018). Handwritten bangla character

recognition using the state-of-the-art deep convolutional neural networks. Computational intelligence and

neuroscience, 2018. (Hindawi journal)

[5] Vaidya, R., Trivedi, D., Satra, S., & Pimpale, M. (2018, April). Handwritten character recognition using

deep-learning. In 2018 Second International Conference on Inventive Communication and Computational

Technologies (ICICCT) (pp. 772-775). IEEE.

[6] Jangid, M., & Srivastava, S. (2018). Handwritten devanagari character recognition using layer-wise training

of deep convolutional neural networks and adaptive gradient methods. journal of imaging, 4(2), 41.

[7] Koyuncu, B., & Koyuncu, H. (2019). Handwritten Character Recognition by using Convolutional Deep

Neural Network; Review.

[8] Zhai, S., Wu, H., Kumar, A., Cheng, Y., Lu, Y., Zhang, Z., & Feris, R. (2017). S3pool: Pooling with stochastic

spatial sampling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.

4970-4978).

[9] Wang, S. H., Tang, C., Sun, J., Yang, J., Huang, C., Phillips, P., & Zhang, Y. D. (2018). Multiple sclerosis

identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic

pooling. Frontiers in neuroscience, 12, 818.

[10] U. Pal, T. Wakabayashi, and F. Kimura, “Comparative study of Devnagari handwritten character recognition

using different feature and classifiers,” in Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR, 2009, pp. 1111–1115. doi: 10.1109/ICDAR.2009.244.

[11] S. Chandure and V. Inamdar, “Handwritten MODI Character Recognition Using Transfer Learning with

Discriminant Feature Analysis,” IETE J. Res., 2021, doi: 10.1080/03772063.2021.1902867.

[12] Brust, C. A., Käding, C., & Denzler, J. (2020). Active and Incremental Learning with Weak Supervision. KI-

Künstliche Intelligenz, 1-16.

[13] Ren, H., Wang, W., Qu, X., & Cai, Y. (2019). A new hybrid-parameter recurrent neural network for online

handwritten chinese character recognition. Pattern Recognition Letters, 128, 400-406.

[14] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture

for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

2818-2826).

[15] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[16] Gan, J., Wang, W., & Lu, K. (2020). Compressing the CNN architecture for in-air handwritten Chinese

character recognition. Pattern Recognition Letters, 129, 190-197.

[17] Jindal, U., Gupta, S., Jain, V., & Paprzycki, M. (2020). Offline Handwritten Gurumukhi Character

Recognition System Using Deep Learning. In Advances in Bioinformatics, Multimedia, and Electronics

414

J INFORM SYSTEMS ENG, 10(10s)

Circuits and Signals (pp. 121-133). Springer, Singapore.

[18] Li, Z., Wu, Q., Xiao, Y., Jin, M., & Lu, H. (2020). Deep Matching Network for Handwritten Chinese

Character Recognition. Pattern Recognition, 107471.

[19] Mustafa, W. A., & Kader, M. M. M. A. (2018, June). Binarization of document images: A comprehensive

review. In Journal of Physics: Conference Series (Vol. 1019, No. 1, p. 012023). IOP Publishing.

[20] Guha, R., Das, N., Kundu, M., Nasipuri, M., & Santosh, K. C. (2020). Devnet: an efficient cnn architecture

for handwritten devanagari character recognition. International Journal of Pattern Recognition and

Artificial Intelligence, 34(12), 2052009.[27]

[21] Wang, Y., Xiao, W., & Li, S. (2021, April). Offline Handwritten Text Recognition Using Deep Learning: A

Review. In Journal of Physics: Conference Series (Vol. 1848, No. 1, p. 012015). IOP Publishing.[28]

[22] Szegedy, Christian, et al. "Inception-v4, inception-resnet and the impact of residual connections on

learning." Thirty-first AAAI conference on artificial intelligence. 2017.

[23] Husham, S., Mustapha, A., Mostafa, S. A., Al-Obaidi, M. K., Mohammed, M. A., Abdulmaged, A. I., &

George, S. T. (2020). Comparative analysis between active contour and otsu thresholding segmentation

algorithms in segmenting brain tumor magnetic resonance imaging. Journal of Information Technology

Management, 12(Special Issue: Deep Learning for Visual Information Analytics and Management.), 48-61.

[24] Raynaud, G., Chane, C. S., Jacob, P., & Histace, A. (2019, February). Active Contour Segmentation based on

Histograms and Dictionary Learning for Videocapsule Image Analysis. In VISIGRAPP (4: VISAPP) (pp.

609-615).

[25] Dave, N. (2015). Segmentation methods for hand written character recognition. International journal of

signal processing, image processing and pattern recognition, 8(4), 155-164.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the Inception Architecture for Computer

Vision”.

[27] A. Choudhary, “A Review of Various Character Segmentation Techniques for Cursive Handwritten Words

Recognition,” 2014. [Online]. Available: http://www.irphouse.com.

[28] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Impact of deep learning-based dropout on

shallow neural networks applied to stream temperature modelling,” Earth-Science Reviews, vol. 201.

Elsevier B.V., Feb. 01, 2020. doi: 10.1016/j.earscirev.2019.103076.

