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The rapid advancement of autonomous driving technologies offers great potential for 
improving safety, efficiency, and accessibility in transportation. However, current systems face 
challenges such as poor real-time adaptability, limited obstacle detection capabilities, and 
difficulty recognizing lane markings, especially in dynamic environments. Additionally, the 
high hardware cost and lack of user-friendly interfaces impede the widespread adoption of 
these technologies, particularly in resource-constrained regions. Addressing these challenges 
requires innovative solutions that are both robust and cost-effective. 

Our research introduces an AI-powered system that addresses these issues by providing a 

scalable and reasonably priced dynamic navigation solution. The framework integrates state-

of-the-art computer vision techniques for real-time object recognition and lane detection, 

utilizing the Arduino and Raspberry Pi platforms. While YOLO (You Only Look Once) allows 

for quick and precise object recognition, the Canny algorithm guarantees accurate lane 

tracking. Effective obstacle avoidance and traffic signal recognition are made possible by the 

hybrid model. The system also has gesture recognition capabilities, which allow for natural user 

engagement without the need for physical interfaces. This invention improves adaptability and 

usability in a variety of settings and user needs. The system's excellent performance in lane 

tracking, object detection, and obstacle avoidance was proven by extensive testing in both 

simulated and real-world scenarios. Gesture recognition further enhanced the system's 

usability in challenging situations. 

Keywords: Autonomous driving, Dynamic navigation, AI-driven framework, Arduino, 

Raspberry Pi, The Canny algorithm, YOLO, Gesture recognition, Object detection, Lane 

detection, Obstacle avoidance, Real-time adaptability, Computer vision, User-friendly 

interfaces, Scalable technology, Cost-effective solutions, Robotics, Autonomous vehicle 

technology, Traffic signal detection, Modular systems. 

 

1. Introduction 

Autonomous driving technology offers transformative potential for transportation by ensuring safer, more efficient, 

and convenient travel. At its core, these systems integrate robotics, computer vision, machine learning, and 

artificial intelligence to enable vehicles to perceive and respond to dynamic environments in real time. This project 

explores an integrated approach to autonomous navigation, focusing on developing a scalable and cost-effective 

system that addresses challenges such as lane detection, obstacle avoidance, and traffic signal recognition. 

Accurate navigation is ensured by the system's use of the Canny algorithm for lane detection and the Hough 

Transform for trajectory display. Three YOLO-based object identification models are simultaneously operating in 

parallel to detect important components such as road signs, traffic lights, and obstructions. The MediaPipe 

framework's gesture recognition improves user interaction without requiring physical interfaces by enabling simple 

hand gestures for vehicle control. 
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The system is constructed using Arduino and Raspberry Pi platforms, allowing for real-time data processing, 

wireless communication, and effective control mechanisms. With its Bluetooth-enabled remote control, users can 

modify the vehicle's speed, stop it, or alter its route, making the system versatile and suitable for a wide range of 

applications. This combination of hardware and software ensures smooth functionality in diverse situations. 

The system, which is based on the Arduino and Raspberry Pi platforms, enables wireless connectivity, effective 

control mechanisms, and real-time data processing. The technology is flexible and adaptable to a variety of 

applications thanks to its Bluetooth-enabled remote command feature, which enables users to change the vehicle's 

route, stop it, and regulate its speed. The smooth operation in a variety of settings is ensured by this hardware-

software interaction. 

The creation of a scalable and reasonably priced AI-driven framework for dynamic navigation in autonomous cars 

using the Raspberry Pi and Arduino platforms is one of the proposed paper's contributions. To provide precise 

trajectory preservation in real-time, a novel method combines the Hough Transform for lane viewing with the 

Canny edge detection algorithm for accurate lane detection. To improve obstacle avoidance and adherence to traffic 

laws, the system concurrently employs three YOLO-based object identification models designed to detect important 

components including traffic lights, road signs, and minor obstructions.  

Furthermore, without requiring physical interfaces, gesture detection using the MediaPipe architecture enables 

simple, intuitive vehicle control. Performance criteria such as detection accuracy, latency, and robustness under 

various lighting and environmental circumstances were used to thoroughly assess the framework in both simulated 

and real-world scenarios. When compared to traditional techniques, the system also shows notable gains in 

processing speed and detection accuracy, making it a reliable and effective option for dynamic navigation. 

2.  Literature Survey 

Autonomous driving systems rely heavily on object detection since it allows cars to recognize and decipher traffic 

signals and signs, which are crucial for safe driving. Due to their ease of use and computational effectiveness, 

traditional object identification methods—like Haar feature-based cascade classifiers—have gained widespread 

acceptance. To detect specified items, such as stop signs and traffic lights, these classifiers work by extracting 

particular features from photos and training a series of classifiers. They work especially well in real-time 

applications set up in situations with limited resources, like embedded systems in self-driving cars. However, in 

complicated scenarios with different lighting conditions, occlusions, or object scales, these classifiers are less 

effective because of their limited adaptability and reliance on handmade features, which can result in missed 

detections or false positives [5][1]. 

Modern strategies like YOLO (You Only Look Once) have been devised to circumvent these obstacles. YOLO is a 

cutting-edge object detection technique that predicts bounding boxes and class probabilities in a single pass 

through a convolutional neural network (CNN), combining speed and accuracy. This cohesive method improves 

robustness against changes in lighting, occlusions, and object scales while doing away with the need for intricate 

post-processing processes. For autonomous driving systems, where real-time performance is crucial, YOLO is 

especially well-suited. Despite its benefits, YOLO is still in its infancy while research is being done to maximize its 

implementation on embedded systems with constrained processing power. To fully realize its potential, thorough 

assessments of YOLO's performance in a range of driving situations, including urban and rural locations and 

different weather conditions, are required [4] [21]. 

Camera calibration is essential for autonomous systems because it guarantees precise geometric interpretations of 

camera-captured pictures. The intrinsic and extrinsic parameters of cameras are frequently estimated using 

methods such as chessboard-based calibration, which aid in correcting distortions and enabling accurate depth 

measurement in stereo vision systems. Applications like obstacle identification and 3D reconstruction depend on 

this procedure. Similar to this, discrepancies brought on by noise, occlusions, or calibration problems are addressed 

by depth map tuning, which improves disparity maps derived from stereo vision systems. The quality and 

dependability of depth maps are greatly improved by methods including smoothing, outlier rejection, and 

refinement algorithms, which allow for more precise depth perception in dynamic situations [1]. 

For autonomous systems to make decisions in a timely manner, real-time disparity map computing is essential. 

High accuracy is maintained while computational overhead is reduced by utilizing optimization strategies like 
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hardware acceleration and parallel processing. These developments guarantee that stereo-vision systems can 

provide the depth data needed for obstacle identification and navigation in practical situations [1][2]. 

Monitoring and detecting anomalous motion patterns has been made much easier with the use of accelerometer 

and gyroscope data for anomaly identification. While gyroscopes record angular velocity and accelerometers 

measure linear acceleration, they offer complimentary information on the speed and orientation of the vehicle. 

Anomalies like quick accelerations, sudden direction changes, or unexpected motions can be found by examining 

this data. Safety-critical applications such as dynamic system management, activity monitoring, and gesture 

recognition are improved by this feature. The development of algorithms that identify abnormalities and improve 

motion analysis has been made easier by research datasets that combine gyroscope and accelerometer readings [1]. 

Lane detection, a fundamental task in autonomous driving, involves isolating lane boundaries on roads to guide 

navigation. Preprocessing steps, such as extracting road color ranges and applying inverse perspective mapping 

(IPM), are critical for isolating the region of interest. IPM transforms images into a bird’s-eye view, where 

geometric distortions are minimized, and parallel lines are preserved. This transformation facilitates more accurate 

feature extraction and lane boundary identification. Despite the success of these methods, challenges such as 

varying road textures, lighting conditions, and faded lane markings persist. Addressing these challenges requires 

algorithms that are robust, adaptable, and capable of generalizing across diverse real-world scenarios [5][6]. 

Convolutional neural networks (CNNs) and region-based approaches are two examples of object detection 

algorithms that are crucial for recognizing cars, pedestrians, and traffic signals. By classifying and localizing objects 

via visual data analysis, these methods give autonomous cars the situational awareness they need to drive safely. 

Active safety technology, such as cruise control and automated braking, supplement these strategies by reducing 

crashes and preserving steady driving speeds. [6] [7]. 

There are still several research gaps, though. For instance, occlusions and fluctuating lighting make real-time 

pedestrian recognition in metropolitan settings extremely difficult. Similar to this, overcoming infrastructure, 

financial, and regulatory barriers is necessary to create affordable autonomous systems that can be implemented in 

developing nations. To create systems that are dependable, reasonably priced, and uphold strict safety regulations, 

creative methods are required [3][9]. 

Obstacle detection and navigation are greatly enhanced by sophisticated signal processing methods such as 

adaptive filtering, sensor fusion, and machine learning-based algorithms. Accurate object detection in dynamic 

situations is made possible by machine learning models that can recognize intricate patterns in sensor data, such as 

support vector machines and neural networks. The accuracy of autonomous control actions is increased using 

adaptive filters, such as Kalman and particle filters, which further improve position and velocity estimates. By 

reducing errors related to individual sensors, sensor fusion—which combines data from several sensors—improves 

overall system reliability [19]. 

Datasets play a pivotal role in advancing autonomous driving technologies. Annotated datasets of images, including 

traffic signs, lane markings, and obstacles, are critical for training machine learning models. Expanding these 

datasets to include diverse environmental conditions and annotations ensures that algorithms can generalize 

effectively. By integrating robust datasets and advanced algorithms, researchers can develop autonomous systems 

that navigate safely and efficiently in real-world scenarios [5][9]. 

Through these advancements, the research community continues to address challenges in autonomous driving, 

striving for improved performance, adaptability, and reliability. This collective effort paves the way for safer and 

more efficient autonomous vehicle technologies capable of transforming global transportation. 

3. Proposed Methodology 

In this chapter, we have discussed the operational workflow of the proposed autonomous vehicle's perception 

system, as illustrated in Figure 1. This system is designed to efficiently handle real-time video processing and 

decision-making. It follows a structured sequence of steps to ensure accurate perception, analysis, and navigation 

while incorporating robust error-handling mechanisms to maintain reliability in dynamic and complex 

environments. The process begins with an initialization phase, during which the environment is set up and all 

necessary hardware components—such as cameras, sensors, and processors—are configured. In this phase, 

essential machine learning models required for tasks such as object detection, lane detection, and decision-making 
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are loaded into the system. This step ensures that the system is prepared to process real-time inputs effectively. 

Reason: Improved clarity, readability, and technical accuracy; corrected punctuation and grammar. 

The device starts recording a live video stream from the onboard cameras as soon as it has initialized. Since the 

video stream is the main source of information for comprehending the vehicle's surroundings, this first stage is 

essential. The system will immediately start a retry procedure if it has trouble obtaining the video feed—for 

example, because of hardware failures, environmental interferences like bad lighting bad weather, or other 

technical problems. This retry process keeps going until the video stream is successfully acquired, guaranteeing that 

the system has the visual information it needs to function properly. 

The data moves on to the preprocessing phase after a steady video feed has been created. Resizing the video frames 

to standard proportions, lowering noise to improve image clarity, and switching data formats to ensure 

compatibility with later analytic tools are some of the crucial procedures involved in this phase. These preparation 

procedures are essential for enhancing data quality and enabling precise analysis. The system is built to 

automatically try the procedure again if any problems occur during this preprocessing step, protecting the data's 

dependability and integrity. 

Following preprocessing, the system analyses the video feed using a variety of advanced object detection 

techniques. These algorithms are essential for recognizing and categorizing different environmental factors. 

Important components are identified and grouped, including pedestrians, stop signs, traffic signals, obstructions, 

and lane markers. Not only is this information helpful, but it is also necessary for the car to properly understand its 

environment. This knowledge enables the car to make well-informed decisions about how to travel, which 

eventually increases road safety and efficiency. This thorough procedure highlights the system's capacity to operate 

efficiently in demanding and dynamic driving situations. 

The vehicle's control unit, which makes decisions, receives the data and objects that have been identified. This unit 

uses either pre-established rules or inference models based on machine learning to process the data. Crucial 

navigational elements including steering angles, speed changes, and brake actions are decided throughout the 

decision-making process.  

If the machine learning model detects a possible threat, the system overrides user orders to prioritize safety 

decisions made by the model, guaranteeing the car works safely in real-time situations. To preserve dependability, 

the system also includes an error-handling mechanism that keeps an eye on operations and tries unsuccessful 

procedures again. Furthermore, Google's MediaPipe framework-powered gesture control features are integrated 

into the system, enabling natural and easy user interaction with the car. Without using physical controls, users can 

give commands like stopping, turning, or reversing by using real-time hand gesture detection. 

Specific gestures are mapped to directional commands as follows:  

• Front (Move Forward)  

• Back (Move Backward)  

• Left (Turn Left)  

• Right (Turn Right) 

While machine learning models improve safety by superseding gestures when needed, gesture-based interaction 

offers a user-friendly experience. For instance, to avoid a collision, the model will override a user's motion to 

proceed if an impediment is identified. The strong hand-tracking features of MediaPipe guarantee excellent 

precision and responsiveness, enhancing the system's usability in a variety of situations. To ensure that the 

autonomous car functions safely and effectively in dynamic real-world contexts, this structured workflow places a 

strong emphasis on real-time flexibility, fast error management, and gesture-based interface. The system achieves a 

high degree of accuracy, resilience, and usability by utilizing cutting-edge technologies like MediaPipe and machine 

learning. 

As illustrated in Figure 2, the proposed system seamlessly integrates multiple hardware components to achieve 

real-time decision-making in autonomous vehicle navigation. The core hardware setup includes a Raspberry Pi for 

processing, an Arduino for motor control, a Pi camera for data acquisition, and DC motors for vehicle movement. 

Each of these components is optimized for efficiency and reliability. Gesture control functionality is enabled 
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through a laptop camera, which captures real-time user commands. These commands are processed using the 

MediaPipe framework for gesture recognition, translating them into actionable instructions for the vehicle. 

The vehicle-mounted camera simultaneously collects vital environmental information for navigation and object 

detection. The technology recognizes traffic lights, lane markers, and obstructions using sophisticated computer 

vision techniques like YOLO. As the central processor unit, the Raspberry Pi integrates camera feeds and runs AI 

algorithms to perform dynamic decisions like braking, speed control, and steering angle adjustment. 

This integrated hardware-software framework ensures adaptability in real time. The car can navigate successfully 

through dynamic and uncertain environments because the system continuously updates its decisions based on the 

analyzed data. Furthermore, the modular design of the hardware components allows for modification and 

scalability, making it suitable for various applications, including resource-constrained areas and urban transit. The 

overall architecture emphasizes operational robustness, cost-effectiveness, and user-friendliness. 

       

Figure 1: Architecture of the system 
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.  

Figure 2: System design 

4. Implementation Details 

This chapter discusses the implementation details. The project is divided into major 3 implementations traffic light 

model, road sign model, and paper ball model: 

4.1 Rationale for Gesture Control 

Enabling intuitive and natural interaction is a key consideration in the design of autonomous systems. Traditional 

input methods, such as buttons or remotes, can be cumbersome and may not align well with the seamless user 

experience desired for these advanced technologies. Gesture-based control offers a more intuitive and engaging 

alternative, allowing users to interact with the system using familiar hand motions and movements. 

The selection of the MediaPipe framework for this project was driven by its well-established reputation in the field 

of real-time hand tracking and gesture recognition. MediaPipe is known for its high accuracy and responsiveness, 

making it a suitable choice for the demands of controlling an autonomous system. By leveraging this robust 

framework, the project can benefit from reliable and efficient gesture recognition capabilities. 

4.2 Gesture Recognition Process 

The gesture recognition process is central to the overall functionality of the system. This process can be broken 

down into the following key steps: 

1. Input Capture: The system utilizes the laptop's camera to continuously capture video frames of the user's 

hand gestures. This live video feed serves as the primary input for the gesture recognition pipeline. 

2. Preprocessing: Before the captured frames can be analyzed for gesture detection, they undergo a 

preprocessing stage. This step involves techniques such as noise reduction and image enhancement to 

improve the clarity and quality of the input data. By optimizing the input, the subsequent detection and 

classification stages can operate more effectively. 

3. Detection and Classification: The preprocessed video frames are then fed into the MediaPipe 

framework, which is responsible for detecting hand landmarks and classifying the user's gestures into 

predefined commands. This could include gestures such as swiping left/right for navigation, raising a hand 

for stopping or making a fist for reversing the vehicle. 

4. Command Mapping: Once the gestures are recognized, the system maps these detected commands to 

the appropriate vehicle controls. This mapping process ensures that the user's gestures translate seamlessly 

into the necessary actions for controlling the autonomous system. 

5. Communication with Raspberry Pi: The mapped vehicle control commands are then transmitted to 

the Raspberry Pi, the onboard computing unit of the autonomous system, via WebSocket communication. 

This enables the real-time transmission of user input, allowing the Raspberry Pi to respond accordingly and 

execute the desired actions. 
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4.3 Object Detection Implementation 

For the object detection task, three distinct YOLO models were developed, each tailored to detect specific objects 

crucial for autonomous vehicle navigation and control. A well-curated dataset and data augmentation techniques 

were employed to enhance the models’ performance across diverse scenarios. The three models are explained in the 

following sections: 

4.3.1 Traffic Light Model 

• Dataset Source: There are 8925 training photos, 487 validation images, and 200 testing images in the 

dataset. The AI model may be trained on gesture recognition, object detection, and lane detection tasks 

using these photos, which depict a variety of situations and conditions. 

• Dataset Information: 8925 photos, or 93% of the total, are used for training, 487 images for validation, 

and 200 images, or 2%, for testing. With a focus on different environmental situations, each image is 

tagged with the pertinent object or characteristic for the task at hand. 

• Data Augmentation: To increase the model's resilience, a number of augmentation strategies were used. 

Bounding box rotation between -15° and +15°, blurring up to 2.5px, cropping with a minimum zoom of 0% 

and a maximum zoom of 33%, and horizontal flipping are some of these. In order to replicate real-world 

distortions, bounding boxes were also sheared ±10° both horizontally and vertically. 

• Training Process: To ensure consistent input dimensions, the dataset was preprocessed with automated 

orientation correction and scaled to 640x640 pixels. The preprocessing and augmentation procedures were 

carried out to guarantee a robust and varied dataset, enhancing the model's ability to generalize across 

various real-world situations. 

4.3.2 Road Sign Model: 

• Dataset Source: A dataset with road sign images, including various road signs, was acquired from 

Roboflow, where the dataset was pre-trained by an external model. 

• Dataset Information: The dataset consists of 6060 images for training (89%), 469 images for validation 

(7%), and 294 images for testing (4%). 

• Augmentation Strategy: The dataset was augmented with transformations such as rotation between -

19° and +19°, saturation adjustments between -31% and +31%, and blurring up to 5.4px. Additionally, 

bounding box rotations between -15° and +15° and exposure adjustments between -26% and +26% were 

applied to enhance model robustness. 

• Training Process: The pre-trained model from Roboflow was used to detect and classify road signs, 

ensuring its performance in a variety of challenging conditions such as lighting changes, rotation, and 

partial occlusion. 

4.3.3 Paper Ball Model: 

• Dataset Source: The dataset consists of 783 images for training, 610 images for validation, and 30 

images for testing. These images represent diverse scenarios suitable for training AI models in object 

detection tasks. 

• Dataset Information: 55% of the dataset (783 photos) is used for training, 43% is used for validation 

(610 images), and 2% is used for testing (30 images). The work at hand is supported by annotations on the 

photographs. 

• Data Augmentation: The original image quality and structure for model training were preserved in this 

dataset without applying any augmentations. 

• Training Process: To ensure consistent input dimensions, the dataset was preprocessed by scaling the 

photos to 640x640 pixels and applying an auto-orientation correction. 

4.4 Algorithm Selection and Process 

The YOLO algorithm was selected for the object detection task due to its ability to strike a balance between speed 

and accuracy, a critical requirement for autonomous navigation systems. YOLO's unique architecture enables real-

time object detection by simultaneously predicting multiple bounding boxes and class labels, making it well-suited 

for the demands of the project. The following approach is used for object detection: 
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1. Input Capture: The car-mounted camera continuously captures frames of the vehicle's environment, 

providing the necessary visual input for the object detection models. 

2. Preprocessing: The captured frames are preprocessed to ensure compatibility with the YOLO models' 

input requirements. This typically involves resizing the images and applying normalization techniques. 

3. Object Detection: The YOLO models process the preprocessed frames, detecting the relevant objects 

(traffic lights, road signs, or paper balls) and generating bounding boxes and class probabilities for each 

detected item. 

4. Command Generation: Based on the object detection results, the Raspberry Pi, the onboard computing 

unit, sends appropriate navigation commands to the Arduino, which controls the vehicle's motors. These 

commands facilitate the necessary movements, such as stopping, turning, or advancing, to navigate the 

environment safely.  

5. Research Methodology 

The system's ability to detect objects and recognize gestures in simulated environments has been successfully 

verified. Full integration with lane identification and hardware testing in real-world circumstances is still a goal, 

though. Tests of the system in various traffic, weather, and illumination scenarios will be the main focus of future 

assessments. The system's overall performance, scalability, and resilience will all be evaluated by these tests.  

5.1 Algorithmic Approach for Implementation 

5.1.1 Canny Algorithm for Lane Detection 

● Image Acquisition: Capture real-time video frames from the camera. 

● Preprocessing: Convert the captured image to grayscale and apply Gaussian blur to reduce noise. 

● Edge Detection: Use the Canny algorithm to detect edges in the blurred image, emphasizing the 

identification of lane markings. 

● Region of Interest (ROI): Define a polygonal region to focus on areas where lane markings are 

expected. 

● Line Detection: Apply the Hough Transform to detect lines within the masked edges, identifying 

potential lane boundaries. 

● Lane Visualization: Draw the detected lines on the original frame to visualize the lane boundaries for 

navigation using the following distance formula: 

𝐇𝐢𝐣 = (
𝟏

𝟐𝛑𝛔𝟐
) 𝐞𝐱 𝐩(−𝟐𝛔𝟐(𝐢 − (𝐤 + 𝟏))𝟐 + (𝐣 − (𝐤 + 𝟏))𝟐) ; 𝟏 ≤ 𝐢, 𝐣 ≤ (𝟐𝐤 + 𝟏) 

Kernel Generation: 

• Using the formula, a Gaussian kernel was created, where 𝑯𝒊𝒋 Represents the weight at position (i,j). 

• The normalization constant(
𝟏

𝟐𝛑𝛔𝟐) Ensured the sum of all kernel values equaled 1, preserving the overall 

brightness of the image. 

Variance (𝛔𝟐 ) Adjustment: 

• The variance controlled the spread of the kernel. A higher σ resulted in a smoother, more spread-out filter, 

ideal for reducing high-frequency noise while preserving lane markings. 

Distance Calculation: 

• The terms(𝐢 − (𝐤 + 𝟏))and (𝐣 − (𝐤 + 𝟏)) Measured the distance of each kernel position from its center. 

These distances determined the weight of each pixel during convolution, with closer pixels contributing 

more. 
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Image Smoothing: 

• The generated Gaussian kernel was applied to the image via convolution, effectively reducing noise and 

smoothing the image. This preprocessing step minimized irrelevant details such as shadows and road 

textures. 

• The Canny edge detection system, which depends on distinct road edges for precise lane detection, 

presented us with several difficulties during implementation. The algorithm's performance was impacted 

by our little vehicle and our inability to accurately replicate real-world situations. Furthermore, real-time 

processing was not feasible for our arrangement due to its computing intensity. 

• To provide a more practical real-time solution, we then turned our attention to Plan B and implemented a 

gesture control system for easy interaction with the car. Lane identification holds promise for autonomous 

navigation, but it necessitates more sophisticated methods and adjustments to the surrounding 

environment. Therefore, we decided to give gesture-based control top priority as a crucial first step in 

creating an automated car system.  

5.1.2 YOLO Algorithm for Object Detection 

● Model Preparation: Load a pre-trained YOLO model suitable for detecting objects relevant to driving 

scenarios. 

● Image Preprocessing: Preprocess each frame by resizing and normalizing it to match YOLO’s input 

requirements. 

● Object Detection: Run inference on the preprocessed frame to detect objects and output bounding boxes 

and class probabilities. 

● Bounding Box Drawing: Filter detections based on confidence scores and draw bounding boxes around 

detected objects. 

5.1.3 MediaPipe Gesture Recognition 

● Initialize MediaPipe: Set up MediaPipe's hand-tracking module to recognize gestures that control 

vehicle functions as shown in Figure 4. 

● Process Video Feed: Capture frames from the camera and process them through MediaPipe to detect 

hand landmarks. 

● Gesture Recognition Logic: Define specific gestures corresponding to vehicle commands (e.g., stop 

gesture or turn signal) and implement logic to interpret these gestures based on landmark positions 

Quantitive Steps in Gesture Recognition:  

● Euclidean distance: 𝑑𝑖𝑗 = √((𝑥𝑖 − 𝑥𝑗)^2 ) + (𝑦𝑖 − 𝑦𝑗)^2 + (𝑧𝑖 − 𝑧𝑗)^2      

Usage: Calculated the 3D distance between key landmarks of the hand to identify the relative positioning 

of fingers and palms. This step was crucial for distinguishing gestures like "stop" or "turn". 

● Joint angles: 𝑐𝑜𝑠𝜃 = (𝑢 ⋅ 𝑣)/(∥ 𝑢 ∥∥ 𝑣 ∥)  

Usage: Determined angles between vectors formed by hand landmarks to understand the orientation of 

fingers and hand posture. For example, identifying a fist required specific angle thresholds. 

● Feature vector classification:𝑃(𝐺𝑒𝑠𝑡𝑢𝑟𝑒𝑘)exp = 𝑤𝑘 ⋅ 𝐹 (
(𝑤𝑗⋅𝐹)

 𝑗exp ∑(𝑤𝑗⋅𝐹)
)  

Usage: Classified gestures using a softmax function over a weighted feature vector FFF. Each gesture was 

assigned a probability, and the gesture with the highest P(Gesturek) was mapped to a vehicle command. 

• Hand Tracking: MediaPipe's hand tracking detected landmarks in real-time. 

• Gesture Recognition Logic: The above mathematical steps were implemented to define gestures like 

stopping the vehicle, signaling turns, or reversing. 
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Figure 4: Finger Gesture Stop 

6. Hardware Integration and Design 

6.1 Raspberry Pi 

As seen in Figure 5, the Raspberry Pi is a flexible and reasonably priced single-board computer that is essential to 

the autonomous car system. It is appropriate for both local and remote communication since it supports a wide 

range of operating systems, including Raspbian, and provides several connectivity choices, such as USB, HDMI, 

and Wi-Fi. The Raspberry Pi's GPIO pins allow it to interface with other hardware elements, such as sensors, 

motors, and cameras, to process and control data in real-time.  

6.2 DRV8833 Motor Driver 

The DRV8833 motor driver is used to control DC motors efficiently, providing bidirectional motor control through 

Pulse Width Modulation (PWM) signals shown using Figure 6. This motor driver is designed to handle low to 

moderate-power applications, making it suitable for robotics where precise motor control is crucial. Its small size 

and low power dissipation ensure that it doesn't overheat during extended use, providing reliable performance.  

6.3 DC Motor with Encoder 

The DC motor with encoder, which provides precise feedback on the motor's speed, position, and direction as 

shown in Figure 7, is crucial for guaranteeing precise control over the vehicle's movements. Real-time changes are 

made possible by the encoder, which measures the motor's rotational movement and sends the data back to the 

control system. This makes it possible to precisely regulate the vehicle's speed and location, which is crucial for 

autonomous systems that need to avoid obstacles and navigate with precision.  

6.4 Webcam  

The webcam is a vital component in the autonomous vehicle system, responsible for capturing high-quality images 

and real-time video streams to facilitate critical functionalities like object detection, lane recognition, and obstacle 

monitoring with features like Real-Time Image Capture. 

• Real-Time Image Capture 

• Integration with Raspberry Pi 

• Compact Design: 

 

6.5 Arduino 

As the system's microcontroller, Arduino controls several sensors, actuators, and motor drivers to make the car 

work. Real-time sensor data and simple input/output operations are ideal for Arduino, which is well-known for its 

adaptability and simplicity. Arduino is a great option for robotic application prototypes and testing due to its 

extensive use and interoperability with a wide range of sensors. Figure 10 displays the entire hardware 

configuration. 
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        Figure 5: Raspberry Pi [23]    Figure 6: DRV8833 Motor Driver [23]  Figure 7: DC Motor with Encoder[23] 

 

 
Figure 8: Webcam 

 
Figure 9: Arduino [23] 

 
Figure 10: Pi camera with Arduino 

setup 
7. Results and Analysis 

The proposed AI-driven autonomous navigation system was evaluated extensively in simulations and real-world 

conditions, focusing on gesture recognition, object detection, and lane detection. The results demonstrate 

significant advancements in detection accuracy, system robustness, and real-time performance. 

7.1 Gesture Recognition 

Under controlled lighting conditions, the system's MediaPipe-powered gesture detection module showed 

remarkable accuracy. Over 90% of specified motions, including stop, start, and directional commands, could be 

recognized by the system. MediaPipe's sophisticated tracking features made it possible to precisely identify hand 

movements in real-time, resulting in this high accuracy. 

Apart from having a high accuracy, the system had a low latency of about 150 milliseconds when processing 

gestures. Because of the rapid and responsive interaction made possible by this low latency, the system is now more 

effective and user-friendly. Significant gains in usability can be made when commands can be issued using a simple 

hand gesture instead of physical interfaces, especially in situations where conventional controls are unwieldy or 

unsuitable. 

However, when motions were erratic or there was little light, the system's performance was somewhat limited. The 

accuracy decreased to about 85% in low light, demonstrating how the framework depends on ideal environmental 

factors for gesture detection. This difficulty emphasizes the necessity for additional system optimization to increase 

the system's resilience in a greater variety of real-world situations, such as changing light levels and gesture 

changes. 

7.2 Object Detection 

Three YOLO-based models were used to detect traffic lights, stop signs, and small obstacles. The results across 

different scenarios are summarized in the following Table 1. 
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Table1: Object detection observations 

Object 

Detection Task 

Metric Performance Challenges 

Traffic Lights 

Detection 

Map: 100%, 

Precision: 99.2%, 

Recall: 100% 

Reliable 

differentiation of 

red, yellow, and 

green signals 

None observed 

Stop Signs 

Detection 

Accuracy: 98% High reliability 

under varying 

conditions 

Performance drops 

with 

occluded/damaged 

signs 

Small Obstacles 

Detection 

Map: 79.90%, 

Precision: 84.10%, 

Recall: 73.10% 

This method 

excels at detecting 

small objects like 

paper balls, but 

its effectiveness 

can be hindered 

by occlusion and 

complex 

backgrounds. 

Affected by 

obstruction and 

intricate backgrounds. 

 

7.3 Training Metrics  

Evaluation matrics for Paper Ball Detection and Traffic Light Detection is shown figure 11 and 12 respectively. 

 

       Figure 11. Roboflow Training Metrics for Paper Ball Detection 
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                                      Figure 12. Roboflow Training Metrics for Traffic Light Detection 

7.4 Lane Detection 

The Canny edge detection algorithm, combined with the Hough Transform, was attempted for lane identification 

but ultimately not implemented. While the system showed promising performance under optimal conditions, it 

struggled with various challenges in real-world environments, including faded lane markings, shadows, and uneven 

lighting. 

7.5 Comparative Performance 

The proposed system was benchmarked against traditional methods, showing improvements in both accuracy and 

processing speed as discussed in Table 2. 

Table 2: Comparative study over traditional methods 

Comparison 

Metric 

Proposed 

System 

Traditional 

Methods 

Improvement 

Detection Accuracy 10-15% higher Lower due to 

outdated techniques 

Increased robustness 

Processing Speed 20% faster Slower due to 

computational 

overhead 

Enhanced efficiency 

Adaptability in 

Dynamic Scenarios 

High Limited Improved real-time 

decision-making 

 

Major Observations from the above analysis are: 

• The gesture recognition system shows great promise for intuitive interaction but requires enhancements for 

low-light environments.  

• Object detection achieved high accuracy for traffic lights and stop signs, but small obstacle detection needs 

further refinement to handle occlusions.  

From the above observations, we have proposed major recommendations as part of our future implementation: 

● Real-Time Optimization: Use parallel processing or upgraded hardware to further reduce latency. 

● Enhanced Object Detection: Incorporate multi-modal sensors (e.g., LiDAR) for improved obstacle 

detection. 
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7.6 Applications of the proposed system 

The proposed AI-driven framework for autonomous vehicle navigation has the potential for broad applications in 

diverse domains, addressing specific challenges and offering innovative solutions: 

• Urban Transportation: 

By using real-time lane detection and obstacle avoidance, technology facilitates effective navigation in 

heavily crowded urban areas. This improves traffic flow management and lowers the possibility of accidents 

brought on by human mistakes.  

• Logistics and supply chain 

The automation of delivery processes is a critical application of the framework, particularly in smart cities. 

For example, autonomous parcel delivery robots or trucks could be deployed for last-mile delivery in urban 

and suburban settings. 

• Public transport 

The framework is appropriate for autonomous public transportation systems, such as buses and shuttle 

services, due to its gesture-based control and intuitive user interfaces.  

• Resource-Constrained Regions 

The framework's affordable hardware components, such as Raspberry Pi and Arduino, make it a viable 

option for deploying autonomous navigation in underdeveloped nations and areas with inadequate 

infrastructure. These devices can make transportation safer and more dependable in impoverished areas by 

enhancing mobility in places with unmarked roads or irregular lane lines. 

• Agriculture: 

The system can be adapted for use in autonomous tractors, harvesters, and other farming equipment.  

• Search and rescue operations 

In disaster response situations like earthquake-affected areas, floods, or wildfires, where human 

intervention poses a risk, the framework can be quite helpful.  

• Defense: 

Unmanned vehicle operations for transport, observation, and reconnaissance in difficult terrains can 

improve the system in defense applications. Autonomous vehicles can carry out activities like border 

surveillance, logistics assistance, and patrolling in difficult settings without endangering human lives. An 

unmanned ground vehicle (UGV) with this structure, for instance, may effectively conduct surveillance 

missions, avoid obstacles, and traverse tough terrain. 

8. Conclusion 

The goal of our project was to develop and deploy an AI-powered autonomous vehicle system with dynamic 

navigation. We created a complete solution for smooth communication, precise lane detection, and efficient 

obstacle avoidance by combining mobile/web applications, Arduino/Raspberry Pi-based control systems, and 

cutting-edge computer vision techniques like the Canny algorithm and YOLO. The system's capacity for high-level 

automation is demonstrated by the successful integration of modal control, sophisticated object identification, and 

precise lane detection, opening the door to safer and more effective navigation in real-world settings.  

Promising outcomes were displayed by the dynamic navigation system, indicating its potential for real-world uses 

in autonomous driving technology. Through the use of artificial intelligence (AI) algorithms and computer vision 

techniques, the system was able to observe and react to dynamic settings in real-time, allowing the autonomous 

automobile to avoid obstacles, recognize traffic lights, navigate defined paths, and wirelessly reply to commands. 

The autonomous driving system operated smoothly and dependably because of the resilience of the established 

algorithms and the fluid connection between hardware components and software interfaces. 

Future Directions for Enhancement: 

While our project represents a significant milestone in the development of autonomous car systems for dynamic 

navigation, there are several avenues for further improvement and refinement: 
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1. Implementation Goals: Future work will focus on integrating the Canny algorithm for lane detection 

into the hardware system and validating it in real-world environments. 

We will have the leverage to move toward complete autonomy by implementing this improvement. The 

ability to move between locations while continuously detecting and making decisions will remove the need 

for human assistance. This will be accomplished by putting in place an automated path-following system 

that, in response to real-time detection, dynamically modifies the vehicle's trajectory, opening the door to a 

more reliable and completely autonomous system. 

2. Advanced Object Detection: Investigate sophisticated object recognition models and techniques to 

improve the system's capacity to precisely identify and categorize a greater variety of obstructions. For 

better perception, this can entail utilizing more sensor modalities and cutting-edge deep learning systems. 

3. Real-Time Performance: To attain real-time performance, especially in computationally demanding 

activities like object identification and path planning, optimize the system's hardware and algorithms. To 

lower latency and increase responsiveness, this may entail parallel processing strategies, algorithmic 

tweaks, and hardware upgrades. 

4. Human-Car Interaction: To improve the usability and user experience of interfaces for autonomous 

driving, more studies should be done on human-car interaction paradigms. This entails investigating 

augmented reality for immersive navigation data visualization, gesture recognition for user-friendly 

controls, and natural language processing for voice commands. 

5. Scalability and Deployment: When designing the system, take into account aspects like regulatory 

compliance, compatibility with current infrastructure, and scalability to support upcoming expansions and 

upgrades. Work together with stakeholders and industry partners to investigate commercialization and 

deployment options in a range of applications, including smart cities, logistics, and transportation.  

In conclusion, our project represents a significant step forward in the development of autonomous car systems for 

dynamic navigation. By leveraging AI algorithms, computer vision techniques, and interdisciplinary collaboration, 

we have demonstrated the feasibility and potential of creating intelligent navigation systems capable of navigating 

dynamic environments with precision and efficiency. Moving forward, continued research and innovation in this 

field hold the promise of revolutionizing transportation, improving road safety, and enhancing the overall quality of 

life for individuals worldwide. 
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