
Journal of Information Systems Engineering and Management
2025, 10(10s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic Navigation using AI for Autonomous Vehicle

Systems

1Chaitali Chandankhede, 2Chinmay Mhatre, 3Manas Pal, 4Meet Dhote, 5Abhinav Prakash, 6Urmila Shrawanakar
1-5Dr. Vishwanath Karad MIT World Peace University, Pune, India

6Ramdeobaba University (RBU), Nagpur, India
1https://orcid.org/0000-0002-1291-6636, 2https://orcid.org/0009-0005-3156-8664,

3https://orcid.org/0009-0003-9678-0434, 4https://orcid.org/0009-0008-0103-7979,
5https://orcid.org/0009-0001-1633-6663, 6https://orcid.org/0000-0003-4523-9501

ARTICLE INFO ABSTRACT

Received: 06 Nov 2024

Revised: 24 Dec 2024

Accepted: 05 Jan 2025

The rapid advancement of autonomous driving technologies offers great potential for
improving safety, efficiency, and accessibility in transportation. However, current systems face
challenges such as poor real-time adaptability, limited obstacle detection capabilities, and
difficulty recognizing lane markings, especially in dynamic environments. Additionally, the
high hardware cost and lack of user-friendly interfaces impede the widespread adoption of
these technologies, particularly in resource-constrained regions. Addressing these challenges
requires innovative solutions that are both robust and cost-effective.

Our research introduces an AI-powered system that addresses these issues by providing a

scalable and reasonably priced dynamic navigation solution. The framework integrates state-

of-the-art computer vision techniques for real-time object recognition and lane detection,

utilizing the Arduino and Raspberry Pi platforms. While YOLO (You Only Look Once) allows

for quick and precise object recognition, the Canny algorithm guarantees accurate lane

tracking. Effective obstacle avoidance and traffic signal recognition are made possible by the

hybrid model. The system also has gesture recognition capabilities, which allow for natural user

engagement without the need for physical interfaces. This invention improves adaptability and

usability in a variety of settings and user needs. The system's excellent performance in lane

tracking, object detection, and obstacle avoidance was proven by extensive testing in both

simulated and real-world scenarios. Gesture recognition further enhanced the system's

usability in challenging situations.

Keywords: Autonomous driving, Dynamic navigation, AI-driven framework, Arduino,

Raspberry Pi, The Canny algorithm, YOLO, Gesture recognition, Object detection, Lane

detection, Obstacle avoidance, Real-time adaptability, Computer vision, User-friendly

interfaces, Scalable technology, Cost-effective solutions, Robotics, Autonomous vehicle

technology, Traffic signal detection, Modular systems.

1. Introduction

Autonomous driving technology offers transformative potential for transportation by ensuring safer, more efficient,

and convenient travel. At its core, these systems integrate robotics, computer vision, machine learning, and

artificial intelligence to enable vehicles to perceive and respond to dynamic environments in real time. This project

explores an integrated approach to autonomous navigation, focusing on developing a scalable and cost-effective

system that addresses challenges such as lane detection, obstacle avoidance, and traffic signal recognition.

Accurate navigation is ensured by the system's use of the Canny algorithm for lane detection and the Hough

Transform for trajectory display. Three YOLO-based object identification models are simultaneously operating in

parallel to detect important components such as road signs, traffic lights, and obstructions. The MediaPipe

framework's gesture recognition improves user interaction without requiring physical interfaces by enabling simple

hand gestures for vehicle control.

385

J INFORM SYSTEMS ENG, 10(10s)

The system is constructed using Arduino and Raspberry Pi platforms, allowing for real-time data processing,

wireless communication, and effective control mechanisms. With its Bluetooth-enabled remote control, users can

modify the vehicle's speed, stop it, or alter its route, making the system versatile and suitable for a wide range of

applications. This combination of hardware and software ensures smooth functionality in diverse situations.

The system, which is based on the Arduino and Raspberry Pi platforms, enables wireless connectivity, effective

control mechanisms, and real-time data processing. The technology is flexible and adaptable to a variety of

applications thanks to its Bluetooth-enabled remote command feature, which enables users to change the vehicle's

route, stop it, and regulate its speed. The smooth operation in a variety of settings is ensured by this hardware-

software interaction.

The creation of a scalable and reasonably priced AI-driven framework for dynamic navigation in autonomous cars

using the Raspberry Pi and Arduino platforms is one of the proposed paper's contributions. To provide precise

trajectory preservation in real-time, a novel method combines the Hough Transform for lane viewing with the

Canny edge detection algorithm for accurate lane detection. To improve obstacle avoidance and adherence to traffic

laws, the system concurrently employs three YOLO-based object identification models designed to detect important

components including traffic lights, road signs, and minor obstructions.

Furthermore, without requiring physical interfaces, gesture detection using the MediaPipe architecture enables

simple, intuitive vehicle control. Performance criteria such as detection accuracy, latency, and robustness under

various lighting and environmental circumstances were used to thoroughly assess the framework in both simulated

and real-world scenarios. When compared to traditional techniques, the system also shows notable gains in

processing speed and detection accuracy, making it a reliable and effective option for dynamic navigation.

2. Literature Survey

Autonomous driving systems rely heavily on object detection since it allows cars to recognize and decipher traffic

signals and signs, which are crucial for safe driving. Due to their ease of use and computational effectiveness,

traditional object identification methods—like Haar feature-based cascade classifiers—have gained widespread

acceptance. To detect specified items, such as stop signs and traffic lights, these classifiers work by extracting

particular features from photos and training a series of classifiers. They work especially well in real-time

applications set up in situations with limited resources, like embedded systems in self-driving cars. However, in

complicated scenarios with different lighting conditions, occlusions, or object scales, these classifiers are less

effective because of their limited adaptability and reliance on handmade features, which can result in missed

detections or false positives [5][1].

Modern strategies like YOLO (You Only Look Once) have been devised to circumvent these obstacles. YOLO is a

cutting-edge object detection technique that predicts bounding boxes and class probabilities in a single pass

through a convolutional neural network (CNN), combining speed and accuracy. This cohesive method improves

robustness against changes in lighting, occlusions, and object scales while doing away with the need for intricate

post-processing processes. For autonomous driving systems, where real-time performance is crucial, YOLO is

especially well-suited. Despite its benefits, YOLO is still in its infancy while research is being done to maximize its

implementation on embedded systems with constrained processing power. To fully realize its potential, thorough

assessments of YOLO's performance in a range of driving situations, including urban and rural locations and

different weather conditions, are required [4] [21].

Camera calibration is essential for autonomous systems because it guarantees precise geometric interpretations of

camera-captured pictures. The intrinsic and extrinsic parameters of cameras are frequently estimated using

methods such as chessboard-based calibration, which aid in correcting distortions and enabling accurate depth

measurement in stereo vision systems. Applications like obstacle identification and 3D reconstruction depend on

this procedure. Similar to this, discrepancies brought on by noise, occlusions, or calibration problems are addressed

by depth map tuning, which improves disparity maps derived from stereo vision systems. The quality and

dependability of depth maps are greatly improved by methods including smoothing, outlier rejection, and

refinement algorithms, which allow for more precise depth perception in dynamic situations [1].

For autonomous systems to make decisions in a timely manner, real-time disparity map computing is essential.

High accuracy is maintained while computational overhead is reduced by utilizing optimization strategies like

386

J INFORM SYSTEMS ENG, 10(10s)

hardware acceleration and parallel processing. These developments guarantee that stereo-vision systems can

provide the depth data needed for obstacle identification and navigation in practical situations [1][2].

Monitoring and detecting anomalous motion patterns has been made much easier with the use of accelerometer

and gyroscope data for anomaly identification. While gyroscopes record angular velocity and accelerometers

measure linear acceleration, they offer complimentary information on the speed and orientation of the vehicle.

Anomalies like quick accelerations, sudden direction changes, or unexpected motions can be found by examining

this data. Safety-critical applications such as dynamic system management, activity monitoring, and gesture

recognition are improved by this feature. The development of algorithms that identify abnormalities and improve

motion analysis has been made easier by research datasets that combine gyroscope and accelerometer readings [1].

Lane detection, a fundamental task in autonomous driving, involves isolating lane boundaries on roads to guide

navigation. Preprocessing steps, such as extracting road color ranges and applying inverse perspective mapping

(IPM), are critical for isolating the region of interest. IPM transforms images into a bird’s-eye view, where

geometric distortions are minimized, and parallel lines are preserved. This transformation facilitates more accurate

feature extraction and lane boundary identification. Despite the success of these methods, challenges such as

varying road textures, lighting conditions, and faded lane markings persist. Addressing these challenges requires

algorithms that are robust, adaptable, and capable of generalizing across diverse real-world scenarios [5][6].

Convolutional neural networks (CNNs) and region-based approaches are two examples of object detection

algorithms that are crucial for recognizing cars, pedestrians, and traffic signals. By classifying and localizing objects

via visual data analysis, these methods give autonomous cars the situational awareness they need to drive safely.

Active safety technology, such as cruise control and automated braking, supplement these strategies by reducing

crashes and preserving steady driving speeds. [6] [7].

There are still several research gaps, though. For instance, occlusions and fluctuating lighting make real-time

pedestrian recognition in metropolitan settings extremely difficult. Similar to this, overcoming infrastructure,

financial, and regulatory barriers is necessary to create affordable autonomous systems that can be implemented in

developing nations. To create systems that are dependable, reasonably priced, and uphold strict safety regulations,

creative methods are required [3][9].

Obstacle detection and navigation are greatly enhanced by sophisticated signal processing methods such as

adaptive filtering, sensor fusion, and machine learning-based algorithms. Accurate object detection in dynamic

situations is made possible by machine learning models that can recognize intricate patterns in sensor data, such as

support vector machines and neural networks. The accuracy of autonomous control actions is increased using

adaptive filters, such as Kalman and particle filters, which further improve position and velocity estimates. By

reducing errors related to individual sensors, sensor fusion—which combines data from several sensors—improves

overall system reliability [19].

Datasets play a pivotal role in advancing autonomous driving technologies. Annotated datasets of images, including

traffic signs, lane markings, and obstacles, are critical for training machine learning models. Expanding these

datasets to include diverse environmental conditions and annotations ensures that algorithms can generalize

effectively. By integrating robust datasets and advanced algorithms, researchers can develop autonomous systems

that navigate safely and efficiently in real-world scenarios [5][9].

Through these advancements, the research community continues to address challenges in autonomous driving,

striving for improved performance, adaptability, and reliability. This collective effort paves the way for safer and

more efficient autonomous vehicle technologies capable of transforming global transportation.

3. Proposed Methodology

In this chapter, we have discussed the operational workflow of the proposed autonomous vehicle's perception

system, as illustrated in Figure 1. This system is designed to efficiently handle real-time video processing and

decision-making. It follows a structured sequence of steps to ensure accurate perception, analysis, and navigation

while incorporating robust error-handling mechanisms to maintain reliability in dynamic and complex

environments. The process begins with an initialization phase, during which the environment is set up and all

necessary hardware components—such as cameras, sensors, and processors—are configured. In this phase,

essential machine learning models required for tasks such as object detection, lane detection, and decision-making

387

J INFORM SYSTEMS ENG, 10(10s)

are loaded into the system. This step ensures that the system is prepared to process real-time inputs effectively.

Reason: Improved clarity, readability, and technical accuracy; corrected punctuation and grammar.

The device starts recording a live video stream from the onboard cameras as soon as it has initialized. Since the

video stream is the main source of information for comprehending the vehicle's surroundings, this first stage is

essential. The system will immediately start a retry procedure if it has trouble obtaining the video feed—for

example, because of hardware failures, environmental interferences like bad lighting bad weather, or other

technical problems. This retry process keeps going until the video stream is successfully acquired, guaranteeing that

the system has the visual information it needs to function properly.

The data moves on to the preprocessing phase after a steady video feed has been created. Resizing the video frames

to standard proportions, lowering noise to improve image clarity, and switching data formats to ensure

compatibility with later analytic tools are some of the crucial procedures involved in this phase. These preparation

procedures are essential for enhancing data quality and enabling precise analysis. The system is built to

automatically try the procedure again if any problems occur during this preprocessing step, protecting the data's

dependability and integrity.

Following preprocessing, the system analyses the video feed using a variety of advanced object detection

techniques. These algorithms are essential for recognizing and categorizing different environmental factors.

Important components are identified and grouped, including pedestrians, stop signs, traffic signals, obstructions,

and lane markers. Not only is this information helpful, but it is also necessary for the car to properly understand its

environment. This knowledge enables the car to make well-informed decisions about how to travel, which

eventually increases road safety and efficiency. This thorough procedure highlights the system's capacity to operate

efficiently in demanding and dynamic driving situations.

The vehicle's control unit, which makes decisions, receives the data and objects that have been identified. This unit

uses either pre-established rules or inference models based on machine learning to process the data. Crucial

navigational elements including steering angles, speed changes, and brake actions are decided throughout the

decision-making process.

If the machine learning model detects a possible threat, the system overrides user orders to prioritize safety

decisions made by the model, guaranteeing the car works safely in real-time situations. To preserve dependability,

the system also includes an error-handling mechanism that keeps an eye on operations and tries unsuccessful

procedures again. Furthermore, Google's MediaPipe framework-powered gesture control features are integrated

into the system, enabling natural and easy user interaction with the car. Without using physical controls, users can

give commands like stopping, turning, or reversing by using real-time hand gesture detection.

Specific gestures are mapped to directional commands as follows:

• Front (Move Forward)

• Back (Move Backward)

• Left (Turn Left)

• Right (Turn Right)

While machine learning models improve safety by superseding gestures when needed, gesture-based interaction

offers a user-friendly experience. For instance, to avoid a collision, the model will override a user's motion to

proceed if an impediment is identified. The strong hand-tracking features of MediaPipe guarantee excellent

precision and responsiveness, enhancing the system's usability in a variety of situations. To ensure that the

autonomous car functions safely and effectively in dynamic real-world contexts, this structured workflow places a

strong emphasis on real-time flexibility, fast error management, and gesture-based interface. The system achieves a

high degree of accuracy, resilience, and usability by utilizing cutting-edge technologies like MediaPipe and machine

learning.

As illustrated in Figure 2, the proposed system seamlessly integrates multiple hardware components to achieve

real-time decision-making in autonomous vehicle navigation. The core hardware setup includes a Raspberry Pi for

processing, an Arduino for motor control, a Pi camera for data acquisition, and DC motors for vehicle movement.

Each of these components is optimized for efficiency and reliability. Gesture control functionality is enabled

388

J INFORM SYSTEMS ENG, 10(10s)

through a laptop camera, which captures real-time user commands. These commands are processed using the

MediaPipe framework for gesture recognition, translating them into actionable instructions for the vehicle.

The vehicle-mounted camera simultaneously collects vital environmental information for navigation and object

detection. The technology recognizes traffic lights, lane markers, and obstructions using sophisticated computer

vision techniques like YOLO. As the central processor unit, the Raspberry Pi integrates camera feeds and runs AI

algorithms to perform dynamic decisions like braking, speed control, and steering angle adjustment.

This integrated hardware-software framework ensures adaptability in real time. The car can navigate successfully

through dynamic and uncertain environments because the system continuously updates its decisions based on the

analyzed data. Furthermore, the modular design of the hardware components allows for modification and

scalability, making it suitable for various applications, including resource-constrained areas and urban transit. The

overall architecture emphasizes operational robustness, cost-effectiveness, and user-friendliness.

Figure 1: Architecture of the system

389

J INFORM SYSTEMS ENG, 10(10s)

.

Figure 2: System design

4. Implementation Details

This chapter discusses the implementation details. The project is divided into major 3 implementations traffic light

model, road sign model, and paper ball model:

4.1 Rationale for Gesture Control

Enabling intuitive and natural interaction is a key consideration in the design of autonomous systems. Traditional

input methods, such as buttons or remotes, can be cumbersome and may not align well with the seamless user

experience desired for these advanced technologies. Gesture-based control offers a more intuitive and engaging

alternative, allowing users to interact with the system using familiar hand motions and movements.

The selection of the MediaPipe framework for this project was driven by its well-established reputation in the field

of real-time hand tracking and gesture recognition. MediaPipe is known for its high accuracy and responsiveness,

making it a suitable choice for the demands of controlling an autonomous system. By leveraging this robust

framework, the project can benefit from reliable and efficient gesture recognition capabilities.

4.2 Gesture Recognition Process

The gesture recognition process is central to the overall functionality of the system. This process can be broken

down into the following key steps:

1. Input Capture: The system utilizes the laptop's camera to continuously capture video frames of the user's

hand gestures. This live video feed serves as the primary input for the gesture recognition pipeline.

2. Preprocessing: Before the captured frames can be analyzed for gesture detection, they undergo a

preprocessing stage. This step involves techniques such as noise reduction and image enhancement to

improve the clarity and quality of the input data. By optimizing the input, the subsequent detection and

classification stages can operate more effectively.

3. Detection and Classification: The preprocessed video frames are then fed into the MediaPipe

framework, which is responsible for detecting hand landmarks and classifying the user's gestures into

predefined commands. This could include gestures such as swiping left/right for navigation, raising a hand

for stopping or making a fist for reversing the vehicle.

4. Command Mapping: Once the gestures are recognized, the system maps these detected commands to

the appropriate vehicle controls. This mapping process ensures that the user's gestures translate seamlessly

into the necessary actions for controlling the autonomous system.

5. Communication with Raspberry Pi: The mapped vehicle control commands are then transmitted to

the Raspberry Pi, the onboard computing unit of the autonomous system, via WebSocket communication.

This enables the real-time transmission of user input, allowing the Raspberry Pi to respond accordingly and

execute the desired actions.

390

J INFORM SYSTEMS ENG, 10(10s)

4.3 Object Detection Implementation

For the object detection task, three distinct YOLO models were developed, each tailored to detect specific objects

crucial for autonomous vehicle navigation and control. A well-curated dataset and data augmentation techniques

were employed to enhance the models’ performance across diverse scenarios. The three models are explained in the

following sections:

4.3.1 Traffic Light Model

• Dataset Source: There are 8925 training photos, 487 validation images, and 200 testing images in the

dataset. The AI model may be trained on gesture recognition, object detection, and lane detection tasks

using these photos, which depict a variety of situations and conditions.

• Dataset Information: 8925 photos, or 93% of the total, are used for training, 487 images for validation,

and 200 images, or 2%, for testing. With a focus on different environmental situations, each image is

tagged with the pertinent object or characteristic for the task at hand.

• Data Augmentation: To increase the model's resilience, a number of augmentation strategies were used.

Bounding box rotation between -15° and +15°, blurring up to 2.5px, cropping with a minimum zoom of 0%

and a maximum zoom of 33%, and horizontal flipping are some of these. In order to replicate real-world

distortions, bounding boxes were also sheared ±10° both horizontally and vertically.

• Training Process: To ensure consistent input dimensions, the dataset was preprocessed with automated

orientation correction and scaled to 640x640 pixels. The preprocessing and augmentation procedures were

carried out to guarantee a robust and varied dataset, enhancing the model's ability to generalize across

various real-world situations.

4.3.2 Road Sign Model:

• Dataset Source: A dataset with road sign images, including various road signs, was acquired from

Roboflow, where the dataset was pre-trained by an external model.

• Dataset Information: The dataset consists of 6060 images for training (89%), 469 images for validation

(7%), and 294 images for testing (4%).

• Augmentation Strategy: The dataset was augmented with transformations such as rotation between -

19° and +19°, saturation adjustments between -31% and +31%, and blurring up to 5.4px. Additionally,

bounding box rotations between -15° and +15° and exposure adjustments between -26% and +26% were

applied to enhance model robustness.

• Training Process: The pre-trained model from Roboflow was used to detect and classify road signs,

ensuring its performance in a variety of challenging conditions such as lighting changes, rotation, and

partial occlusion.

4.3.3 Paper Ball Model:

• Dataset Source: The dataset consists of 783 images for training, 610 images for validation, and 30

images for testing. These images represent diverse scenarios suitable for training AI models in object

detection tasks.

• Dataset Information: 55% of the dataset (783 photos) is used for training, 43% is used for validation

(610 images), and 2% is used for testing (30 images). The work at hand is supported by annotations on the

photographs.

• Data Augmentation: The original image quality and structure for model training were preserved in this

dataset without applying any augmentations.

• Training Process: To ensure consistent input dimensions, the dataset was preprocessed by scaling the

photos to 640x640 pixels and applying an auto-orientation correction.

4.4 Algorithm Selection and Process

The YOLO algorithm was selected for the object detection task due to its ability to strike a balance between speed

and accuracy, a critical requirement for autonomous navigation systems. YOLO's unique architecture enables real-

time object detection by simultaneously predicting multiple bounding boxes and class labels, making it well-suited

for the demands of the project. The following approach is used for object detection:

391

J INFORM SYSTEMS ENG, 10(10s)

1. Input Capture: The car-mounted camera continuously captures frames of the vehicle's environment,

providing the necessary visual input for the object detection models.

2. Preprocessing: The captured frames are preprocessed to ensure compatibility with the YOLO models'

input requirements. This typically involves resizing the images and applying normalization techniques.

3. Object Detection: The YOLO models process the preprocessed frames, detecting the relevant objects

(traffic lights, road signs, or paper balls) and generating bounding boxes and class probabilities for each

detected item.

4. Command Generation: Based on the object detection results, the Raspberry Pi, the onboard computing

unit, sends appropriate navigation commands to the Arduino, which controls the vehicle's motors. These

commands facilitate the necessary movements, such as stopping, turning, or advancing, to navigate the

environment safely.

5. Research Methodology

The system's ability to detect objects and recognize gestures in simulated environments has been successfully

verified. Full integration with lane identification and hardware testing in real-world circumstances is still a goal,

though. Tests of the system in various traffic, weather, and illumination scenarios will be the main focus of future

assessments. The system's overall performance, scalability, and resilience will all be evaluated by these tests.

5.1 Algorithmic Approach for Implementation

5.1.1 Canny Algorithm for Lane Detection

● Image Acquisition: Capture real-time video frames from the camera.

● Preprocessing: Convert the captured image to grayscale and apply Gaussian blur to reduce noise.

● Edge Detection: Use the Canny algorithm to detect edges in the blurred image, emphasizing the

identification of lane markings.

● Region of Interest (ROI): Define a polygonal region to focus on areas where lane markings are

expected.

● Line Detection: Apply the Hough Transform to detect lines within the masked edges, identifying

potential lane boundaries.

● Lane Visualization: Draw the detected lines on the original frame to visualize the lane boundaries for

navigation using the following distance formula:

𝐇𝐢𝐣 = (
𝟏

𝟐𝛑𝛔𝟐
) 𝐞𝐱 𝐩(−𝟐𝛔𝟐(𝐢 − (𝐤 + 𝟏))𝟐 + (𝐣 − (𝐤 + 𝟏))𝟐) ; 𝟏 ≤ 𝐢, 𝐣 ≤ (𝟐𝐤 + 𝟏)

Kernel Generation:

• Using the formula, a Gaussian kernel was created, where 𝑯𝒊𝒋 Represents the weight at position (i,j).

• The normalization constant(
𝟏

𝟐𝛑𝛔𝟐) Ensured the sum of all kernel values equaled 1, preserving the overall

brightness of the image.

Variance (𝛔𝟐) Adjustment:

• The variance controlled the spread of the kernel. A higher σ resulted in a smoother, more spread-out filter,

ideal for reducing high-frequency noise while preserving lane markings.

Distance Calculation:

• The terms(𝐢 − (𝐤 + 𝟏))and (𝐣 − (𝐤 + 𝟏)) Measured the distance of each kernel position from its center.

These distances determined the weight of each pixel during convolution, with closer pixels contributing

more.

392

J INFORM SYSTEMS ENG, 10(10s)

Image Smoothing:

• The generated Gaussian kernel was applied to the image via convolution, effectively reducing noise and

smoothing the image. This preprocessing step minimized irrelevant details such as shadows and road

textures.

• The Canny edge detection system, which depends on distinct road edges for precise lane detection,

presented us with several difficulties during implementation. The algorithm's performance was impacted

by our little vehicle and our inability to accurately replicate real-world situations. Furthermore, real-time

processing was not feasible for our arrangement due to its computing intensity.

• To provide a more practical real-time solution, we then turned our attention to Plan B and implemented a

gesture control system for easy interaction with the car. Lane identification holds promise for autonomous

navigation, but it necessitates more sophisticated methods and adjustments to the surrounding

environment. Therefore, we decided to give gesture-based control top priority as a crucial first step in

creating an automated car system.

5.1.2 YOLO Algorithm for Object Detection

● Model Preparation: Load a pre-trained YOLO model suitable for detecting objects relevant to driving

scenarios.

● Image Preprocessing: Preprocess each frame by resizing and normalizing it to match YOLO’s input

requirements.

● Object Detection: Run inference on the preprocessed frame to detect objects and output bounding boxes

and class probabilities.

● Bounding Box Drawing: Filter detections based on confidence scores and draw bounding boxes around

detected objects.

5.1.3 MediaPipe Gesture Recognition

● Initialize MediaPipe: Set up MediaPipe's hand-tracking module to recognize gestures that control

vehicle functions as shown in Figure 4.

● Process Video Feed: Capture frames from the camera and process them through MediaPipe to detect

hand landmarks.

● Gesture Recognition Logic: Define specific gestures corresponding to vehicle commands (e.g., stop

gesture or turn signal) and implement logic to interpret these gestures based on landmark positions

Quantitive Steps in Gesture Recognition:

● Euclidean distance: 𝑑𝑖𝑗 = √((𝑥𝑖 − 𝑥𝑗)^2) + (𝑦𝑖 − 𝑦𝑗)^2 + (𝑧𝑖 − 𝑧𝑗)^2

Usage: Calculated the 3D distance between key landmarks of the hand to identify the relative positioning

of fingers and palms. This step was crucial for distinguishing gestures like "stop" or "turn".

● Joint angles: 𝑐𝑜𝑠𝜃 = (𝑢 ⋅ 𝑣)/(∥ 𝑢 ∥∥ 𝑣 ∥)

Usage: Determined angles between vectors formed by hand landmarks to understand the orientation of

fingers and hand posture. For example, identifying a fist required specific angle thresholds.

● Feature vector classification:𝑃(𝐺𝑒𝑠𝑡𝑢𝑟𝑒𝑘)exp = 𝑤𝑘 ⋅ 𝐹 (
(𝑤𝑗⋅𝐹)

 𝑗exp ∑(𝑤𝑗⋅𝐹)
)

Usage: Classified gestures using a softmax function over a weighted feature vector FFF. Each gesture was

assigned a probability, and the gesture with the highest P(Gesturek) was mapped to a vehicle command.

• Hand Tracking: MediaPipe's hand tracking detected landmarks in real-time.

• Gesture Recognition Logic: The above mathematical steps were implemented to define gestures like

stopping the vehicle, signaling turns, or reversing.

393

J INFORM SYSTEMS ENG, 10(10s)

Figure 4: Finger Gesture Stop

6. Hardware Integration and Design

6.1 Raspberry Pi

As seen in Figure 5, the Raspberry Pi is a flexible and reasonably priced single-board computer that is essential to

the autonomous car system. It is appropriate for both local and remote communication since it supports a wide

range of operating systems, including Raspbian, and provides several connectivity choices, such as USB, HDMI,

and Wi-Fi. The Raspberry Pi's GPIO pins allow it to interface with other hardware elements, such as sensors,

motors, and cameras, to process and control data in real-time.

6.2 DRV8833 Motor Driver

The DRV8833 motor driver is used to control DC motors efficiently, providing bidirectional motor control through

Pulse Width Modulation (PWM) signals shown using Figure 6. This motor driver is designed to handle low to

moderate-power applications, making it suitable for robotics where precise motor control is crucial. Its small size

and low power dissipation ensure that it doesn't overheat during extended use, providing reliable performance.

6.3 DC Motor with Encoder

The DC motor with encoder, which provides precise feedback on the motor's speed, position, and direction as

shown in Figure 7, is crucial for guaranteeing precise control over the vehicle's movements. Real-time changes are

made possible by the encoder, which measures the motor's rotational movement and sends the data back to the

control system. This makes it possible to precisely regulate the vehicle's speed and location, which is crucial for

autonomous systems that need to avoid obstacles and navigate with precision.

6.4 Webcam

The webcam is a vital component in the autonomous vehicle system, responsible for capturing high-quality images

and real-time video streams to facilitate critical functionalities like object detection, lane recognition, and obstacle

monitoring with features like Real-Time Image Capture.

• Real-Time Image Capture

• Integration with Raspberry Pi

• Compact Design:

6.5 Arduino

As the system's microcontroller, Arduino controls several sensors, actuators, and motor drivers to make the car

work. Real-time sensor data and simple input/output operations are ideal for Arduino, which is well-known for its

adaptability and simplicity. Arduino is a great option for robotic application prototypes and testing due to its

extensive use and interoperability with a wide range of sensors. Figure 10 displays the entire hardware

configuration.

394

J INFORM SYSTEMS ENG, 10(10s)

 Figure 5: Raspberry Pi [23] Figure 6: DRV8833 Motor Driver [23] Figure 7: DC Motor with Encoder[23]

Figure 8: Webcam

Figure 9: Arduino [23]

Figure 10: Pi camera with Arduino

setup
7. Results and Analysis

The proposed AI-driven autonomous navigation system was evaluated extensively in simulations and real-world

conditions, focusing on gesture recognition, object detection, and lane detection. The results demonstrate

significant advancements in detection accuracy, system robustness, and real-time performance.

7.1 Gesture Recognition

Under controlled lighting conditions, the system's MediaPipe-powered gesture detection module showed

remarkable accuracy. Over 90% of specified motions, including stop, start, and directional commands, could be

recognized by the system. MediaPipe's sophisticated tracking features made it possible to precisely identify hand

movements in real-time, resulting in this high accuracy.

Apart from having a high accuracy, the system had a low latency of about 150 milliseconds when processing

gestures. Because of the rapid and responsive interaction made possible by this low latency, the system is now more

effective and user-friendly. Significant gains in usability can be made when commands can be issued using a simple

hand gesture instead of physical interfaces, especially in situations where conventional controls are unwieldy or

unsuitable.

However, when motions were erratic or there was little light, the system's performance was somewhat limited. The

accuracy decreased to about 85% in low light, demonstrating how the framework depends on ideal environmental

factors for gesture detection. This difficulty emphasizes the necessity for additional system optimization to increase

the system's resilience in a greater variety of real-world situations, such as changing light levels and gesture

changes.

7.2 Object Detection

Three YOLO-based models were used to detect traffic lights, stop signs, and small obstacles. The results across

different scenarios are summarized in the following Table 1.

395

J INFORM SYSTEMS ENG, 10(10s)

Table1: Object detection observations

Object

Detection Task

Metric Performance Challenges

Traffic Lights

Detection

Map: 100%,

Precision: 99.2%,

Recall: 100%

Reliable

differentiation of

red, yellow, and

green signals

None observed

Stop Signs

Detection

Accuracy: 98% High reliability

under varying

conditions

Performance drops

with

occluded/damaged

signs

Small Obstacles

Detection

Map: 79.90%,

Precision: 84.10%,

Recall: 73.10%

This method

excels at detecting

small objects like

paper balls, but

its effectiveness

can be hindered

by occlusion and

complex

backgrounds.

Affected by

obstruction and

intricate backgrounds.

7.3 Training Metrics

Evaluation matrics for Paper Ball Detection and Traffic Light Detection is shown figure 11 and 12 respectively.

 Figure 11. Roboflow Training Metrics for Paper Ball Detection

396

J INFORM SYSTEMS ENG, 10(10s)

 Figure 12. Roboflow Training Metrics for Traffic Light Detection

7.4 Lane Detection

The Canny edge detection algorithm, combined with the Hough Transform, was attempted for lane identification

but ultimately not implemented. While the system showed promising performance under optimal conditions, it

struggled with various challenges in real-world environments, including faded lane markings, shadows, and uneven

lighting.

7.5 Comparative Performance

The proposed system was benchmarked against traditional methods, showing improvements in both accuracy and

processing speed as discussed in Table 2.

Table 2: Comparative study over traditional methods

Comparison

Metric

Proposed

System

Traditional

Methods

Improvement

Detection Accuracy 10-15% higher Lower due to

outdated techniques

Increased robustness

Processing Speed 20% faster Slower due to

computational

overhead

Enhanced efficiency

Adaptability in

Dynamic Scenarios

High Limited Improved real-time

decision-making

Major Observations from the above analysis are:

• The gesture recognition system shows great promise for intuitive interaction but requires enhancements for

low-light environments.

• Object detection achieved high accuracy for traffic lights and stop signs, but small obstacle detection needs

further refinement to handle occlusions.

From the above observations, we have proposed major recommendations as part of our future implementation:

● Real-Time Optimization: Use parallel processing or upgraded hardware to further reduce latency.

● Enhanced Object Detection: Incorporate multi-modal sensors (e.g., LiDAR) for improved obstacle

detection.

397

J INFORM SYSTEMS ENG, 10(10s)

7.6 Applications of the proposed system

The proposed AI-driven framework for autonomous vehicle navigation has the potential for broad applications in

diverse domains, addressing specific challenges and offering innovative solutions:

• Urban Transportation:

By using real-time lane detection and obstacle avoidance, technology facilitates effective navigation in

heavily crowded urban areas. This improves traffic flow management and lowers the possibility of accidents

brought on by human mistakes.

• Logistics and supply chain

The automation of delivery processes is a critical application of the framework, particularly in smart cities.

For example, autonomous parcel delivery robots or trucks could be deployed for last-mile delivery in urban

and suburban settings.

• Public transport

The framework is appropriate for autonomous public transportation systems, such as buses and shuttle

services, due to its gesture-based control and intuitive user interfaces.

• Resource-Constrained Regions

The framework's affordable hardware components, such as Raspberry Pi and Arduino, make it a viable

option for deploying autonomous navigation in underdeveloped nations and areas with inadequate

infrastructure. These devices can make transportation safer and more dependable in impoverished areas by

enhancing mobility in places with unmarked roads or irregular lane lines.

• Agriculture:

The system can be adapted for use in autonomous tractors, harvesters, and other farming equipment.

• Search and rescue operations

In disaster response situations like earthquake-affected areas, floods, or wildfires, where human

intervention poses a risk, the framework can be quite helpful.

• Defense:

Unmanned vehicle operations for transport, observation, and reconnaissance in difficult terrains can

improve the system in defense applications. Autonomous vehicles can carry out activities like border

surveillance, logistics assistance, and patrolling in difficult settings without endangering human lives. An

unmanned ground vehicle (UGV) with this structure, for instance, may effectively conduct surveillance

missions, avoid obstacles, and traverse tough terrain.

8. Conclusion

The goal of our project was to develop and deploy an AI-powered autonomous vehicle system with dynamic

navigation. We created a complete solution for smooth communication, precise lane detection, and efficient

obstacle avoidance by combining mobile/web applications, Arduino/Raspberry Pi-based control systems, and

cutting-edge computer vision techniques like the Canny algorithm and YOLO. The system's capacity for high-level

automation is demonstrated by the successful integration of modal control, sophisticated object identification, and

precise lane detection, opening the door to safer and more effective navigation in real-world settings.

Promising outcomes were displayed by the dynamic navigation system, indicating its potential for real-world uses

in autonomous driving technology. Through the use of artificial intelligence (AI) algorithms and computer vision

techniques, the system was able to observe and react to dynamic settings in real-time, allowing the autonomous

automobile to avoid obstacles, recognize traffic lights, navigate defined paths, and wirelessly reply to commands.

The autonomous driving system operated smoothly and dependably because of the resilience of the established

algorithms and the fluid connection between hardware components and software interfaces.

Future Directions for Enhancement:

While our project represents a significant milestone in the development of autonomous car systems for dynamic

navigation, there are several avenues for further improvement and refinement:

398

J INFORM SYSTEMS ENG, 10(10s)

1. Implementation Goals: Future work will focus on integrating the Canny algorithm for lane detection

into the hardware system and validating it in real-world environments.

We will have the leverage to move toward complete autonomy by implementing this improvement. The

ability to move between locations while continuously detecting and making decisions will remove the need

for human assistance. This will be accomplished by putting in place an automated path-following system

that, in response to real-time detection, dynamically modifies the vehicle's trajectory, opening the door to a

more reliable and completely autonomous system.

2. Advanced Object Detection: Investigate sophisticated object recognition models and techniques to

improve the system's capacity to precisely identify and categorize a greater variety of obstructions. For

better perception, this can entail utilizing more sensor modalities and cutting-edge deep learning systems.

3. Real-Time Performance: To attain real-time performance, especially in computationally demanding

activities like object identification and path planning, optimize the system's hardware and algorithms. To

lower latency and increase responsiveness, this may entail parallel processing strategies, algorithmic

tweaks, and hardware upgrades.

4. Human-Car Interaction: To improve the usability and user experience of interfaces for autonomous

driving, more studies should be done on human-car interaction paradigms. This entails investigating

augmented reality for immersive navigation data visualization, gesture recognition for user-friendly

controls, and natural language processing for voice commands.

5. Scalability and Deployment: When designing the system, take into account aspects like regulatory

compliance, compatibility with current infrastructure, and scalability to support upcoming expansions and

upgrades. Work together with stakeholders and industry partners to investigate commercialization and

deployment options in a range of applications, including smart cities, logistics, and transportation.

In conclusion, our project represents a significant step forward in the development of autonomous car systems for

dynamic navigation. By leveraging AI algorithms, computer vision techniques, and interdisciplinary collaboration,

we have demonstrated the feasibility and potential of creating intelligent navigation systems capable of navigating

dynamic environments with precision and efficiency. Moving forward, continued research and innovation in this

field hold the promise of revolutionizing transportation, improving road safety, and enhancing the overall quality of

life for individuals worldwide.

 Conflict of Interest: There is no conflict of Interest.

REFERENCES

[1] Mohammad S. Mohammed, Ali M. Abduljabar, Mustafa M. Faisal, Basheera M. Mahmmod, Sadiq H.

Abdulhussain, Wasiq Khan, Panos Liatsis, Abir Hussain, Low-cost autonomous car level 2: Design and

implementation for conventional vehicles, Results in Engineering, Volume 17, 2023, 100969, ISSN 2590-

1230, https://doi.org/10.1016/j.rineng.2023.100969

[2] Mahmoud Fathya, Nada Ashraf, Omar Ismaila, Sarah Fouada, Lobna Shaheena, Alaa Hamdya, Design and

implementation of self-driving car, The 17th International Conference on Mobile Systems and Pervasive

Computing (MobiSPC), August 9-12, 2020, Leuven, Belgium.

[3] Wang, Zx., Wang, W. The research on edge detection algorithm of lane. J Image Video Proc. 2018, 98 (2018).

https://doi.org/10.1186/s13640-018-0326-2.

[4] Henil Gajjar a, Stavan Sanyal b, Manan Shah, A comprehensive study on lane detecting autonomous car using

computer vision, Expert Systems with Applications, Volume 233, 15 December 2023, 120929.

[5] Chetan S More1, Suanuska Debbarma2, Nidhi Kandpal3, Vibhuti Singh, Open CV Python Autonomous Car.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056, Volume: 06

Issue: 01 | Jan 2019.

[6] Gurjashan Singh Pannu, Mohammad Dawud Ansari, Pritha Gupta . Design and Implementation of

Autonomous Car using Raspberry Pi. International Journal of Computer Applications. 113, 9 (March 2015),

22-29. DOI=10.5120/19854-1789.

[7] Divya Garikapati, Sneha Sudhir Shetiya, Autonomous Vehicles: Evolution of Artificial Intelligence and the

Current Industry Landscape, Big Data and Cognitive Computing (BDCC)2024.

399

J INFORM SYSTEMS ENG, 10(10s)

[8] Bordoloi, U.; Chakraborty, S.; Jochim, M.; Joshi, P.; Raghuraman, A.; Ramesh, S. Autonomy-driven

Emerging Directions in Software-defined Vehicles. In Proceedings of the 2023 Design, Automation & Test in

Europe Conference & Exhibition, Antwerp, Belgium, 17–19 April 2023; pp. 1–6.

[9] Liu, Z.; Zhang, W.; Zhao, F. Impact, challenges and the prospect of software-defined vehicles. Automot.

Innov. 2022, 5, 180–194.

[10] Deng, Z.; Yang, K.; Shen, W.; Shi, Y., Cooperative Platoon Formation of Connected and Autonomous

Vehicles: Toward Efficient Merging Coordination at Unsignalized Intersections. IEEE Trans. Intell. Transp.

Syst. 2023, 24, 5625–5639.

[11] Nadikattu, R.R., New ways in artificial intelligence. Int. J. Comput. Trends Technol. 2019, 67.

[12] SAE Industry Technologies Consortia’s Automated Vehicle Safety Consortium AVSC Best Practice for

Describing an Operational Design Domain: Conceptual Framework and Lexicon, AVSC00002202004,

Revised April 2020.

[13] Khastgir, S., Khastgir, S., Vreeswijk, J., Shladover, S., Kulmala, R., Alkim, T.; Wijbenga, A., Maerivoet, S.,

Kotilainen, I., Kawashima, K., et al. Distributed ODD Awareness for Connected and Automated Driving.

Transp. Res. Procedia 2023, 72, 3118–3125.

[14] Tanya Garg, Gurjinder Kaur, and Ravinder Goyal, Artificial Intelligence-Empowered Modern Electric Vehicles

in Smart Grid Systems. Year: 2024, Page 59.

[15] Xiaoliang Zhu and Subrata Kumar Kundu, Road Anomaly Detection and Localization for Connected Vehicle

Applications SAE Technical Paper Series, Year: 2023, Volume1.

[16] Book: AI-enabled Technologies for Autonomous and Connected Vehicles .2023 ISBN: 978-3-031-06779-2.

[17] Trevor Vidano and Francis Assadian, Control Performance Requirements for Automated Driving Systems,

Electronics, 2024, Volume 13, Number 5, Page 902.

[18] Shaojiang Liu, Zhiming Xu, Feng Wang, and Zemin Qiu, A 3D object detection strategy based on YOLOv8

combined with CaDDN for vehicle images, 2023 International Conference on Image Processing, Computer

Vision and Machine Learning (ICICML), Year: 2023, Page 566.

[19] Anas Charroud, Karim El Moutaouakil, Vasile Palade, Ali Yahyaouy, Uche Onyekpe and Eyo U. Eyo,

Localization and Mapping for Self-Driving Vehicles: A Survey. Journal: Machines, 2024, Volume 12, Number

2, Page 118.

[20] Shambhavi Lalsinge, Yash Mali, Akshit Mahale, Mrunmayee Kulkarni, Omkar Kurade, Pramod Patil,

Autonomous Car using Arduino International Research Journal of Engineering and Technology (IRJET)

volume 9 issue 1 2022.

[21] Explainable Artificial Intelligence for Autonomous Driving: A Comprehensive Overview and Field Guide for

Future Research Directions. Shahin Atakishiyev; Mohammad Salameh; Hengshuai Yao; Randy Goebel, IEEE

Year: 2024 | Volume: 12.

[22] Chaitali Chandankhede, Duragkar, A., Guhe, S., Sortee, A., Singh, S., (2022). Comparison Between YOLOv5

and SSD for Pavement Crack Detection. In ICT Infrastructure and Computing: Proceedings of ICT4SD

2022 (pp. 257-263). Singapore: Springer Nature Singapore.

[23] Comparative study of Arduino Types and Raspberry Pi with Programming Languages |January 2023 |Journal

La Multiapp 3(5) ,Shajan Alsowaidi ,Mohanad Ali Meteab Al-Obaidi .

https://ieeexplore.ieee.org/document/10604830/
https://ieeexplore.ieee.org/document/10604830/
https://ieeexplore.ieee.org/document/10604830/
https://ieeexplore.ieee.org/document/10604830/
https://ieeexplore.ieee.org/author/398320897334214
https://ieeexplore.ieee.org/author/398320897334214
https://ieeexplore.ieee.org/author/37088313638
https://ieeexplore.ieee.org/author/37088506199
https://ieeexplore.ieee.org/author/37267398700
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=10380310
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=10380310

