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The rapid expansion of IoT, mobile, cloud, and edge computing infrastructures has 

increased the demand for lightweight encryption mechanisms capable of securing 

large-scale textual communication without imposing high latency or computational 

overhead. Traditional full-encryption schemes such as AES and RSA, although robust, 

remain unsuitable for resource-constrained environments. Selective Encryption (SE) 

offers a partial alternative by transforming only critical portions of data; however, 

existing SE approaches rely on heuristic or deterministic rules, limiting their ability to 

adapt to diverse linguistic patterns. This paper introduces ML-DSEA, a 

Machine-Learning-Driven Dynamic Selective Encryption Algorithm that integrates 

Support Vector Machine (SVM) prediction with the deterministic rules of the original 

DSEA model. ML-DSEA extracts seven structural and linguistic features—TAC, TVC, 

OWcount, TVCOW, entropy, average word length, and stop-word ratio—to estimate the 

optimal encryption percentage. Experimental results on a heterogeneous dataset of 

12,000 samples demonstrate that SVM achieves the highest accuracy (96.2%), lowest 

encryption time (128.4 ms), and highest throughput (22.6 KB/s). ML-DSEA improves 

security against frequency, semantic, and known-plaintext attacks while reducing 

overhead by 28% compared to DSEA. These results confirm ML-DSEA as a lightweight 

and adaptive encryption framework suitable for IoT, MANET, cloud, and edge devices. 

Keywords: Selective Encryption, Lightweight Cryptography, ML-DSEA, SVM, IoT 

Security, Edge Computing, Adaptive Security. 

 

1. INTRODUCTION 

Emerging digital communication systems, including IoT sensor networks, MANET infrastructures, and cloud-edge 

architectures, require cryptographic methods that balance computational efficiency with data confidentiality. 

Standard encryption algorithms such as AES and RSA, though highly secure, incur substantial computational cost, 

making them unsuitable for low-power, high-latency-sensitive environments. 

Selective Encryption (SE) aims to reduce this cost by encrypting only essential components of textual or multimedia 

data. Early SE approaches relied on fixed or probabilistic rules, which fail to generalize across diverse linguistic 

structures. The Dynamic Selective Encryption Algorithm (DSEA) introduced linguistic parameters for adaptiveness 

but still relied entirely on deterministic thresholds.Recent advancements in machine learning—specifically Support 

Vector Machines (SVM), Random Forests, and deep learning models—have demonstrated strong potential in 

cryptographic parameter optimization. Motivated by these trends, we propose ML-DSEA, an intelligent 

selective-encryption model that combines machine-learning-based prediction with a deterministic security-override 

rule. ML-DSEA significantly enhances the adaptiveness, efficiency, and confidentiality of SE systems. 

 

 



Journal of Information Systems Engineering and Management 
2025, 10(63s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 

 1296 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

2. RESEARCH GAP AND MOTIVATION  

A systematic analysis of the literature highlights the following gaps: 

• Lack of adaptiveness: Existing SE models use static or heuristic rules that do not generalize across 

heterogeneous text patterns. 

• DSEA limitations: While DSEA uses linguistic features, it applies a deterministic rule that fails on 

semantically diverse messages. 

• No ML-augmented DSEA in literature: No prior work integrates machine learning with DSEAʼs 

linguistic framework for text-based SE. 

• Limited feature exploration: Prior SE research largely ignores entropy-based and structural linguistic 

features. 

• Insufficient security evaluation: Existing SE methods rarely incorporate semantic-attack modelling. 

Based on these gaps, the following research questions (RQs) are proposed: 

RQ1: Can machine-learning models predict optimal encryption percentage more accurately than deterministic 

DSEA rules? 

RQ2: Can ML-DSEA achieve a superior security-efficiency trade-off compared to full encryption and original 

DSEA? 

RQ3: Which linguistic features most influence encryption-percentage prediction? 

3. MAJOR CONTRIBUTIONS  

This study offers the following contributions: 

1. ML-DSEA Framework: A novel hybrid SE system combining ML prediction and DSEAʼs deterministic 

override rule. 

2. Feature Engineering Pipeline: Extraction of seven linguistic and statistical features for sensitivity 

modelling. 

3. Comprehensive ML Benchmarking: Evaluation of SVM, RF, DT, KNN, and LR classifiers. 

4. Hybrid Decision Logic: A security-driven override (TVCOW ≥ TAC → EP=100%). 

5. Security Evaluation: Resistance analysis under COA, KPA, and semantic reconstruction attacks. 

6. Dataset Contribution: A heterogeneous, publicly reusable 12,000-sample dataset. 

7. Performance Improvements: ML-DSEA reduces encryption time by 28% while improving 

semantic-leakage resistance by 57%. 

4. RELATED WORK  

SE has evolved in various ways across different domains, such as IoT, wireless ad hoc networks, cloud systems, and 

multimedia security. Kushwaha's [1] pioneering work on SE over text transmission in the MANET environment had 

showcased an improved efficiency in communication. Ren et al. [2] analyzed the performance of SE over wireless 

networks and demonstrated significant reductions in computational load as opposed to full encryption-based 

strategies. 

The later approaches like Toss-a-Coin and Probabilistic SE [3] utilized hybrid deterministic–probabilistic selection 

rules to balance performance with security. Still, most of these techniques remained largely heuristic and failed to 

integrate deeper semantic or linguistic insights into their encryption process. 

DSEA, by Meshram and Prasad [4], [5], significantly improved adaptability by computing the encryption percentage 

based on text parameters such as vowel count and omitted-word count. However, this also uses deterministic rules 

which fail to generalize effectively across diverse message types.  
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The survey presented in [4] further highlights that most selective encryption techniques rely on static heuristics and 

lack learning-driven adaptability. While DSEA [5] improves linguistic awareness, its fixed threshold-based decision 

logic limits robustness under heterogeneous and semantically diverse text distributions. 

Parallel research in multimedia SE integrated the use of content-aware and saliency-based techniques to adapt 

encryption based on semantic importance [11], hence underlining the potential of feature-driven adaptive security 

mechanisms. Similar trends emerged for ML-driven encryption techniques. Kirupa Shankar [6] and Kumar [7] 

developed ML-based secure encryption frameworks for cloud and medical applications. Premakumari [8] introduced 

reinforcement learning for adaptive encryption in IoT networks. Shivsharan [9] used SVM to predict optimal 

encryption levels for multimedia and reported a better performance than those from decision trees and logistic 

regression. 

Recent surveys confirm the ever-increasing interest in ML-aided lightweight cryptography. Zhang and Wu [10] 

underlined the ability of ML to optimize the encryption parameters in IoT systems, while Dritsas [12] explored the 

applications of ML in ICT security. Villar-Rodriguez et al. [13] presented ML-enhanced edge-security frameworks, 

while Banerjee and Chen [22] have proposed deep-learning content-importance models for SE. 

Early SE techniques introduced partial encryption but lacked adaptiveness: full SE, Toss-a-Coin, and Probabilistic 

SE. DSEA partially solved this by incorporating linguistic features. It fell short because of the use of static rules. 

Machine-learning-driven encryption methods, including SVM-based encryption prediction, RL-based adaptive 

cryptography, and deep-learning-driven content awareness, show promise for dynamic security control. 

However, no prior work integrates ML with DSEA, nor uses a linguistic feature set for encryption decision-making. 

This gap is filled by ML-DSEA. 

 

5. ORIGINAL DSEA FRAMEWORK  

DSEA dynamically calculates encryption percentage using TAC, TVC, and OWcount. A critical rule is applied: 

If TVCOW ≥ TAC, the message is fully encrypted. 

This rule is motivated by linguistic sensitivity: high vowel density + omitted-word count correlates with low entropy 

and high predictability. Such messages must be fully encrypted to mitigate frequency-analysis attacks. 

Algorithm 1: Message Encryption Algorithm 

Step I: Message Input 

MES ∈ Σ* 

Step II: Evaluation Functions 

TAC = {c ∈ MES | c ∉ OW} 

TVC = {v ∈ MES | v ∈ Vowels ∧ v ∉ OW} 

OW = {w ∈ MES | w ∈ Omitted Words} 

TVCOW = TVC + |OW| 

Step III: Encryption Condition 

∀ TVCOW ≥ TAC : EP = 100% 

Step IV: Encryption Percentage Calculation 

𝐸𝑃 = {

𝑇𝑉𝐶𝑂𝑊

𝑇𝐴𝐶
 𝑋 100 , 𝑖𝑓   𝑇𝑉𝐶𝑂𝑊 < 𝑇𝐴𝐶

100, 𝑖𝑓   𝑇𝑉𝐶𝑂𝑊 ≥ 𝑇𝐴𝐶
 

Step V: Encryption Decision  

∀ i ∈ {1, …, n} : 
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     if MES(i) ∉ OW then 

        Encrypt(MES(i)) 

    else 

        Transmit(MES(i)) without encryption 

end if 

6. PROPOSED ML-DSEA FRAMEWORK 

ML-DSEA integrates SVM-based prediction with DSEA’s deterministic rule to create an adaptive encryption 

pipeline. 

6.1 System Architecture Overview 

The ML-DSEA framework integrates a machine learning decision model with the core principles of Dynamic Selective 

Encryption. The architecture consists of the following sequential modules: 

1. Input Processing Module – Accepts raw textual data in various forms (IoT logs, emails, social media text, 

formal documents). 

2. Text Normalization Unit – Performs lowercasing, punctuation removal, tokenization, stop-word 

filtering, and stemming/lemmatization depending on dataset characteristics. 

3. Feature Engineering Block – Extracts seven linguistic and statistical features required for ML prediction. 

4. Machine Learning Decision Engine – Predicts optimal encryption percentage using one of five selected 

classifiers. 

5. Deterministic DSEA Rule Enforcement – Overrides ML predictions when the TAC–TVC–OW 

relationship implies high sensitivity. 

6. Adaptive Encryption Module – Applies word-level partial encryption according to predicted EP. 

7. Output Synthesis Unit – Reconstructs encrypted text for final transmission. 

6.2 Modified Machine Learning–Based DSEA (ML-DSEA) 

ML-DSEA combines classification models with DSEA for the prediction of EP using linguistic features. The model 

selection stage considers a number of ML models, namely SVM, Decision Tree, Random Forest, KNN, and Logistic 

Regression, following state-of-the-art ML-driven encryption research works [6], [7], [9], [10], [22]. 

A. System Workflow Description  

The ML-DSEA workflow consists of four stages: 

Feature extraction 

Input text samples are preprocessed and transformed into a structured feature vector comprising TAC, TVC, 

OWcount, TVCOW, entropy, average word length, and stop-word ratio. These features quantitatively characterize 

lexical richness, structural complexity, and redundancy in the text, providing a compact representation suitable for 

machine learning. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑  𝑝𝑖 log2 𝑝𝑖

𝑛

𝑖=1

 

Model prediction 

The extracted feature vector is supplied to a supervised machine learning classifier, specifically a Support Vector 

Machine (SVM), trained to estimate the required encryption intensity. The SVM outputs a predicted encryption 

percentage that reflects the optimal level of partial encryption for the given text segment. 
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Adaptive encryption 

Using the predicted encryption percentage, the system adaptively encrypts a corresponding proportion of characters 

within each non-omitted word. This stage applies character-level transformation only to the selected fraction of each 

word, enabling a tunable trade-off between security and computational overhead. 

 

𝑘 =  
𝐸𝑝 × 𝑙𝑒𝑛(𝑤)

100
 

Output generation 

The resulting partially encrypted text is then assembled and transmitted as the final output of ML-DSEA. By 

encrypting only a learned fraction of the text, the framework reduces computational cost and latency while preserving 

a desired level of confidentiality. 

 
Figure1: A system-level workflow diagram  

Model evaluation follows standard text-ML feature extraction (entropy, TAC, TVC, OWcount, stop-word ratio). Prior 

work has shown that SVM provides excellent performance for high-dimensional linguistic data [9], [29], 

strengthening its suitability for ML-DSEA. 

In contrast to the purely deterministic DSEA framework [5], which computes encryption percentage using fixed 

linguistic thresholds, the proposed ML-DSEA introduces a learning-based sensitivity estimation mechanism. 

Machine learning models dynamically infer the optimal encryption proportion from linguistic and statistical features, 

while retaining DSEA’s deterministic rule as a security-critical override for low-entropy texts. 

Algorithm 1: ML Integration and Best-Model Selection 

Algorithm 1: ML-Based Model Selection for DSEA 

Input: Dataset D = {X, Y}, Model Set M = {SVM, DT, RF, KNN, LR} 

Output: Selected Best Model M_best 

1:  Load dataset D and extract feature matrix X and label vector Y 

2:  Initialize model set M = {SVM, DecisionTree, RandomForest, KNN, LogisticRegression} 

3:  for each model m in M do 

4:       Train m using k-fold cross-validation 

5:       Compute performance metrics: 

6:           Accuracy(m), EncryptionTime(m), 

7:           Throughput(m), Efficiency(m) 

8:  end for 

9:  Select best model: 

10:     M_best ← arg max_m {Accuracy(m), Efficiency(m)} 

11:     and arg min_m {EncryptionTime(m)} 

12: return M_best 

Algorithm 2: ML-DSEA Encryption Using SVM 

Input: Message MES, Selected Model M_best (SVM), Omitted Word Set OW 
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Output: Encrypted Message MES_enc 

1:  Tokenize MES into words W = {w1, w2, ..., wn} 

2:  Compute DSEA parameters: 

3:      TAC ← count_letters(MES) 

4:      TVC ← count_vowels(MES) 

5:      OWcount ← count_omitted_words(W, OW) 

6:      TVCOW ← TVC + OWcount 

7:      Extract additional features: Entropy, AvgWordLen, StopWordRatio 

8:      Form feature vector X 

9:  if TVCOW ≥ TAC then 

10:      EP ← 100          ▷ full encryption 

11:  else 

12:      d ← SVM.decision_function(X) 

13:      p ← 1 / (1 + exp(–d))     ▷ probability mapping 

14:      EP ← round(100 × p) 

15:  end if 

16:  for each word wi in W do 

17:      if wi ∈ OW then 

18:          Append wi (plaintext) to MES_enc 

19:      else 

20:          k ← ceil(length(wi) × EP / 100) 

21:          Encrypt first k characters of wi 

22:          Append encrypted + remaining plain text to MES_enc 

23:      end if 

24:  end for 

25: return MES_enc 

"The SVM's decision function output d is converted into a probability score p using Platt scaling [17], which 

calibrates the output via a sigmoid function: p ← 1 / (1 + exp(A*d + B)), where A and B are parameters learned during 

the calibration process on a validation set." 

The workflow preserves the security condition (TVCOW ≥ TAC→EP=100%) introduced in DSEA [5] while adding 

ML-based EP prediction. This hybrid strategy aligns with adaptive encryption strategies used in cloud and IoT 

systems [6], [8], [22]. 

6.3 Performance Summary 

• SVM is the top performer in accuracy, speed, and throughput. 

• ML-DSEA reduces computational cost by ~28% compared to DSEA. 

6.4 Complexity Analysis 

O(n+m) 

where 

n = characters 

m = features 

This is significantly better than full encryption O(n). 

 6.5 Limitations 

• English-only dataset 

• Performance varies for extremely short text 

• Hardware evaluation for microcontrollers pending 
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6.6 Advantages Over Prior SE Methods  

ML-DSEA improves prior works by offering: 

• Data-driven adaptiveness instead of rigid rules. 

• Feature-rich decision-making for diverse text structures. 

• Hybrid security model combining ML and deterministic logic. 

• Reduced computational overhead compared to full encryption. 

• Scalability for cloud, IoT, mobile, and edge applications. 

• Higher accuracy in selecting optimal encryption percentage. 

7. DATASET AND EXPERIMENTAL SETUP 

• 12,000 text samples from IoT logs, emails, social media, and academic documents. 

• Seven linguistic features extracted. 

• Five ML models trained using 5-fold cross-validation. 

• AES-128-CTR used as the encryption primitive. 

• Hardware: i7-11th Gen, 16 GB RAM. 

Source Samples Average Length (words) 

IoT Logs 3000 14-25 

Emails 3000 20-45 

Social Media Messages 3000 15-35 

Academic Documents 3000 40-80 

Total 12000 

Table 1: Dataset Composition 

 

Figure 2: Dataset Composition 

8. RESULTS AND DISCUSSION 

8.1 ML vs Deterministic Prediction Accuracy (RQ1) 

SVM achieves 96.2% accuracy, outperforming deterministic DSEA’s 81.7% effectiveness. 
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8.2 Security-Efficiency Trade-off (RQ2) 

ML-DSEA: 

• Reduces encryption time by 28% 

• Improves throughput by 34% 

• Reduces semantic leakage by 57% 

1. SVM achieved the highest accuracy (96.2%), demonstrating its ability to learn complex, nonlinear feature 

relations. 

2. Encryption time was lowest for SVM (128.4 ms), making it ideal for real-time text encryption. 

3. Throughput was highest for SVM, showing better processing speed. 

4. KNN and LR performed reasonably but lagged in speed, making them unsuitable for lightweight environments. 

 

Figure 3: Performance Comparison of ML Classifiers for ML-DSEA 

 

This reinforces that SVM is the most reliable predictor of encryption proportion for selective text encryption. 

By integrating SVM into the encryption workflow, the proposed system becomes an intelligent, real-time selective 

encryption mechanism suitable for IoT, MANET, and other lightweight communication platforms. 

8.3 Ablation Study 

An ablation experiment was conducted by removing one feature at a time from the feature  

set. Results indicate: 

• Removing entropy reduced accuracy from 96.2% → 91.8%.   

• Removing stop-word ratio reduced accuracy to 92.3%.   

• Using only TAC, TVC, TVCOW reduced accuracy to 88.1%.   

• Average word length and entropy were the two most influential features. 
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Figure 4 : ablation_study 

8.4 Feature Importance Analysis 

SHAP-based interpretability studies show: 

• Entropy contributes ~32% to prediction variance.   

• Stop-word ratio contributes 21%.   

• TVCOW and TAC jointly contribute 28%.   

• OWcount and AWL provide structural richness. 

This provides explanation transparency for the ML component. 

 
Figure 5: feature importance SHAP Style 

8.5 Security Evaluation 

To validate the confidentiality guarantees of ML-DSEA, we evaluate its resilience under three formal attack models. 

This analysis is crucial for establishing the practical security of our adaptive encryption framework. 

8.5.1 Attack Models and Evaluation Metrics 

We consider three realistic attack scenarios that reflect actual threats to selective encryption systems: 

1. Ciphertext-Only Attack (COA): The adversary possesses only the encrypted text without any additional 

information. We assess resistance using: 

   - Histogram Analysis: Measuring the distribution of characters in ciphertext 

   - Shannon Entropy: Quantifying the uncertainty in encrypted content 

2. Known-Plaintext Attack (KPA): The adversary has access to some plaintext-ciphertext pairs. We evaluate using: 

   - Bit Error Rate (BER): Measuring the difference between original and reconstructed text 

   - Cosine Similarity: Assessing pattern preservation in encrypted content 

3. Semantic Reconstruction Attack: The adversary uses modern NLP techniques to recover meaning. We employ: 

   - BERT-based reconstruction: Using pre-trained language models to predict original content 

   - Semantic Similarity Scores: Measuring how much meaning is preserved 
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8.6 Quantitative Security Results 

Table 2 presents the comprehensive security analysis comparing ML-DSEA against baseline methods. Our framework 

demonstrates significant security improvements over the original DSEA while maintaining computational efficiency. 

Scheme  (ms) Histogram MSE 

(COA) 

BER (KPA) Semantic Similarity |Encryption Time 

(ms) 

 

Full Encryption 

(AES) 

0.92 0.49 0.05 245.6 

ML-DSEA  

(Ours)         

0.85 0.42 0.12 128.4 

Original DSEA          0.71 0.35 0.28 178.9 

Probabilistic SE 

[3]   

0.68 0.31 0.31 165.3 

 

Table 2: Quantitative Security Analysis Under Different Attack Models 

 

The observed performance gap between ML-DSEA and the original DSEA [5] empirically validates the limitations of 

deterministic selective encryption strategies identified in the survey of [4], demonstrating that learning-driven 

encryption control yields superior adaptability, efficiency, and semantic security. 

The quantitative security analysis, summarized in Table 4, demonstrates that ML-DSEA           achieves a favorable 

balance between security and efficiency. Under the Ciphertext-Only Attack (COA) model, ML-DSEA's Histogram 

MSE of 0.85 significantly outperforms the original DSEA (0.71) and Probabilistic SE (0.68), indicating a greater 

disruption of statistical patterns and enhanced resistance to frequency analysis. While Full AES encryption remains 

the gold standard (0.92), ML-DSEA provides 92% of its security at only 52% of the computational time. Furthermore, 

against semantic reconstruction attacks, ML-DSEA drastically reduces the semantic similarity between original and 

reconstructed text to 0.12, a 57% improvement over DSEA (0.28), showing its effectiveness in obscuring meaning. 

The deterministic override rule        (TVCOW ≥ TAC) is critical here, as it ensures that low-entropy texts, which are 

most vulnerable to such NLP-driven attacks, receive full protection. 

8.7 Security of the Deterministic Override 

The rule "TVCOW ≥ TAC → EP = 100%" serves as a critical security failsafe. Our analysis shows that texts triggering 

this condition typically have entropy values below 3.5 bits/character, making them highly vulnerable to frequency 

analysis. By mandating full encryption for these high-risk texts, ML-DSEA eliminates a major attack vector that 

plagues traditional selective encryption schemes. 

8.8 Energy & Complexity Analysis 

ML-DSEA time complexity is O(n + m), maintaining lightweight operation. Energy consumption on  

a simulated IoT microcontroller (ESP32 equivalent) measured: 

• 35% lower CPU usage than full encryption   

• 28% less energy for 64-character messages   

• 41% reduced latency in streaming scenarios 

This demonstrates suitability for constrained devices. 
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Figure 6: Energy Consumption Comparison 

 

This confirms the importance of multi-feature linguistic modelling. 

 

 
Figure 7 : Confusion Matrix of the SVM Classifier 

Model misclassification behavior across five encryption-class categories is visualized via the confusion matrix. High 

predictive reliability is indicated by the diagonal dominance, which is consistent with the measured total accuracy 

of 96.2%. 

 

8.9 Complexity Analysis  

Let: 

• n = length of the message 

• m = number of features 

• k = number of ML models evaluated 

9. COMPLEXITY 

9.1 DSEA Complexity 

Feature computation and character-level scanning produce: 

• Time Complexity: O(n) 

• Space Complexity: O(1) 
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9.2 ML-DSEA Complexity 

1. Feature Extraction: O(n) 

2. SVM Prediction: O(m) 

3. Partial Encryption: O(n × EP) 

Overall: 

Time Complexity: O(n + m) 

Space Complexity: O(m) 

Since m ≪ n, ML-DSEA effectively retains lightweight operation. 

10. CONCLUSION 

This work introduced ML-DSEA, a hybrid selective-encryption framework that integrates machine-learning-based 

prediction with linguistic rule–driven overrides. The proposed approach addresses the limitations of traditional 

selective encryption methods by incorporating seven linguistic and statistical features, enabling significantly more 

adaptive and context-aware encryption. 

Experimental evaluation over a 12,000-sample heterogeneous dataset demonstrates that the SVM-based ML 

module achieves 96.2% prediction accuracy, outperforming deterministic DSEA rules by a wide margin. ML-

DSEA exhibits strong computational efficiency, reducing encryption time by 28% and increasing throughput by 

34% relative to the original DSEA. Security analysis confirms that ML-DSEA strengthens resistance to ciphertext-

only and semantic reconstruction attacks: semantic similarity under attack drops to 0.12, representing a 57% 

improvement in security compared to DSEA. 

Furthermore, the deterministic override rule (TVCOW ≥ TAC → EP = 100%) successfully ensures full protection of 

low-entropy, highly predictable messages—closing a major vulnerability present in earlier selective encryption 

models. The system maintains lightweight performance with O(n + m) complexity and demonstrates suitability for 

resource-constrained environments, achieving up to 35% lower CPU usage and 41% reduced latency on 

simulated IoT hardware. 

Overall, ML-DSEA establishes an efficient, secure, and interpretable selective-encryption mechanism that balances 

computational cost with strong confidentiality guarantees. Future work will explore multilingual text encryption, 

transformer-based sensitivity analysis, and hardware-accelerated deployment for real-time IoT and edge-computing 

environments. 

Future Work: multilingual SE, transformer-based sensitivity analysis, hardware-accelerated selective encryption. 
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