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ARTICLE INFO ABSTRACT

Received: 30 Dec 2024 The rapid expansion of IoT, mobile, cloud, and edge computing infrastructures has
increased the demand for lightweight encryption mechanisms capable of securing
large-scale textual communication without imposing high latency or computational
Accepted: 26 Feb 2025 overhead. Traditional full-encryption schemes such as AES and RSA, although robust,
remain unsuitable for resource-constrained environments. Selective Encryption (SE)
offers a partial alternative by transforming only critical portions of data; however,
existing SE approaches rely on heuristic or deterministic rules, limiting their ability to
adapt to diverse linguistic patterns. This paper introduces ML-DSEA, a
Machine-Learning-Driven Dynamic Selective Encryption Algorithm that integrates
Support Vector Machine (SVM) prediction with the deterministic rules of the original
DSEA model. ML-DSEA extracts seven structural and linguistic features—TAC, TVC,
OWcount, TVCOW, entropy, average word length, and stop-word ratio—to estimate the
optimal encryption percentage. Experimental results on a heterogeneous dataset of
12,000 samples demonstrate that SVM achieves the highest accuracy (96.2%), lowest
encryption time (128.4 ms), and highest throughput (22.6 KB/s). ML-DSEA improves
security against frequency, semantic, and known-plaintext attacks while reducing
overhead by 28% compared to DSEA. These results confirm ML-DSEA as a lightweight
and adaptive encryption framework suitable for IoT, MANET, cloud, and edge devices.
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1. INTRODUCTION

Emerging digital communication systems, including IoT sensor networks, MANET infrastructures, and cloud-edge
architectures, require cryptographic methods that balance computational efficiency with data confidentiality.
Standard encryption algorithms such as AES and RSA, though highly secure, incur substantial computational cost,
making them unsuitable for low-power, high-latency-sensitive environments.

Selective Encryption (SE) aims to reduce this cost by encrypting only essential components of textual or multimedia
data. Early SE approaches relied on fixed or probabilistic rules, which fail to generalize across diverse linguistic
structures. The Dynamic Selective Encryption Algorithm (DSEA) introduced linguistic parameters for adaptiveness
but still relied entirely on deterministic thresholds.Recent advancements in machine learning—specifically Support
Vector Machines (SVM), Random Forests, and deep learning models—have demonstrated strong potential in
cryptographic parameter optimization. Motivated by these trends, we propose ML-DSEA, an intelligent
selective-encryption model that combines machine-learning-based prediction with a deterministic security-override
rule. ML-DSEA significantly enhances the adaptiveness, efficiency, and confidentiality of SE systems.
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2. RESEARCH GAP AND MOTIVATION
A systematic analysis of the literature highlights the following gaps:

e Lack of adaptiveness: Existing SE models use static or heuristic rules that do not generalize across
heterogeneous text patterns.

e DSEA limitations: While DSEA uses linguistic features, it applies a deterministic rule that fails on
semantically diverse messages.

¢ No ML-augmented DSEA in literature: No prior work integrates machine learning with DSEA’s
linguistic framework for text-based SE.

¢ Limited feature exploration: Prior SE research largely ignores entropy-based and structural linguistic
features.

¢ Insufficient security evaluation: Existing SE methods rarely incorporate semantic-attack modelling.

Based on these gaps, the following research questions (RQs) are proposed:

RQ1: Can machine-learning models predict optimal encryption percentage more accurately than deterministic
DSEA rules?

RQz2: Can ML-DSEA achieve a superior security-efficiency trade-off compared to full encryption and original
DSEA?

RQ3: Which linguistic features most influence encryption-percentage prediction?

3. MAJOR CONTRIBUTIONS

This study offers the following contributions:

1. ML-DSEA Framework: A novel hybrid SE system combining ML prediction and DSEA’s deterministic
override rule.

2. Feature Engineering Pipeline: Extraction of seven linguistic and statistical features for sensitivity
modelling.

. Comprehensive ML Benchmarking: Evaluation of SVM, RF, DT, KNN, and LR classifiers.

3

4. Hybrid Decision Logic: A security-driven override (TVCOW = TAC — EP=100%).

5. Security Evaluation: Resistance analysis under COA, KPA, and semantic reconstruction attacks.
6

. Dataset Contribution: A heterogeneous, publicly reusable 12,000-sample dataset.

7. Performance Improvements: ML-DSEA reduces encryption time by 28% while improving
semantic-leakage resistance by 57%.

4. RELATED WORK

SE has evolved in various ways across different domains, such as IoT, wireless ad hoc networks, cloud systems, and
multimedia security. Kushwaha's [1] pioneering work on SE over text transmission in the MANET environment had
showcased an improved efficiency in communication. Ren et al. [2] analyzed the performance of SE over wireless
networks and demonstrated significant reductions in computational load as opposed to full encryption-based
strategies.

The later approaches like Toss-a-Coin and Probabilistic SE [3] utilized hybrid deterministic—probabilistic selection
rules to balance performance with security. Still, most of these techniques remained largely heuristic and failed to
integrate deeper semantic or linguistic insights into their encryption process.

DSEA, by Meshram and Prasad [4], [5], significantly improved adaptability by computing the encryption percentage
based on text parameters such as vowel count and omitted-word count. However, this also uses deterministic rules
which fail to generalize effectively across diverse message types.
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The survey presented in [4] further highlights that most selective encryption techniques rely on static heuristics and
lack learning-driven adaptability. While DSEA [5] improves linguistic awareness, its fixed threshold-based decision
logic limits robustness under heterogeneous and semantically diverse text distributions.

Parallel research in multimedia SE integrated the use of content-aware and saliency-based techniques to adapt
encryption based on semantic importance [11], hence underlining the potential of feature-driven adaptive security
mechanisms. Similar trends emerged for ML-driven encryption techniques. Kirupa Shankar [6] and Kumar [7]
developed ML-based secure encryption frameworks for cloud and medical applications. Premakumari [8] introduced
reinforcement learning for adaptive encryption in IoT networks. Shivsharan [9] used SVM to predict optimal
encryption levels for multimedia and reported a better performance than those from decision trees and logistic
regression.

Recent surveys confirm the ever-increasing interest in ML-aided lightweight cryptography. Zhang and Wu [10]
underlined the ability of ML to optimize the encryption parameters in IoT systems, while Dritsas [12] explored the
applications of ML in ICT security. Villar-Rodriguez et al. [13] presented ML-enhanced edge-security frameworks,
while Banerjee and Chen [22] have proposed deep-learning content-importance models for SE.

Early SE techniques introduced partial encryption but lacked adaptiveness: full SE, Toss-a-Coin, and Probabilistic
SE. DSEA partially solved this by incorporating linguistic features. It fell short because of the use of static rules.
Machine-learning-driven encryption methods, including SVM-based encryption prediction, RL-based adaptive
cryptography, and deep-learning-driven content awareness, show promise for dynamic security control.

However, no prior work integrates ML with DSEA, nor uses a linguistic feature set for encryption decision-making.
This gap is filled by ML-DSEA.

5. ORIGINAL DSEA FRAMEWORK
DSEA dynamically calculates encryption percentage using TAC, TVC, and OWcount. A critical rule is applied:
If TVCOW 2= TAC, the message is fully encrypted.

This rule is motivated by linguistic sensitivity: high vowel density + omitted-word count correlates with low entropy
and high predictability. Such messages must be fully encrypted to mitigate frequency-analysis attacks.

Algorithm 1: Message Encryption Algorithm
Step I: Message Input
MES € ¥*
Step II: Evaluation Functions
TAC ={c € MES | c ¢ OW}
TVC = {v e MES | v € Vowels A v ¢ OW}
OW = {w € MES | w € Omitted Words}
TVCOW =TVC + |OW|
Step III: Encryption Condition
vV TVCOW = TAC : EP = 100%
Step IV: Encryption Percentage Calculation

TVvcow

Ep = |rge X 100,if TVCOW <TAC

100,if TVCOW = TAC
Step V: Encryption Decision

vie{s, .. n}:
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if MES(i) ¢ OW then
Encrypt(MES(i))
else
Transmit(MES(i)) without encryption
end if
6. PROPOSED ML-DSEA FRAMEWORK

ML-DSEA integrates SVM-based prediction with DSEA’s deterministic rule to create an adaptive encryption
pipeline.

6.1 System Architecture Overview

The ML-DSEA framework integrates a machine learning decision model with the core principles of Dynamic Selective
Encryption. The architecture consists of the following sequential modules:
1. Input Processing Module — Accepts raw textual data in various forms (IoT logs, emails, social media text,
formal documents).
2. Text Normalization Unit — Performs lowercasing, punctuation removal, tokenization, stop-word
filtering, and stemming/lemmatization depending on dataset characteristics.
3. Feature Engineering Block — Extracts seven linguistic and statistical features required for ML prediction.
4. Machine Learning Decision Engine — Predicts optimal encryption percentage using one of five selected
classifiers.
5. Deterministic DSEA Rule Enforcement — Overrides ML predictions when the TAC-TVC-OW
relationship implies high sensitivity.
6. Adaptive Encryption Module — Applies word-level partial encryption according to predicted EP.
7. Output Synthesis Unit — Reconstructs encrypted text for final transmission.

6.2 Modified Machine Learning—Based DSEA (ML-DSEA)

ML-DSEA combines classification models with DSEA for the prediction of EP using linguistic features. The model
selection stage considers a number of ML models, namely SVM, Decision Tree, Random Forest, KNN, and Logistic
Regression, following state-of-the-art ML-driven encryption research works [6], [7], [9], [10], [22].

A. System Workflow Description

The ML-DSEA workflow consists of four stages:
Feature extraction

Input text samples are preprocessed and transformed into a structured feature vector comprising TAC, TVC,
OWcount, TVCOW, entropy, average word length, and stop-word ratio. These features quantitatively characterize
lexical richness, structural complexity, and redundancy in the text, providing a compact representation suitable for
machine learning.

n

Entropy = —Z pilog, pi

=1
Model prediction

The extracted feature vector is supplied to a supervised machine learning classifier, specifically a Support Vector
Machine (SVM), trained to estimate the required encryption intensity. The SVM outputs a predicted encryption
percentage that reflects the optimal level of partial encryption for the given text segment.
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Adaptive encryption

Using the predicted encryption percentage, the system adaptively encrypts a corresponding proportion of characters
within each non-omitted word. This stage applies character-level transformation only to the selected fraction of each
word, enabling a tunable trade-off between security and computational overhead.

i = Ep X len(w)
- 100
Output generation
The resulting partially encrypted text is then assembled and transmitted as the final output of ML-DSEA. By

encrypting only a learned fraction of the text, the framework reduces computational cost and latency while preserving
a desired level of confidentiality.

Feature Model ¥
Extraction Prediction 1

Feature Adaptive l Output
Extraction Encryption Generation

Figure1: A system-level workflow diagram
Model evaluation follows standard text-ML feature extraction (entropy, TAC, TVC, OWcount, stop-word ratio). Prior
work has shown that SVM provides excellent performance for high-dimensional linguistic data [9], [29],
strengthening its suitability for ML-DSEA.

In contrast to the purely deterministic DSEA framework [5], which computes encryption percentage using fixed
linguistic thresholds, the proposed ML-DSEA introduces a learning-based sensitivity estimation mechanism.
Machine learning models dynamically infer the optimal encryption proportion from linguistic and statistical features,
while retaining DSEA’s deterministic rule as a security-critical override for low-entropy texts.

Algorithm 1: ML Integration and Best-Model Selection

Algorithm 1: ML-Based Model Selection for DSEA

Input: Dataset D = {X, Y}, Model Set M = {SVM, DT, RF, KNN, LR}
Output: Selected Best Model M_best

1: Load dataset D and extract feature matrix X and label vector Y
2: Initialize model set M = {SVM, DecisionTree, RandomForest, KNN, LogisticRegression}
3: for each model m in M do

4 Train m using k-fold cross-validation

5: Compute performance metrics:

6 Accuracy(m), EncryptionTime(m),

7 Throughput(m), Efficiency(m)

8: end for

9: Select best model:

10: M_best <+ arg max_m {Accuracy(m), Efficiency(m)}

11: and arg min_m {EncryptionTime(m)}

12: return M_ best

Algorithm 2: ML-DSEA Encryption Using SVM
Input: Message MES, Selected Model M_ best (SVM), Omitted Word Set OW

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 1299

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Output: Encrypted Message MES_enc

1: Tokenize MES into words W = {w1, w2, ..., wn}

2: Compute DSEA parameters:

3: TAC < count_letters(MES)

4: TVC « count_vowels(MES)

5: OWcount « count_omitted_words(W, OW)

6: TVCOW « TVC + OWcount

7.  Extract additional features: Entropy, AvgWordLen, StopWordRatio
8: Form feature vector X

9:

if TVCOW = TAC then
10: EP <100 > full encryption
11: else

12:  d <« SVM.decision_function(X)

13: p<«1/(1+exp(-d)) D> probability mapping
14: EP « round(100 x p)

15: end if

16: for each word wi in W do

17:  if wi € OW then

18: Append wi (plaintext) to MES_enc

19: else

20: k « ceil(length(wi) x EP / 100)

21: Encrypt first k characters of wi

22: Append encrypted + remaining plain text to MES_enc
23: endif

24: end for

25: return MES_enc

"The SVM's decision function output dis converted into a probability score p using Platt scaling [17], which
calibrates the output via a sigmoid function: p < 1/ (1 + exp(A*d + B)), where A and B are parameters learned during
the calibration process on a validation set."

The workflow preserves the security condition (TVCOW > TAC—EP=100%) introduced in DSEA [5] while adding
ML-based EP prediction. This hybrid strategy aligns with adaptive encryption strategies used in cloud and IoT
systems [6], [8], [22].

6.3 Performance Summary

e SVM is the top performer in accuracy, speed, and throughput.
¢ ML-DSEA reduces computational cost by ~28% compared to DSEA.

6.4 Complexity Analysis
O(n+m)

where

n = characters

m = features

This is significantly better than full encryption O(n).

6.5 Limitations

e English-only dataset
e Performance varies for extremely short text
e Hardware evaluation for microcontrollers pending
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6.6 Advantages Over Prior SE Methods

ML-DSEA improves prior works by offering:

Data-driven adaptiveness instead of rigid rules.

Feature-rich decision-making for diverse text structures.
Hybrid security model combining ML and deterministic logic.
Reduced computational overhead compared to full encryption.

Scalability for cloud, IoT, mobile, and edge applications.

Higher accuracy in selecting optimal encryption percentage.

7. DATASET AND EXPERIMENTAL SETUP

12,000 text samples from IoT logs, emails, social media, and academic documents.

Seven linguistic features extracted.

Five ML models trained using 5-fold cross-validation.

AES-128-CTR used as the encryption primitive.
Hardware: i7-11th Gen, 16 GB RAM.

Source Samples | Average Length (words)
IoT Logs 3000 14-25
Emails 3000 20-45
Social Media Messages 3000 15-35
Academic Documents 3000 40-80
Total 12000

Table 1: Dataset Composition

Emails

Social Media

loT Logs

Academic

Figure 2: Dataset Composition

8. RESULTS AND DISCUSSION

8.1 ML vs Deterministic Prediction Accuracy (RQ1)

SVM achieves 96.2% accuracy, outperforming deterministic DSEA’s 81.7% effectiveness.
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8.2 Security-Efficiency Trade-off (RQ2)

ML-DSEA:
e Reduces encryption time by 28%
e Improves throughput by 34%
Reduces semantic leakage by 57%

1. SVM achieved the highest accuracy (96.2%), demonstrating its ability to learn complex, nonlinear feature
relations.

2. Encryption time was lowest for SVM (128.4 ms), making it ideal for real-time text encryption.
3. Throughput was highest for SVM, showing better processing speed.

4. KNN and LR performed reasonably but lagged in speed, making them unsuitable for lightweight environments.

Performance Comparison of ML Classifiers for ML-DSEA
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Figure 3: Performance Comparison of ML Classifiers for ML-DSEA

This reinforces that SVM is the most reliable predictor of encryption proportion for selective text encryption.
By integrating SVM into the encryption workflow, the proposed system becomes an intelligent, real-time selective
encryption mechanism suitable for IoT, MANET, and other lightweight communication platforms.

8.3 Ablation Study

An ablation experiment was conducted by removing one feature at a time from the feature
set. Results indicate:

« Removing entropy reduced accuracy from 96.2% — 91.8%.

« Removing stop-word ratio reduced accuracy to 92.3%.

« Using only TAC, TVC, TVCOW reduced accuracy to 88.1%.

« Average word length and entropy were the two most influential features.
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Ablation Study

Figure 4 : ablation_study
8.4 Feature Importance Analysis

SHAP-based interpretability studies show:
« Entropy contributes ~32% to prediction variance.
« Stop-word ratio contributes 21%.
« TVCOW and TAC jointly contribute 28%.
« OWcount and AWL provide structural richness.
This provides explanation transparency for the ML component.
Feature Importance (SHAP-style)

30

25

20

15

Importance (%)

10

s
& -
& & o

Figure 5: feature importance SHAP Style
8.5 Security Evaluation

To validate the confidentiality guarantees of ML-DSEA, we evaluate its resilience under three formal attack models.
This analysis is crucial for establishing the practical security of our adaptive encryption framework.

8.5.1 Attack Models and Evaluation Metrics

We consider three realistic attack scenarios that reflect actual threats to selective encryption systems:
1. Ciphertext-Only Attack (COA): The adversary possesses only the encrypted text without any additional
information. We assess resistance using:
- Histogram Analysis: Measuring the distribution of characters in ciphertext
- Shannon Entropy: Quantifying the uncertainty in encrypted content
2. Known-Plaintext Attack (KPA): The adversary has access to some plaintext-ciphertext pairs. We evaluate using;:
- Bit Error Rate (BER): Measuring the difference between original and reconstructed text
- Cosine Similarity: Assessing pattern preservation in encrypted content
3. Semantic Reconstruction Attack: The adversary uses modern NLP techniques to recover meaning. We employ:
- BERT-based reconstruction: Using pre-trained language models to predict original content
- Semantic Similarity Scores: Measuring how much meaning is preserved

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 1303
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

8.6 Quantitative Security Results

Table 2 presents the comprehensive security analysis comparing ML-DSEA against baseline methods. Our framework
demonstrates significant security improvements over the original DSEA while maintaining computational efficiency.

Scheme (ms) Histogram MSE BER (KPA) Semantic Similarity |Encryption Time

(CoA) (ms)

Full Encryption 0.92 0.49 0.05 245.6

(AES)

ML-DSEA 0.85 0.42 0.12 128.4

(Ours)

Original DSEA 0.71 0.35 0.28 178.9

Probabilistic SE 0.68 0.31 0.31 165.3

[3]

Table 2: Quantitative Security Analysis Under Different Attack Models

The observed performance gap between ML-DSEA and the original DSEA [5] empirically validates the limitations of
deterministic selective encryption strategies identified in the survey of [4], demonstrating that learning-driven
encryption control yields superior adaptability, efficiency, and semantic security.

The quantitative security analysis, summarized in Table 4, demonstrates that ML-DSEA achieves a favorable
balance between security and efficiency. Under the Ciphertext-Only Attack (COA) model, ML-DSEA's Histogram
MSE of 0.85 significantly outperforms the original DSEA (0.71) and Probabilistic SE (0.68), indicating a greater
disruption of statistical patterns and enhanced resistance to frequency analysis. While Full AES encryption remains
the gold standard (0.92), ML-DSEA provides 92% of its security at only 52% of the computational time. Furthermore,
against semantic reconstruction attacks, ML-DSEA drastically reduces the semantic similarity between original and
reconstructed text to 0.12, a 57% improvement over DSEA (0.28), showing its effectiveness in obscuring meaning.
The deterministic override rule (TVCOW = TAC) is critical here, as it ensures that low-entropy texts, which are
most vulnerable to such NLP-driven attacks, receive full protection.

8.7 Security of the Deterministic Override

The rule "TVCOW = TAC — EP = 100%" serves as a critical security failsafe. Our analysis shows that texts triggering
this condition typically have entropy values below 3.5 bits/character, making them highly vulnerable to frequency
analysis. By mandating full encryption for these high-risk texts, ML-DSEA eliminates a major attack vector that
plagues traditional selective encryption schemes.

8.8 Energy & Complexity Analysis

ML-DSEA time complexity is O(n + m), maintaining lightweight operation. Energy consumption on
a simulated IoT microcontroller (ESP32 equivalent) measured:

* 35% lower CPU usage than full encryption

» 28% less energy for 64-character messages

* 41% reduced latency in streaming scenarios

This demonstrates suitability for constrained devices.
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Energy Consumption Comparison
Full Encryption
20.0 ML-DSEA

17.5
15.0

125

Energy (m])

100

7.5

5.0

50 100 150 200 250
Message Size (bytes)

Figure 6: Energy Consumption Comparison

This confirms the importance of multi-feature linguistic modelling.

Confusion Matrix - SVM Classifier 0

True label

(923 [or3 [os} [ o2}
Predicted label

Figure 7 : Confusion Matrix of the SVM Classifier
Model misclassification behavior across five encryption-class categories is visualized via the confusion matrix. High

predictive reliability is indicated by the diagonal dominance, which is consistent with the measured total accuracy
of 96.2%.

8.9 Complexity Analysis

Let:
e n =length of the message
e m = number of features
e k =number of ML models evaluated

9. COMPLEXITY
9.1 DSEA Complexity

Feature computation and character-level scanning produce:
e Time Complexity: O(n)
e Space Complexity: O(1)
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9.2 ML-DSEA Complexity

1. Feature Extraction: O(n)
2. SVM Prediction: O(m)
3. Partial Encryption: O(n x EP)
Overall:
Time Complexity: O(n + m)
Space Complexity: O(m)
Since m « n, ML-DSEA effectively retains lightweight operation.

10. CONCLUSION

This work introduced ML-DSEA, a hybrid selective-encryption framework that integrates machine-learning-based
prediction with linguistic rule—driven overrides. The proposed approach addresses the limitations of traditional
selective encryption methods by incorporating seven linguistic and statistical features, enabling significantly more
adaptive and context-aware encryption.

Experimental evaluation over a 12,000-sample heterogeneous dataset demonstrates that the SVM-based ML
module achieves 96.2% prediction accuracy, outperforming deterministic DSEA rules by a wide margin. ML-
DSEA exhibits strong computational efficiency, reducing encryption time by 28% and increasing throughput by
34% relative to the original DSEA. Security analysis confirms that ML-DSEA strengthens resistance to ciphertext-
only and semantic reconstruction attacks: semantic similarity under attack drops to 0.12, representing a 57%
improvement in security compared to DSEA.

Furthermore, the deterministic override rule (TVCOW = TAC — EP = 100%) successfully ensures full protection of
low-entropy, highly predictable messages—closing a major vulnerability present in earlier selective encryption
models. The system maintains lightweight performance with O(n + m) complexity and demonstrates suitability for
resource-constrained environments, achieving up to 35% lower CPU usage and 41% reduced latency on
simulated IoT hardware.

Overall, ML-DSEA establishes an efficient, secure, and interpretable selective-encryption mechanism that balances
computational cost with strong confidentiality guarantees. Future work will explore multilingual text encryption,
transformer-based sensitivity analysis, and hardware-accelerated deployment for real-time IoT and edge-computing
environments.

Future Work: multilingual SE, transformer-based sensitivity analysis, hardware-accelerated selective encryption.
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