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ARTICLE INFO ABSTRACT

Received: 03 Nov 2024  Although business intelligence (BI) solutions historically analyzed near-real-
time information, organizations increasingly seek to exploit real-time data.
Dramatic reductions in the cost of data storage, cloud-enabled analytics, and
Accepted: 26 Dec 2024  investments to deliver streaming-ready information have created the potential
to change the latency profile of BI systems. The introduction of machine learning
(ML) in a cloud context represents another important opportunity—cloud
infrastructure provides a family of services with rapidly decreasing cost and
increasing ease of use that are optimized for ML and ML-related workloads. The
concurrent desire to optimize the data-to-decision loop and the complementary
nature of cloud analytics infrastructure and ML facilitate turning insights from
active data into business actions, should that be required. However, these
changes are not without challenges and require addressing the following
questions: What architectures support integration of ML-driven information
with BI? What considerations govern the design and operation of these
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architectures? Which real-world scenarios have achieved measurable

performance improvements, shortening time to insight and supporting real-
time data-driven decisioning? A range of publicly available real-time
implementations across multiple industries demonstrate that these questions
can be addressed, either wholly or in part, and that shortening time to insight
improves BI.

Keywords: Real-time BI, cloud analytics, machine learning, data pipelines, streaming,
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1. Introduction

Business Intelligence (BI) refers to the set of tools, techniques, and processes that help organizations
capture, analyze, and present business information. Historical application areas have included sales and
financial analysis, supply chain management, manufacturing performance, budgeting, and forecasting
based primarily on historical data. The emergence of machine learning (ML) technologies—more
specifically, the combination of supervised, unsupervised, and reinforcement learning—and their
application in cloud environments create new opportunities to integrate real-time decisioning with BI
dashboards in a governed, scalable, accessible manner. Early days of BI and analytics relied almost

completely on hindsight and historical data to drive decisions.
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As organizations increasingly capture and process mobile, sensor, Internet of Things (IoT), and Web data,
new applications and operational strategies, such as customer engagement and personalization, proactive
operational intelligence, supply chain and social media monitoring, require timely decisions based on live
data. The ability to use ML models in the cloud to support real-time behavioral predictions and other
decision-triggering analytics has improved and new architectures for BI that use these features for online
data-to-decision-to-action improvements are emerging. Business process/product/service innovations
driven by these real-time data insights have demonstrated measurable business value and constitute an
active area of investment for organizations.
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Fig 1: AI-Enabled Data Analytics in the Cloud

1.1. Background and Significance: Historically, business intelligence (BI) has relied on static
snapshots of data sources periodically extracted, transformed, and loaded into dedicated data warehouses.
With the introduction and broad adoption of cloud-based analytics platforms, the need to extend BI beyond
traditional report generation tasks into the constantly evolving realm of operational intelligence has
emerged. Today, organizations can access customer and operational data in a real-time manner or with only
a few seconds delay and leverage cloud-based analytics to monitor business activity. These low-latency
workloads are all candidates for real-time BI, which allows participating organization to leverage data
freshness for proactive and prescriptive decision making. This extension changes the governing success
factors, key performance indicators, and use cases compared to traditional BI.

Organizations that implement and manage customer analytics in the cloud—especially real-time customer
engagement experiences, segmentation, and churn prediction—stand to benefit tremendously by applying
machine learning (ML) models to operational intelligence. Modeling combines historical data for training
with current and fresh data for inference. Moving ML training and inference to the cloud enables such
pipelines to be integrated with the data ingestion flow from business operations. As business events occur
in near real time, low-latency data-driven insights can be presented directly to business users through
integrated BI dashboards or applied automatically through decision orchestration engines. The key is
ensuring that the ML data preparation and model training phases can keep pace with the data ingestion
rate, producing a continuously evolving set of features capable of supporting low-latency production-quality
inference at a scale that matches operational activity.
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2. Foundations of Real-Time Business Intelligence

Real-time business intelligence (BI) facilitates rapid decision-making based on continuously flowing
information. Such near-continuity constitutes a powerful advantage, enabling seamless integration into
business operations. However, realizing it requires investments, trade-offs, and the right technology for the
job—not just technology that happens to be available or the art of the possible. Paradoxically, cloud analytics
might narrow the V that for decades represented the promise of business intelligence. Data for traditional
BI has historically come from batch ETL loads into data warehouses, but as a new generation of systems
interacts with customers, partners, suppliers, and employees using social media, mobile hardware, and the
Internet of Things, organizations have come to expect near-continuous information not just from their
external facing systems, but throughout their entire operations. Delivering this capability is hard but,
everywhere it is successful, it is a huge competitive advantage.

Real-time BI does not come at zero cost. To deliver data in a timely fashion, organizations must automate
much of the work historically performed by analysts. They must com-mit to monitoring data pipelines,
setting service-level agreements (SLAs) for latency and freshness, and ensuring that service levels can be
met and exceeded. They must investigate every alert and, messy though this work will be, must document
and share its insights. They must continually improve trusted models. They must provide analysts with the
tools they need to embed high-quality, high-velocity data; minimize the data management burden; and,
above all, optimize business outcomes. They must improve customer understanding using segmentation,
churn prediction, and contact strategy models that generate real-time offers, and apply these models to
achieve the desired result: being able to treat every customer as an individual while still doing so at scale.
They must monitor operations, spotting trends, anomalies, and outliers early, generating alerts, presenting
root-cause analysis to decision makers, and thus ensuring smooth and mistake-free operations. They must
ensure common quality, timing, and content of data throughout their supply chain, enabling steady
operations and a fast response to any changes in supply or demand. Delivering such results will more than
repay the requisite investment.

Illustrative end-to-end latency distribution
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2.1. Definitions and Objectives : Real-time BI can be defined as a business intelligence solution that
offers outcome-oriented, decision-relevant information with a latency limited by a previously defined
service level agreement (SLA). It can involve operations management, customer engagement or any other
analytics category as long as the process of ingesting, cleansing and processing the data is sufficiently fast
and the displayed information is suitable for automated decision making, for example updating official
financial trading partners that a certain glass or electric panel are still needed, suggesting to an overall
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business partner that a transaction should occur to reduce cost or delay, and alerting internal agents that
there an anomaly in the production process. When slack or soft budget to achieve such SLAs is temporally
allocated, it can combine with mechanisms from the reinforced lerning field to automatize reviews for
different applications and agents that require different levels of precision and latencies.

Latencies that succeed in yet achieving sufficiently stable real-time solutions are usually expressed as by
seconds or minutes and will seem slower as directly perceptible by humans. Such latencies are usually
acceptable by commercial organizations whose BI department can provide technical agent-ready insights
for frequent and minor decisions such as transitioning preparing a business partner for an upcoming
transaction or monitoring a production process pathogenically driven by mimeographs. Such solutions can
naturally teturally structurating to the growing demand for data such as the McKinsey Supply Chain
Visibility 1 and 2 studies and the Dun & Bradstreet Customer Experience Cloud Strategy whitepaper
clusterized under Operational Intelligence and Supply Chain Optimization.

Equation 1: End-to-end latency (data — dashboard) with stage-by-stage derivation

Let an event flow through a real-time BI pipeline:

e t,: event emitted by the source system

[ ]
o~

1. ingested into streaming layer (Kafka/Kinesis/etc.)

e t,: stream processing complete (clean/transform/aggregate)

[ ]
o~

52 features retrieved/computed (feature store)

e t,: ML inference completed

[ ]
~

: dashboard updated / BI layer refreshed
Each stage latency is a time difference:
Lingest = t1 — to Lproc = t2 = t1 Lfear = t3 — € Linfer = ta — t3 Laash = 5 — ¢4
End-to-end latency is:
Lepe = ts — £
Insert intermediate timestamps (telescoping sum):
ts —to = (ts — t4) + (ty — t3) + (3 — o) + (L2 — t1) + (& — to)

So:

|Le2e = Ldash + Linfer + Lfeat + Lproc + Lingest‘

This stage decomposition is what the paper alludes to when discussing per-stage percentiles and
managing bottlenecks to meet SLAs.
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2.2. Architectural Considerations for Real-Time BI Availability and integration tooling are key for
cloud-enabled real-time BI. Multi-layered architectural styles accommodate both streaming/trickle data
coming from external sources and from batch processes feeding data at intervals into a data lake for
subsequent consumption. Data is ingested and processed along multiple paths to support a range of use
cases with different pacing and freshness needs, while minimizing latency in the fastest paths. Tolerance to
stalled processing and service interruptions relies on distributed, horizontally scalable, fault-tolerant
technologies. These can sustain high rates of ingestions and extractions, facilitate seamless integration of
data from heterogeneous sources with diverse update frequencies, and support hybrid implementations of
data lakes and warehouses.

A core strength of cloud can be found in the elasticity of provisioning and in the extensibility of many
services. Not only can appropriate resources be automatically assigned for intensive single-user workloads,
but such pipelines or analysis flows can also be run periodically on an ad-hoc basis whenever extra capacity
becomes available or with some delay, for instance, to support the determination of the next promotional
offer for a holiday season. Another significant advantage is the limited upfront investments required to put
in place an extensive pool of services, possibly leveraging the shared use of partially or fully managed cloud-
native solutions, which are regularly updated and improved by the cloud vendor. These aspects help to
democratize the access to advanced analytics, bringing such capabilities within reach of every type of
organization, from large enterprises to small companies without in-house data engineering or data science
expertise.

3. Machine Learning in Cloud Analytics

Real-Time Business Intelligence (BI) is an emerging area that focuses on accelerating the data-to-decision
and data-to-action loops within an organization. It relies on continuous ingestion of event streams and real-
time processing of the information to feed BI dashboards with the freshest possible data. The historical
evolution of BI from decision support to advanced analytics, operation intelligence, and subsequently real-
time BI is hence an extension of trend data in BI products. Increasingly, organizations are sending all their
operational data to the cloud. Although significant parts of this data are not intended for long-term storage,
the mere fact that nearly all operational data is sent to the cloud opens doors for novel capabilities.

Understood in such a way, these developments also create the ideal environment for most machine learning
(ML) workloads: an abundant amount of data for training, a virtualized environment for on-demand
scalability, and a cloud-based ML-as-a-Service available for both training and inference. This paper shows
how cloud enables the use of ML and data in a BI environment at an unprecedented scale and speed,
resulting in enhanced customer and partner experience across multiple longitudinal data sources and
applications. Many BI systems today are still based on semi-structured and historical data stored in data
warehouses, with data freshness often taking hours or days. When latency targets are reduced to seconds,
additional challenges appear, as a completely new architectural and operational stack is needed.
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Fig 2: Securing Machine Learning in the Cloud

3.1. ML Paradigms and Their Cloud Implementations Machine learning comprises numerous
paradigms and subcategories for modeling behaviors and predicting future events on the basis of historical
data. The two main categories are supervised learning, where each training sample comes with a label, and
unsupervised learning, whereby the objective is to discover patterns based on input space characteristics
without predefined labels. Both categories are complemented by reinforcement learning, a third class of
ML models mainly employed in situations where decision-making is sequential and temporal dependencies
should be taken into account, with its application being limited because of the need for both exploration
capabilities to discover reward systems and exploitation skills to accentuate previously acquired knowledge.

These paradigms are natively supported by several components and tools provided by cloud service
providers. Serverless functions can be employed to build the decisioning layer for online serving and
inference, whether dealing with low-latency requests or asynchronous batch-based predictions. Container-
based deployments offer more flexibility for other types of solutions, with auto-scaling capabilities
facilitating horizontal scaling to meet demand peaks while maintaining minimal costs during off-peak
periods. Managed ML services abstract the complexity of infrastructure setup and provide a more coherent
development and execution experience by encapsulating ML model training, validation, and prediction into
a common environment where the solution-building team can focus mainly on the application logic. These
managed services constitute the de facto choice for simple batch-based predictions.Unsupported
unsupervised learning solutions are generally not cloud-native but can be integrated into the platform
through scheduled jobs or pipelines, especially when running in a multi-cloud environment.

3.2. Data Pipelines, Feature Stores, and Model Serving in the Cloud

Accommodating the full breadth of the data-to-decision loop relies on dedicated cloud resources for every
underlying operation: data ingestion, ML training, continuous feature engineering, model training, and
model inference. These resources are typically organized as data pipelines that establish a contiguous,
automated process for moving and transforming information from sources to targets. Within the ML
context, pipelines handle online or offline feature engineering, model training from base or auxiliary
features, or both, while feature stores support governance, accessibility, and shared reliability for the data
needed to support successful model inference.

Feature engineering pipelines transform and combine available raw data into the specific features required
for prediction, creation of ML training sets, and ongoing model retraining. At minimum, these pipelines
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can utilize the underlying data infrastructure to calculate new features for ML training. Resource-expensive
transformations, such as predictive content for CTR models or complex spatial calculations, can be
precomputed and cached in a feature store for subsequent direct access. Further, semi-automated ML
Integrations can trigger these pipelines for full end-to-end operation.

Feature elasticity can justify hybrid online-offline ML training architectures. Updated base features flow
directly into model training. Where additional or more complex feature calculations are required, retraining
frequencies can mirror update cadences or Slack priorities, thus minimizing unwanted model drift. As with
raw data, base and auxiliary feature versions should be recorded and governed to avoid out-of-sync
conditions in feature storage.

The training activity can be decoupled from the inference Executors owing to the nature of cloud-based
components. Batch inference models can be registered with source signature, enablement specification, and
associated drift dependencies. Executives can automate scheduled retraining, release updates to the
inference Executors, and undergo exposure testing. Model-ensemble pipelines can draw from available
models across the cloud environment. Feature stores specialize content for predictive serving, reduce
latency on layered transformations, and permit fit-for-use control for usage at scale. Model-ensemble
Executors address limitations from individual model capabilities by orchestrating inference across logical
ensembles.

4. Integration Frameworks for Real-Time Insights

Generic integration frameworks in Figure 1 support end-to-end architectures for real-time business
intelligence that connect data sources, machine learning workloads, and business intelligence dashboards.
They include specialized products, like streaming data management platforms, as well as broader industry
families, such as data or event streaming integrations for data ingestion and transmission and service mesh
for microservice-based workflows. A variety of solutions are also available from leading cloud providers and
ecosystem vendors for more specific integration needs.

Streaming platforms with processing and analytics functions can serve not only for data ingestion from
change data capture, event-bus-style producers, and mobile devices, but also as a transmission and
mediation layer for in-flight transformation into other data spaces, whether batch or streaming. Factors
like data freshness guarantees and streaming quality of service can help aggregate the most important
characteristics of different platforms. Even if they can be addressed separately within a framework, schema
management or governance features warrant a degree of attention.

A temporal coupling approach allows an ML system to detect when both the online and offline training
tables contain samples for the same time period. Once different Databricks workspaces are created to
generate the online features and host the ML model training, for the features being generated daily, the
training table can be selected every hour for online testing. Each of these online-ready features can be the
prediction target in an ML model predicting for a control time period. Results are sent to an API, and the
decision is taken by a dedicated business logic either through automatic scoring or by controlling the
monitoring dashboards.
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Illustrative data freshness lag over time
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4.1. Data Ingestion and Streaming Platforms: Dedicated ingestion infrastructure and streaming
technologies play a crucial role in connecting data sources with real-time processing and decisioning
capabilities. While batch-oriented pipelines often utilize a message queue or bus for conveying intermediate
artifacts, the requirements of analytical workloads with low-latency and high-throughput objectives
necessitate a different approach. Data freshness guarantees make it possible to support dashboards and
other BI channels directly fed by the event stream, obviating the need for intermediate storage in a database.
At the same time, the use of streaming queues or event buses enables a publish-subscribe notification
mechanism that decouples source systems from BI subscribers. This decoupling design principle also
supports intrinsic fault tolerance; if the system routing a data source fails, consumers can keep functioning
as long as historical copies of the data remain in the streaming layer.

In addition to message queueing, specific platforms exist to absorb and transform streams of events. Apache
Kafka is a prominent open-source project that enables the capture, storage, and transformation of events
in a fault-tolerant way. By retaining data in Kafka for a configurable period, both the write and read sides
may resume their operation after short-lived outages. The Confluent extension to Kafka goes a step further;
in addition to mere data routing capabilities, it provides functionality to register a common message
schema, define transformation logic in a familiar SQL-like syntax, and connect with popular databases. For
environments based on other cloud providers, managed versions of data streaming platforms (e.g., Amazon
Kinesis for AWS, Azure Stream Analytics for Microsoft Azure) can also support ingesting and transforming
streams of events.

4.2. Feature Engineering and Model Training at Scale Scalable real-time feature engineering
supports both batch and streaming ML pipelines, while hybrid online/offline training balances model
freshness against resource constraints. Temporal coupling minimizes latency; version-control automation
enforces governance.

Data freshness influences the degree of automation of training processes in any ML system. Executing large
training workloads once a month doesn’t need automation, but taking new training samples from all ML-
ready features every hour is better done through automation. This holds particularly true when the ML
framework is pod-based in a Kubernetes cluster, as the training process can scale according to the available
resources. If the trained model is not consumed every hour, costs can be optimally managed. To enable
continuous model refresh while optimizing resources, two tables can be created in the feature repository
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and coupled temporally: one table can contain recent production serving features, while the other stores
the sample features used for the last retraining.

Equation 2: Percentile latency (p95 / p99) and SLA compliance
Suppose you record n end-to-end latencies:
(LW, L@, Ly
1. Sort them ascending:
Lay<Lp < <Ly
2. For percentile g (e.g., ¢ = 0.95 for pg5), compute index:
k=1q-n]|
3. The empirical percentile is:

The paper frames real-time BI as having latency limited by an SLA.

Let SLA threshold be S (e.g., S = 300 ms). A natural SLA requirement is:

|Pr(Leze <8 = a|

Commonly, @ = 0.95 (p95) or a = 0.99 (p99). Then:
e SLA passes if pg5 < S (for a = 0.95)
e SLA breach rate estimate from samples:

. #i: LD > S
Pr(breach) = g

4.3. Real-Time Inference and Decisioning Low-latency inference engines supply rapid
predictions or recommendations to downstream applications such as customer-facing solutions (e-
commerce, marketing) or operational support systems (alerts, corrective actions). Typical latency
requirements are at the sub-second level, although there are also scenarios such as batch decisioning that
can tolerate higher latency. These endpoints should ideally be hosted close to the user community in order
to minimize network delays—hence many cloud providers allow the deployment of applications on edge
devices for latency-sensitive scenarios. To address the need for real-time responses, low-latency inference
engines are supported by models and ensembles designed not only for accuracy but also for speed.

Decisioning logic built on live inference can orchestrate the triggering of actions based on expected business
impact (e.g., offer acceptance), service quality (e.g., SLA breaches), acceptable risk levels (e.g., counter-
fraud measures), or financial or resource costs (e.g., automatic call routing). Such decision engines should
be governed by business rules that define the criteria for each action, as well as access to functions that
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carry out the associated activity. As with any solution built on predictions, caution is needed. Models exhibit
drift over time due to their reliance on patterns in data and cannot always be relied on implicitly—hence
steering logic for the expected response should encompass monitoring and alerts, as well as human
oversight for truly critical decisions, thereby ensuring that model outputs can be treated responsibly and
appropriately.

5. Case Studies and Applications

The preceding material outlined the integration of streaming and batch processing, feature stores for real-
time retrieval of historical data, and the orchestration of low-latency inference to link ML workload results
to business dashboards. To ground these concepts in practice, the present section discusses domains that
achieve quantifiable business value by delivering upstream data directly from the cloud-enabled BI
pipelines.

Customer Analytics and Personalization Integration architectures targeting customer analytics and
personalization often commence by defining segments based on key attributes, such as high-value
customers, followed by monitoring members through machine learning to determine their likelihood of
churning. Once probabilities reach a predefined threshold, BI dashboards in the marketing department can
trigger alerts to inform the marketing team using specially tailored offers for these customers to prevent
them from terminating their relationship with the company. Subsequently, when the predictive ML model
is sufficiently trusted, it can be used to manage churn in real time by automatically invoking the marketing
communication APIs and executing offers on an active-active basis.

Operations Intelligence and Anomaly Detection Generic BI integration architectures can be applied to
monitoring critical qualitative and quantitative operational components or services and triggering alerts
whenever any of the monitored indicators reveal an out-of-bounds condition. Cloud BI solutions further
support event-driven architectures in which potentially latent anomalies can automatically initiate a root-
cause analysis process aimed at determining the underlying cause—from technical components (e.g.,
systems and networks) to business processes (e.g., supply chain or product quality). By employing
connectivity with advanced analytics platforms, the system can automatically connect with all components
relevant to the symptoms observed and execute shallow investigations on each of them, returning insights
on what requires the greatest attention.

Supply Chain Visibility and Optimization Data pipelines spanning the supply chain can be engineered to
support business viability and risk optimization from a qualitative and quantitative standpoint. Systems
often deploy separate MIW to predict future demand or expected throughput across the various supply
chain paths. By connecting this output with appropriate optimization engines, cloud BI becomes a valuable
enabler to minimize working capital and avoid possible disruptions on the service provided to clients.

5.1. Customer Analytics and Personalization: Illustrative use cases demonstrate segmentation,
churn prediction, and real-time offers, reflecting improvements in latency and accuracy. Providing the right
offering to the right user at the right time is often the holy grail of marketing, but these segments tend to
change over time as customer preferences and external factors (such as macroeconomics and politics)
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influence their behavior. A poorly targeted offer can result in lower conversion or even damage brand
equity. However, a near real-time customer view can help identify the best offering for each of them.

Several businesses now have dashboards that display segments identified through clustering or other
unsupervised methods that run periodically. However, these dashboards are often inadequate for daily
operations, as the business partners rely on last-minute promotions or A/B testing. A common pattern is
to predict customer happiness on a continuous scale and provide that score as an additional feature along
with the latest promotions and recommendations. These scoring ML models can run much more frequently
than previous unsupervised jobs and can even consider input variables that are close to real time, such as
the effect of the last five promotions in the customer transaction history. Marketers and salespeople can
then use that score to reinforce their normal marketing strategies, such as specialized promotions,
upselling, or cross-selling. It is also crucial to conduct model monitoring to make sure that such real-time
preparation is worth the effort and investment.

Optimized
Marketing o
Strategies

Enhanced
e Customer

Retention Better ROI for

Businesses

(<]

Improved
Customer
Engagement

Real-Time
Personalization

Fig 3: The Role of Data Analytics in Customer Personalization

5.2. Operational Intelligence and Anomaly Detection Illustrative use cases demonstrate how ML-
driven real-time enhancements to Cloud Analytics increase the utility of Business Intelligence services.
Typical applications employ ML as a complement to traditional BI — augmenting human decision-making
through, for example, customer segmentation and churn prediction — or aim at operationalizing BI phases
that traditionally suffer from latency, relying on ML for automatic handling of parts of the process that
cannot be efficiently served or managed by people. Along these lines, the services explored include customer
analytics and personalization, operational intelligence and anomaly detection, and supply chain visibility
and optimization. For these operational-oriented use cases, Cloud Analytics pipelines bridge between ML
and BI, thus enabling the Cloud architecture to support both short-term decisioning/tactical operations
and longer-term strategic decisions.

Ongoing monitoring, alerting, and root-cause analysis of IT systems and operations characterize Service
Operation processes and are essential components of an Operational Intelligence approach. When correctly
managed, the key data sources that feed these processes are monitored applications, services, infrastructure
(cloud and on-premises), transactions, cybersecurity events, business processes, and microservices. For
these sources, and especially for the infrastructure and service monitoring data, Cloud Analytics solutions
often use dashboards, whereas typical alerts generated by monitoring systems trigger actions taken by
operators or by systems — for example, auto-healing functionalities or notifications sent to an internal
ticketing system. Complementarily, Business Intelligence tools examine these data sources to assess the
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past and patterns of systems’ operation, service performance and quality, application-related transactions,
and so on.

5.3. Supply Chain Visibility and Optimization: Demand forecasting can be important for businesses
operating in a Just-in-Time (JIT) environment as poor forecasts can lead to dissatisfied customers and
additional costs for expedited shipments. Machine Learning (ML) can improve forecasting accuracy and
allow businesses to better manage the tradeoff between forecast accuracy and inventory holding costs for
other customers. Improved forecasting accuracy can help predict inventory depletion for any product, so
that production and/or procurement can be adjusted accordingly. While process optimization requires
prediction of forecasted demand, actual throughput or customer arrival cannot be predicted accurately in
advance as very short-term variations cannot be captured easily. Businesses therefore require near-real-
time monitoring capability to track how the process is performing with respect to forecasted values through
a control dashboard.

To retain supply chain visibility in near-real time, MetricStream was able to establish a cloud-based
Business Intelligence (BI) dashboard by integrating ML and data from multiple sources, including supplier
websites and third-party vehicle location data. The dashboard provided visibility into the real-time status
of inventory levels in various warehouses, alerting the operations team when the stock of any product fell
below a predefined threshold. Low stock status was combined with other features to generate real-time
alerts for on-time delivery of customer orders. These capabilities helped internal teams act faster on stock
replenishment activities and improve on-time delivery. Machine learning pipelines deployed in the cloud
environment analysed demand patterns for products serviced by specific suppliers and forecasted future
demand including freshness levels for the forecasts.

6. Governance, Security, and Compliance

Governance frameworks ensure trustworthy, reliable, and responsible organizational data. Key elements
include data quality processes (such as cleansing and contextualization), data lineage tracing and auditing,
access control and data-sharing procedures, and risk assessment and monitoring. Attention to these aspects
improves the reliability of data used by business apps and ML workloads alike.

In a cloud environment, data provenance refers to the ability to track the origin and life cycle of data,
enabling organizations to understand where the data comes from, how it has been transformed, and how it
is being used, including data-sharing practices. Data provenance helps organizations (1) improve decision
making, (2) model and predict data quality, (3) compute and manage cloud costs, and (4) audit and ensure
compliance. Data provenance encompasses elements such as data security and privacy, support for business
strategy execution, decision-making enhancement, and alerting for potential issues.

Data privacy involves protecting personally identifiable information (PII), ensuring that it is not disclosed
to unauthorized individuals, and managing its usage throughout its life cycle. Encryption of data in transit
and at rest, as well as access policies such as user and system roles, are means of data privacy assurance.
Data governance minimizes the risk of data misuse, helping organizations comply with General Data
Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), and similar privacy regulations.
Security controls cover both unintentional and deliberate exposure of data.
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Equation 3: Drift monitoring — triggering retraining (equations you can use)
Bucket a feature into B bins. For bin b:
e p,: fraction in training/reference data

e g,: fraction in serving/current data

PSIis:

B
PSI= ) (g, - py) In ()
] Pp

Step-by-step:
2. Compute histograms — proportions {p,} and {g;}
3. Compute each bin contribution (g, — p;)In(q,/ps)
4. Sum across bins
Then define a trigger rule like:
if PSI > 7 = trigger investigation / retraining

For feature CDFs F,¢(x) and F,,.(x):

D = sup|Fep(x) — Fopr ()]
x

If D exceeds a threshold (or p-value is small), you flag drift.

6.1. Data Provenance and Lineage: An important aspect of creating trustworthy and actionable data
for BI is ensuring that it meets expectations related to quality, freshness, and sources. Data provenance
gives a complete history of how the data has been generated and modified. It tracks all alterations made to
the data over its life span, starting from the very first stage when it was collected from an external source.
Data lineage, on the other hand, provides only the set of next upstream nodes contributing to the final data
in the flow. Both these aspects can be relevant depending on the use case. If a new data quality issue comes
up, an organization can debug it by going back to find how that specific set of data items was modified
during the different stages of their journey. If the goal is to decide whether a certain data set has to be
trusted before making an important decision based on a BI dashboard, then it is sufficient to just track the
latest provenance nodes involved in the generation process.

In a modern cloud context, where BI are often split into multiple cloud services, it is vital to monitor the
data journey across these services. Cloud service providers usually provide a good level of monitoring, such
as logs that provide information about input and output data sets and can be automatically parsed. Certain
cloud-based BI tools also automatically capture the metadata of execution paths, including source and
target data sets. Public cloud-data services can also provide data-lineage information that represents the
dependencies among data sets, showing the relationships between raw data and the final BI dashboards. A
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proper implementation of provenance and lineage support can thus be obtained by combining these
services and tools.

6.2. Privacy, Security, and Compliance Considerations Data privacy is a key concern for
organizations because of reputational risk and potential regulatory impacts. Organizations must identify
the personal information of customers, employees, and business partners stored or processed within their
cloud analytics solution and implement adequate policies and systems to address data privacy. Depending
on geographical location and industry, organizations may also be bound by legal privacy regulations, such
as the EU General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), Health
Insurance Portability and Accountability Act (HIPAA), and Payment Card Industry Data Security Standard
(PCI DSS), which set requirements about data collection, processing, storage, sharing, and deletion. Data
masking, minimization, and pseudonymization techniques are often appropriate for analytics that include
privacy-sensitive information. Additionally, cloud providers typically offer encryption and a range of access
policies to mitigate the risk of unauthorized access to sensitive or private data.

Some cloud vendors, including AWS and Google, have made statements against the use of their tools for
surveillance or discriminatory purposes. An organization planning to leverage analytics to automatically
identify, exclude, or treat people differently should take appropriate care to avoid introducing model bias,
and using a human-in-the-loop framework has proven to further mitigate this risk.

6.3. Ethical and Responsible Al in Cloud BI: Within the cloud business intelligence context, adopting
machine learning can directly exacerbate ethical and responsible artificial intelligence (AI) challenges and
thus must be mitigated or prevented. Safe and trustworthy Al systems can be attained by addressing the
issues related to data, processes, and algorithms. Given that data is the lifeblood of machine learning-based
systems, data bias mitigation—where training and operational data follow similar distributions—
constitutes an essential concern. To achieve a high level of algorithmic transparency, the inclusion of
adequate interpretability and explainability mechanisms is essential. Equally important is the governance
and auditability of the overall development lifecycle, ensuring that the various formal and informal
processes and methodologies are being followed. Furthermore, building accountability through attribution
of responsibility for machine learning-based decisions, especially those affecting human beings, is equally
important.

From an operational perspective, ensuring that human-driven decisions—and their consequences—are
based on machine learning-based insights/decisions can minimize undesirable business outcomes. In
effect, making the overall decision chain a human-in-the-loop capability leads to responsible and
accountable Al systems. Moreover, requiring human involvement in the decision-making processes also
manages possible legal repercussions when using machine learning in cloud business intelligence
environments.

7. Evaluation and Metrics

While conventional business intelligence solutions (often with batch analytics) can deliver tremendous
insights, the value of real-time integration and latency-sensitive processing is increasingly recognized.
Latency is not an objective in itself; it is a means to achieve an outcome. Defining target latencies for data-
to-decision loops and translating them into processing SLAs is crucial to delivering real-time actionability.
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Cloud architectures natively designed for streaming analytics can also run machine learning (ML)
workloads for scoring and other data-intensive tasks.

A tailored service lifecycle, including drift detection for model accuracy, is key for embedding management
into real-time operational delivery. Real-time BI relies on a variety of performance metrics; latency,
freshness, and volume are obvious raw indicators, but others—such as the predictive accuracy of a ML
model or the cost per decision made—distill into measures that map directly to the top-level business
objectives of user organizations.

**Real-Time Performance Metrics**

Business-driven service organization models establish service levels for the operations within the
organization—in effect, the emulation of an external service provider responsible for delivering accurately
defined SLAs in terms of content and performance. Relevant metrics include latency, throughput, freshness,
and feature availability between data-oriented, processing-oriented, and model-based systems. Per-target
percentiles for processing delays at each stage are critical to managing risks of overall service level breaches.
The latency requirement established for a real-time BI solution affects not only the overall ML life cycle but
also the respective performance SLAs in the data pipeline and feature engineering stages.

7.1. Real-Time Performance Metrics: Real-time business intelligence hinges on specific metrics that
gauge stream processing quality and speed. Typical success indicators encompass latency, throughput, data
freshness, and their associated fallback measures, while common service-level agreements delineate
performance benchmarks for BI dashboards. Latency denotes the end-to-end processing duration from
source emission to BI dashboard update; streaming systems are often assessed on 95th or 9gth percentile
latency, with extreme values checking the overall contribution of processing bottlenecks. Throughput
quantifies processed data volume within a defined time interval; analytic systems usually satisfy a
throughput SLA through load balancing among multiple streaming paths. Data freshness signals the lag
between dashboard refresh and source event emission, commonly narrowed for alerting systems to a few
seconds.

These objective real-time performance markers primarily fulfill SLAs. However, the ultimate indicator of
BI architecture remains the improved accuracy and timeliness of BI decision-making, which relate to
trackable business parameters like revenue growth in customer analytics and cost reductions in supply
chain optimization.
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Fig 4: Real-Time Performance Metrics
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7.2. Model Monitoring and Lifecycles : Organizational decisioning is inherently tied to the data used
for training and serving predictive or prescriptive models. Statistical relationships between prediction
variables and outcome variables evolve consistently, resulting in drift. Accordingly, deployed models must
be constantly monitored for performance degradation. Business understanding should help define
monitoring conditions and performance thresholds. The relevant stakeholders should be notified for any
threshold breach with supporting evidence for corrective action. Either a manual review and retraining
process can be implemented, or a retraining pipeline can be automatically triggered. Common triggers are
data volume or latency, but detection of data drift in the serving set through suitable test statistics is also
becoming popular. The drift detection can be achieved by means of validation datasets and cloud-integrated
libraries.

The execution of model retraining must consider data freshness. For batch-processing of historical data,
models must be retrained before they drift beyond acceptance levels, whereas, for online-processing
models, the presence of minor drift is acceptable until a sufficient volume of new data arrives to warrant
batch retraining. The architecture must formally impose a governance and lifecycle management on
models, fully automating the retraining and deployment while supporting novelty and/or user validation
whenever needed.

8. Conclusion

The synthesis and integration of cloud-enabled analytics with the capabilities of machine learning hold the
promise of significant improvements in the real-time aspects of business intelligence. Organizations can
leverage real-time machine learning models to make rapidly-decaying decisions based on the freshest data.
A comprehensive set of architectural considerations guides the integration of both layers at a higher level
than that of traditional analytics and inform the development of end-to-end integration architectures.

These architectures were applied to three exemplars. In the area of customer analytics and personalization,
real-time segmentation, churn prediction, and offer generation can be scaled to large populations, with
pipeline latency and the accuracy of predictions forming two focal points. Maturity in operational
intelligence and anomaly detection allow business objectives to be monitored and alerts issued, supported
by drill-down analytics that help isolate root causes. Advances in visible supply chains enable demand
forecasting, greater throughput in production processes, and real-time risk signals on inventory positions.
Key business applications of this emerging space are thus supported by integrated cloud-based approaches.

8.1. Future Trends: The area of real-time cloud-enabled BI is set for significant evolution, characterized
by the maturation and convergence of several fields that presently operate independently. For example,
advances in data-intensive and open-source frameworks, coupled with growing volumes of data, are
encouraging the formation of a vibrant ecosystem of real-time analytics. In addition, the deployment of
different types of ML models in production has now become business-as-usual. Probably the most exciting
aspect of the future of cloud-based BI lies in the integration of end-to-end pipelines stitching together data
and ML workloads, monitoring model performance, and driving cloud-based applications, often in real
time. Nevertheless, the overall solution space remains child-like, where each building block behaves in
isolation but meets the formal and functional architectural requirements for real-time BI.
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The convergence of these different areas offers the possibility of augmenting an increasing array of BI-
related processes—from simple market segmentation to more complex customer experience management—
using a unique pipeline approach executed in the cloud. Integrating data, ML workloads, and BI systems,
while catering to the characteristics of specific business concerns, ensures that these applications benefit
from the most appropriate analysis and inference capabilities. Nevertheless, these cloud-enabled solutions
must be designed, implemented, and operated carefully to address security, privacy, robustness, quality,
and compliance issues in an integrated manner.
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