

How Brick-and-Mortar Infrastructure Is Giving Walmart a Competitive Edge Over Amazon

Cijin Lonappan Kappani

Walmart Inc, USA

ARTICLE INFO

Received: 01 Nov 2025

Revised: 14 Dec 2025

Accepted: 22 Dec 2025

ABSTRACT

The competition between Walmart and Amazon represents a fundamental clash of retail philosophies. Amazon built dominance through digital infrastructure, cloud computing, and sophisticated logistics networks. Walmart leveraged decades of physical retail presence across thousands of U.S. stores positioned near the vast majority of American consumers. Geographic proximity creates last-mile fulfillment advantages unavailable to centralized warehouse operations. Grocery commerce favors established physical infrastructure due to perishable product handling requirements and cold chain expertise. Walmart generates substantial revenue from grocery operations developed through decades of supplier relationships and inventory management. Capital efficiency improves through dual-purpose asset utilization rather than constructing dedicated fulfillment facilities. Amazon operates hundreds of fulfillment centers globally requiring substantial upfront investment. Physical stores account for the majority of retail sales, challenging assumptions about digital commerce inevitability. Store networks enable fulfillment capabilities, grocery dominance, and customer experiences difficult to match by pure e-commerce platforms. The omnichannel integration of physical and digital capabilities determines competitive sustainability in contemporary retail environments. Brick-and-mortar presence constitutes strategic advantage rather than operational liability.

Keywords: Omnichannel Retail Strategy, Last-Mile Fulfillment Optimization, Physical Distribution Networks, Perishable Goods Logistics, Retail Infrastructure Comparison, Customer Experience Integration

Introduction

The battle between Walmart and Amazon represents a Goliath versus Goliath confrontation. America's largest retailer by revenue competes against the country's e-commerce giant. The fundamentally different paths taken by both companies make this competition fascinating beyond mere scale considerations [1], [11].

Amazon built an empire on digital infrastructure. Cloud computing through AWS generates substantial profits. Sophisticated logistics networks enable rapid delivery capabilities. Data-driven advertising creates revenue streams subsidizing aggressive retail pricing. Speed and convenience define the Amazon experience. Prime members expect orders within days, sometimes hours [2], [12].

The Amazon model revolutionized consumer expectations regarding online shopping. Two-day delivery became standard rather than exceptional. Same-day delivery expanded across metropolitan markets. Subscription-based Prime membership created customer loyalty through bundled benefits including streaming entertainment and exclusive deals. The company invested billions constructing fulfillment center networks optimized for speed and efficiency [1], [13].

Walmart took a different route over decades. More than 4,600 U.S. stores defined American retail for generations. When e-commerce exploded, many observers wrote obituaries for big-box retail. Physical stores seemed destined to become expensive liabilities. Walmart had other ideas regarding infrastructure utilization [1], [12].

The conventional wisdom suggested traditional retailers faced inevitable decline. Real estate costs burdened physical operations competing against asset-light digital models. Inventory carrying expenses added financial pressure. Labor requirements created ongoing operational costs that e-commerce competitors avoided. Industry analysts predicted store closures would accelerate as online shopping captured increasing market share [2], [11].

Rather than viewing stores as baggage, Walmart recognized something Amazon cannot easily replicate. Physical proximity to customers creates unique advantages. Nearly 90% of Americans live within 10 miles of a Walmart location. This geographic distribution constitutes a feature rather than a bug in the digital age. Store networks enable fulfillment capabilities, grocery dominance, and customer experiences that pure e-commerce platforms struggle to match [2], [12].

The strategic repositioning of physical infrastructure challenged assumptions about retail evolution. Stores transformed from single-purpose shopping destinations into multi-functional fulfillment hubs. Online orders get picked from store shelves and prepared for customer pickup. Home deliveries originate from nearby locations rather than distant warehouses. The omnichannel integration created competitive capabilities unavailable to pure digital platforms [1], [11].

This article examines how Walmart has weaponized brick-and-mortar footprint to compete with Amazon across delivery speed, grocery dominance, and customer experience. The analysis addresses last-mile fulfillment advantages, perishable goods handling requirements, capital efficiency comparisons, and technology integration strategies. The findings challenge prevailing narratives about digital commerce inevitability and demonstrate how physical retail presence constitutes sustainable competitive advantage [12].

Related Work

This article examines the competitive dynamics between Walmart and Amazon through the lens of physical infrastructure advantages. The analysis focuses on how brick-and-mortar retail presence creates sustainable differentiation against digital-native competitors. Four primary dimensions receive detailed examination throughout the article.

The first dimension addresses last-mile fulfillment optimization. Geographic proximity to customer populations enables rapid order processing and delivery. Store-based fulfillment reduces transportation distances compared to centralized warehouse operations. Customer pickup options eliminate delivery costs entirely for substantial transaction volumes.

The second dimension explores perishable goods handling requirements. Grocery commerce demands specialized cold chain infrastructure and trained personnel. Temperature management, quality assessment, and substitution decisions require expertise developed through sustained retail

operations. Physical store networks possess these capabilities through decades of grocery business development.

The third dimension analyzes capital efficiency comparisons between fulfillment models. Dedicated e-commerce facilities require substantial upfront construction investment. Retrofitting existing retail locations achieves comparable fulfillment capabilities through incremental expenditure. Dual-purpose asset utilization extracts additional value from prior infrastructure investments.

The fourth dimension investigates technology integration strategies within physical retail environments. Autonomous delivery systems, data analytics platforms, and inventory management technologies deploy effectively through distributed store networks. Omnichannel data collection creates analytical advantages unavailable to single-channel competitors.

The article contributes a comprehensive framework for understanding how established retailers leverage physical presence against digital platform competition. The findings demonstrate that brick-and-mortar infrastructure constitutes strategic advantage rather than operational liability in contemporary retail environments.

Strategic Value of Physical Proximity

A. Geography as Advantage

Amazon's fulfillment network consists of massive warehouses positioned strategically around the country. Optimization targets reaching maximum customer numbers within two days. The system appears impressive until compared with Walmart's setup. Every one of the 4,600 stores functions as both a retail location and a mini distribution center. Inventory already sits on shelves waiting for customers who might walk through doors or place online orders [1], [3].

This configuration creates what strategists call last-mile advantage. The final delivery leg from warehouse to doorstep remains expensive and complicated. Walmart sidesteps much of this problem entirely. When customers order online for pickup, no last mile requires navigation. Customers come to products directly. When home delivery becomes necessary, orders often ship from stores just a few miles away rather than fulfillment centers 50 or 100 miles distant [3], [11].

Economics work differently when starting from neighborhood locations rather than regional warehouses. Transportation costs drop substantially. Delivery times shrink considerably. Same-day service becomes realistic without heroic logistics efforts. Walmart did not need to build this infrastructure from scratch. Existing stores already served in-store shoppers. The company simply reimagined utilization approaches [2], [3].

B. Omnichannel Fulfillment in Practice

Walking into a Walmart today reveals dedicated parking spots for online order pickup. Inside, pickup towers provide automated locker systems where customers retrieve orders in seconds. Some stores have entire staging areas where associates prepare online orders for curbside delivery. Stores have evolved beyond traditional retail spaces [4], [11].

Consumer behavior evolution makes this matter significantly. People no longer think in terms of online shopping versus store shopping. Convenience drives decisions. Sometimes browsing on phones while watching television precedes picking up orders on the way home from work. Other times walking into stores to see products in person precedes purchasing. Walmart's infrastructure accommodates both modalities seamlessly [4], [12].

Amazon tried solving the last-mile challenge through massive investment in delivery networks. Branded vans have become ubiquitous in many neighborhoods. However, delivery remains expensive permanently. Physics and labor costs ignore routing algorithm sophistication. Walmart's approach eliminates delivery costs entirely for the growing percentage of customers choosing pickup. These customers often browse in-store when arriving, generating additional sales that pure delivery models miss [3], [4].

Fulfillment Dimension	Walmart Store-Based Model	Amazon Warehouse-Based Model
Geographic Position	Stores located near residential areas	Regional warehouses strategically positioned
Delivery Distance	Orders ship from nearby stores	Orders ship from distant fulfillment centers
Customer Pickup	Dedicated parking spots and pickup towers	Limited physical pickup locations
Last-Mile Cost	Eliminated for pickup orders	Required for all deliveries
Curbside Service	Available at store locations	Not applicable
In-Store Browsing	Generates additional sales during pickup	Not available
Infrastructure Investment	Existing stores retrofitted	New delivery network construction required

Table 1. Strategic Value of Physical Proximity [1, 2, 3, 4, 11].

III. Grocery: Where Physical Infrastructure Dominates

A. The Perishability Problem

Grocery represents roughly \$800 billion in annual U.S. retail sales. This category remains uniquely difficult to handle through pure e-commerce models. Fresh produce needs inspection, careful selection, and proper temperature maintenance. Meat and dairy have strict handling requirements. Bananas cannot sit in sorting facilities for hours like books can. Customers remain particular about groceries in ways not applicable to electronics or household goods [5], [12].

Amazon poured resources into cracking grocery. The Whole Foods acquisition in 2017 was supposed to be transformative. Amazon Fresh stores promised high-tech grocery experiences. Years later, results have been mixed at best. Whole Foods remains profitable but has not revolutionized grocery retail. Amazon Fresh has expanded slowly, with reports suggesting the company still figures out economics [12], [13].

Walmart meanwhile generates over half of total revenue from grocery sales. The company has perfected grocery retail for decades. Supplier negotiations, inventory turn management, and associate training on produce quality developed over extended periods. When Walmart added online ordering to existing systems, reinventing grocery retail became unnecessary. Customers simply order digitally what stores already sell [1], [5].

Results speak clearly. Customers order groceries online and pick them up within hours, sometimes in as little as 30 minutes with drone delivery in select markets. Store associates who already understand local inventory handle picking. Infrastructure for keeping perishables fresh already exists. Compare this to building dedicated grocery fulfillment centers from scratch, which requires massive capital investment and operational expertise most companies do not possess [5], [13].

B. The Frequency Factor

Grocery shopping happens constantly. The average American household makes about one grocery trip per week. This generates 52 touchpoints per year minimum. No other retail category approaches this interaction frequency [6], [12].

Compound advantages accrue to Walmart through this frequency. Each grocery pickup or delivery presents opportunities to suggest other products. When customers come for grocery pickup and decide to run inside for forgotten items, aisles of general merchandise await. The habitual nature of grocery shopping builds routine into customer behavior. Walmart becomes part of weekly life rhythms in ways discretionary shopping never could [6], [11].

Amazon has Prime, creating stickiness through subscription psychology and bundled benefits. Walmart has grocery, creating stickiness through necessity and habit. Prime subscriptions might get cancelled during expense cutting. Grocery shopping probably continues regardless of economic conditions [1], [6].

Grocery Dimension	Walmart Advantage	Amazon Challenge
Cold Chain Infrastructure	Decades of established systems	Building from scratch
Personnel Expertise	Trained associates for quality assessment	Limited grocery handling experience
Product Freshness	Immediate shelf-to-customer fulfillment	Extended warehouse handling periods
Substitution Decisions	Knowledgeable store associates	Algorithm-based selections
Acquisition Strategy	Organic grocery business growth	Whole Foods acquisition in 2017
Fresh Store Concept	Integrated within existing stores	Amazon Fresh expanding slowly
Revenue Contribution	Over half of total revenue from grocery	Mixed results in grocery segment
Customer Touchpoints	Weekly grocery trips create habitual visits	Prime subscription model
Delivery Speed	Pickup within hours, drone delivery in select markets	Same-day delivery in select areas

Table 2. Grocery: Where Physical Infrastructure Dominates[1, 5, 6, 11, 12, 13]

IV. Fulfillment Economics That Actually Work**A. Capital Efficiency**

Amazon's fulfillment network cost tens of billions of dollars to build. The company operates over 500 fulfillment centers globally. Each requires substantial upfront investment. Conveyor systems, robotics, sorting equipment, climate control, land acquisition, and construction add up fast. These costs remain necessary for Amazon's business model despite being massive [7], [11].

The scale of Amazon's infrastructure investment reflects a deliberate strategic choice. Centralized fulfillment requires purpose-built facilities optimized for high-volume order processing. Warehouse automation demands sophisticated conveyor systems and robotic picking solutions. Climate control systems protect inventory from temperature and humidity damage. Land costs in logistics-friendly locations continue rising. Construction timelines extend months or years before facilities become operational [7], [13].

Walmart took a different path. Instead of building parallel infrastructure for e-commerce, the company retrofitted existing stores. Some aisles were reconfigured for faster picking. Technology was added for inventory management and order tracking. Associates were trained on fulfillment procedures. Fundamental infrastructure including buildings, loading docks, parking lots, and basic inventory systems was already there, already paid for, already generating revenue through in-store sales [2], [7].

This approach demonstrates superior capital efficiency. Walmart gets dual use from assets originally designed for single-channel retail. Retrofit costs and technology investments exist but represent incremental improvements to existing operations rather than greenfield construction of entirely new facilities. Capital efficiency matters when competing with Amazon's economies of scale [7], [12].

The financial implications extend beyond initial construction costs. Ongoing maintenance expenses differ substantially between dedicated fulfillment centers and retail stores serving dual purposes. Asset depreciation calculations favor multi-use facilities generating diverse revenue streams. Return on invested capital improves when existing infrastructure supports expanded operational capabilities [2], [11].

B. Labor Utilization That Makes Sense

Fulfillment centers operate on fairly predictable patterns. Orders come in, workers pick and pack them, trucks carry them away. Labor demand remains relatively constant throughout operating hours. If order volume drops, workers still remain on shift because sending people home mid-day proves difficult [8], [11].

Amazon's workforce management faces inherent constraints within dedicated fulfillment environments. Seasonal demand fluctuations require temporary worker hiring and training. Peak periods like holiday shopping seasons strain facility capacity. Slower periods result in underutilized labor resources. Balancing workforce size against variable demand patterns creates ongoing operational challenges [8], [12].

Store-based fulfillment offers more flexibility. During busy shopping hours, associates focus on stocking shelves, helping customers, and running registers. During slower periods including early mornings and weekday afternoons, those same associates pivot to fulfilling online orders. The labor pool serves both channels, smoothing out inefficiencies that come with single-purpose facilities [8], [12].

Knowledge advantages exist as well. Store associates understand layouts intimately. Associates know which products run low, what substitutes make sense when items are out of stock, and where to find

items quickly. When customers have questions about online orders, people right there can help. This local knowledge and human touch creates service quality that highly automated fulfillment centers struggle to match [1], [8].

Returns processing further illustrates labor efficiency differences. Walmart store associates handle online purchase returns during regular shifts. Returned merchandise gets inspected and restocked on sales floors within hours. Amazon must transport returned items back through fulfillment networks for processing. The reverse logistics complexity adds labor costs and extends time before items become resaleable [8], [13].

Economic Factor	Walmart Approach	Amazon Approach
Infrastructure Strategy	Retrofitted existing stores	Built dedicated fulfillment centers
Capital Investment	Incremental technology additions	Tens of billions in facility construction
Facility Count	Over 4,600 stores serving dual purpose	Over 500 fulfillment centers globally
Asset Utilization	Dual-use retail and fulfillment	Single-purpose warehouse facilities
Labor Flexibility	Associates pivot between tasks based on demand	Constant staffing regardless of volume
Peak Period Handling	Same workforce serves both channels	Seasonal hiring and training required
Employee Knowledge	Intimate understanding of store layouts	Standardized warehouse procedures
Returns Processing	Immediate in-store inspection and restocking	Reverse logistics through fulfillment network
Customer Service	Face-to-face assistance available	Remote support channels

Table 3. Capital Efficiency and Labor Utilization: Walmart vs Amazon [[1, 2, 7, 8, 11, 12, 13]

V. Technology Integration: The Best of Both Worlds

Walmart has not ignored technology. The company deployed automated pickup towers that dispense orders in seconds. Mobile apps guide associates through optimized picking routes, minimizing time spent fulfilling orders. Artificial intelligence predicts demand patterns and optimizes inventory placement, ensuring fast-moving items are positioned for quick access [9], [11].

In-store automation continues expanding across Walmart locations. Inventory scanning robots patrol aisles identifying out-of-stock items and pricing errors. Automated sorting systems accelerate backroom operations. Self-checkout kiosks reduce front-end labor requirements during peak shopping periods. These technologies enhance store productivity without replacing fundamental physical infrastructure advantages [9], [12].

The company has also piloted futuristic delivery methods. Autonomous vehicles, drone delivery, and partnerships with technology companies enhance last-mile capabilities. What remains notable is that these innovations build upon physical infrastructure rather than replacing stores. Stores serve as

launching points for drone operations, staging areas for autonomous deliveries, and coordination hubs for third-party delivery partners [9], [12].

Drone delivery programs demonstrate physical infrastructure advantages clearly. Walmart operates drone delivery from store locations in select markets, reaching customers within 30 minutes for eligible orders. Store rooftops and parking areas provide launch facilities. Existing inventory supports immediate order fulfillment. Amazon pursues similar drone capabilities but must coordinate launches from dedicated facilities rather than distributed retail locations [9], [13].

This approach lets Walmart adopt emerging technologies incrementally. Testing and refining happen at limited scale before broader rollout. A store-based innovation strategy has inherent advantages over system-wide technology deployments. Experimentation in dozens of locations enables learning what works and scaling successes without betting the entire company on unproven concepts [9], [13].

When customers shop both online and in-store, Walmart builds more complete customer profiles than single-channel retailers. Purchase history, browsing behavior, location data, and shopping patterns create rich data sets enabling personalization and better inventory management. This integrated data allows Walmart to optimize operations in ways pure-play retailers cannot [10], [12].

Big data analytics capabilities multiply through omnichannel operations. Transaction records from physical stores combine with digital browsing histories. Geographic purchasing patterns inform localized inventory decisions. Customer segment identification enables targeted promotional campaigns. Predictive models anticipate demand shifts before inventory shortages occur [10], [12].

Amazon possesses formidable data analytics capabilities built on e-commerce transaction histories. However, physical store limitations restrict data collection to online interactions primarily. Walmart captures customer behavior across both channels comprehensively. The resulting analytical advantages support inventory optimization, personalized recommendations, and operational efficiency improvements unavailable to single-channel competitors [10], [11].

Machine learning applications continue expanding across retail operations. Demand forecasting models improve accuracy through multi-channel data inputs. Dynamic pricing algorithms respond to competitive conditions and inventory levels. Customer lifetime value predictions inform marketing investment allocation. Both Walmart and Amazon invest heavily in artificial intelligence capabilities, though Walmart's omnichannel data advantages create differentiated analytical opportunities [10], [13].

Technology Category	Walmart Implementation	Amazon Implementation
Automated Pickup	Pickup towers dispensing orders in seconds	Amazon Hub and locker locations
Mobile Applications	Optimized picking routes for associates	Customer-facing ordering apps
Inventory Management	AI-driven demand prediction and placement	Warehouse robotics and automation
Drone Delivery	Store-based launch facilities	Dedicated facility coordination
Autonomous Vehicles	Stores as staging areas	Fulfillment center dispatch
Data Collection	Omnichannel physical and digital integration	Primarily e-commerce transaction data

Customer Profiles	Purchase history across both channels	Online browsing and purchasing data
Demand Forecasting	Multi-channel data inputs	E-commerce transaction analytics
Innovation Testing	Incremental experimentation at select stores	System-wide technology deployments
Machine Learning	Geographic purchasing pattern analysis	Customer recommendation engines

Table 4. Technology Deployment Strategies in Omnichannel Retail [9, 10, 11, 12, 13]

Conclusion

Walmart transformed brick-and-mortar infrastructure from potential liability into strategic weapon against Amazon. Rather than viewing stores and e-commerce as competing channels, an integrated ecosystem exploits inherent advantages of physical proximity to customers. The omnichannel model enables fulfillment efficiency, grocery dominance, service integration, and customer experiences difficult for pure e-commerce platforms to replicate. Conventional narratives about digital retail triumph over traditional formats face significant challenge from Walmart's success. The future belongs to retailers seamlessly blending physical and digital capabilities. Leveraging each channel's strengths creates comprehensive customer solutions. Thousands of stores, once viewed as anchors weighing down digital transformation, became launching pads for omnichannel strategies threatening Amazon's dominance. Brick-and-mortar networks may prove not relics of the past, rather foundations for sustained competitive advantage. The question shifts from whether physical retail survives in the e-commerce age to how effectively retailers integrate physical assets into omnichannel strategies serving full spectrum customer needs. The retail battle represents more than market share competition. The clash of philosophies will define commerce for decades ahead. Consumers emerge as ultimate winners, benefiting from lower prices, faster delivery, and constant innovation driven by intense competition between retail giants.

References

- [1] Andrew Turner, "Walmart vs Amazon: How Walmart can Compete with Amazon in the Age of E-Commerce," Finance Undergraduate Honors, 2022. [Online]. Available: <https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1075&context=finnuht>
- [2] Yujing Zhang, "Walmart's Journey to Digital Transformation," Frontiers in Economics and Management, 2021. [Online]. Available: <https://www.fieam.org/download/FEM-2-4-44-52.pdf>
- [3] WEI LIU, "Route Optimization for Last-Mile Distribution of Rural E-Commerce Logistics Based on Ant Colony Optimization," IEEE Access, 2019. [Online]. Available: <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8950401>
- [4] Carmen Gerea et al., "Omnichannel Customer Experience and Management: An Integrative Review and Research Agenda," MDPI, 2021. [Online]. Available: <https://www.mdpi.com/2071-1050/13/5/2824>
- [5] Mohammad Nami et al., "Recent Progress in Intelligent Packaging for Seafood and Meat Quality Monitoring," Advanced Materials Technologies, 2024. [Online]. Available: <https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202301347>

[6] David R. Bell and James M. Lattin, "Shopping Behavior and Consumer Preference for Store Price Format: Why 'Large Basket' Shoppers Prefer EDLP," *Marketing Science*, 1998. [Online]. Available: [https://faculty.wharton.upenn.edu/wp-content/uploads/2012/04/22_Bell-Lattin-\(1998\)-MS.pdf](https://faculty.wharton.upenn.edu/wp-content/uploads/2012/04/22_Bell-Lattin-(1998)-MS.pdf)

[7] Reza Farzipoor Saen, "Restricting weights in supplier selection decisions in the presence of dual-role factors," *ScienceDirect*, 2010. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0307904X09004235>

[8] Professor Irene Ng et al., "Embedding the new Discipline of Service Science," *ResearchGate*, 2010. [Online]. Available: https://www.researchgate.net/profile/Irene-Ng-8/publication/226268177_EMBEDDING_the_New_Discipline_of_Service_Science/links/oob495282a4596cofooooooo/Embedding-the-New-Discipline-of-Service-Science.pdf

[9] Elin Alverhed et al., "Autonomous last-mile delivery robots: a literature review," *European Transport Research Review*, 2024. [Online]. Available: <https://link.springer.com/content/pdf/10.1186/s12544-023-00629-7.pdf>

[10] Patrick Mikalef et al., "Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities," *ScienceDirect*, 2020. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S0378720618301022>

[11] Paniz Arab, "Retail Mergers, Markets, and the Rise of Amazon," *UC Irvine Law Review*, 2023. [Online]. Available: <https://escholarship.org/content/qt5sf5d05x/qt5sf5d05x.pdf>

[12] Haroon Abbu et al., "The Case of Digital Transformation in Grocery Business: A Conceptual Model of Digital Grocery Ecosystem," *IEEE*, 2021. [Online]. Available: https://www.researchgate.net/profile/Haroon-Abbu/publication/355854471_The_Case_of_Digital_Transformation_in_Grocery_Business_A_Conceptual_Model_of_Digital_Grocery_Ecosystem/links/61bd3313fd2cbd7200aa8ad6/The-Case-of-Digital-Transformation-in-Grocery-Business-A-Conceptual-Model-of-Digital-Grocery-Ecosystem.pdf

[13] Trinity L. Hansen, "Amazon Strategic Audit," 2025. [Online]. Available: <https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1848&context=honorstheses>