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ARTICLE INFO ABSTRACT

Received: 26 Dec 2024 Privacy-preserving machine learning has become essential in healthcare, where
sensitive patient data cannot be centralized without risking confidentiality and
regulatory non-compliance. Federated learning (FL) offers a viable alternative by
Accepted: 22 Feb 2025 enabling collaborative model training while retaining data on local medical
institutions. This study presents a robust federated learning framework designed to
maintain strong predictive performance across both independent and identically
distributed (IID) and non-IID data scenarios, reflecting realistic variability in
healthcare environments. Using EfficientNet-Bo as the core architecture and the
PathMNIST dataset as the benchmark, we evaluate the framework across federations
of 5 and 10 clients, systematically comparing centralized and federated setups.
Experimental results demonstrate that the proposed framework achieves 95.29%
accuracy under IID conditions with 5 clients and 94.99% with 10 clients, closely
matching centralized performance. Under non-IID distributions generated via a
Dirichlet partitioning, the framework maintains competitive performance with 94.26%
accuracy for 5 clients and 93.20% for 10 clients. Additional metrics highlight the
system’s robustness: precision reaches up to 95.38%, recall up to 95.35%, and F1-score
up to 95.23% in centralized benchmarking, with only marginal degradation under
federated settings. Convergence curves show stable optimization in IID scenarios and
controlled fluctuations under non-IID heterogeneity, confirming the resilience of the
federated averaging strategy. These findings demonstrate that the proposed federated
learning framework delivers high model utility while ensuring decentralized data
governance, making it suitable for scalable, privacy-conscious medical image analysis.
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1. INTRODUCTION

Data security and privacy preservation are critical challenges in domains handling sensitive information, particularly
in healthcare [1]. Traditional centralized learning methods require aggregating all data in a single location, increasing
the risk of privacy breaches and unauthorized access [2]. Federated learning (FL) has emerged as a promising
solution, enabling multiple institutions to collaboratively train a global model without exchanging raw data [3]. In
this framework, each client trains a local model on its private dataset, and only model updates are shared with a
central server for aggregation. This decentralized approach mitigates privacy risks while allowing effective distributed
learning across multiple organizations.

Despite its advantages, federated learning faces challenges when client data are heterogeneous or non-identically
distributed (non-IID). Such statistical heterogeneity can affect model convergence and performance, particularly in
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practical healthcare scenarios with diverse data sources. Addressing these challenges requires frameworks that
maintain high model accuracy and stable convergence across IID and non-IID data distributions. In this work, we
present a federated learning framework tailored for privacy-sensitive healthcare applications. The system
orchestrates local model training across multiple medical centers and securely aggregates updates to construct a high-
quality global model. Experiments on the PathMNIST dataset [4], using configurations of 5 and 10 clients under

both IID and non-IID settings, demonstrate that the proposed framework closely matches centralized performance,
achieving 94.79 % accuracy with stable convergence. These results highlight the framework’s resilience to statistical
heterogeneity, computational efficiency, and practical applicability in decentralized medical environments. Privacy-
preserving federated learning has emerged as a key paradigm for collaborative model training in healthcare, allowing
institutions to jointly benefit from distributed medical data without compromising patient confidentiality. Building
upon foundational mechanisms such as differential privacy and secure aggregation, recent research has focused on
improving the robustness of federated learning under heterogeneous and non-IID data distributions that commonly
arise in real-world medical environments.

Adaptive aggregation strategies have been introduced to enhance convergence and model stability by dynamically
adjusting the contribution of local updates according to data divergence, achieving improved performance on medical
datasets such as tuberculosis chest X-rays and brain tumor MRIs [5]. Frameworks such as Health-FedNet provide
scalable architectures for privacy-preserving medical analytics across institutions [6], while MultiProg addresses
feature heterogeneity in multi-source Electronic Health Records through multi-channel architectures and feature
calibration techniques [7]. These advances highlight the growing maturity of federated learning frameworks designed
for healthcare applications, emphasizing both privacy preservation and learning efficiency under diverse data
conditions. At the same time, recent studies continue to stress the importance of ethical and legal compliance,
including informed patient consent and adherence to healthcare data protection regulations during deployment of
federated learning systems [8].

2. PROPOSED METHODOLOGY

A. System Overview

The proposed framework implements standard federated learning (FL) for privacy-sensitive healthcare applications
[1]. The system enables multiple medical centers to collaboratively train a global model without sharing raw patient
data. Each client trains a local model on its private dataset and sends model updates to a central server for aggregation
[9]. The server constructs a high-quality global model by combining the updates, which is then redistributed to clients
for the next training round. This approach allows effective distributed learning while mitigating privacy risks
associated with centralized data aggregation.
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Fig 1: Overview of the proposed federated learning framework.
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We describe the workflow using simplified algorithmic representations of the client update and global aggregation
procedures. These algorithms reflect the standard federated learning pipeline used in our experiments on the
PathMNIST dataset [4].

Algorithm 1 describes the local training process performed independently on each healthcare client, where the model
is updated using private data and the resulting weight differences are computed without exposing any raw
information.

Algorithm 1 — ClientUpdate

Require: Local model W__t, local dataset D__c, learning rate n
Ensure: Local model update AW_t"(c)
1 Initialize local model W_t"*(c) — W_t
2 Train W_t"(c) on D_ c using gradient descent or optimizer
3 Compute update : AW_t"(c) = W_t"(c) - W_t
4 return AW_t"(c)

Algorithm 2 outlines the global aggregation step using Federated Averaging, combining all client updates
proportionally to their dataset sizes to produce a new global model that reflects collaborative learning across
heterogeneous environments.

Algorithm 2 — FederatedAveraging

Require : Global model W__t, client updates {AW_t"(¢)}_{c=1..K},
client dataset sizes {n_c}
Ensure: Updated global model W__{t+1}
1 Compute total samples N = sum_ {c=1..K} n_c
2 Initialize aggregated update AW_t = o

forc=1to Kdo
AW_t— AW_t+ (n_c/N) * AW_1"(c)
end for

Update global model: W_{t+1} — W_t + AW_t

3 (= NS L

return W_ {t+1}

B. Experimental Environment
1) Hardware and Execution Platform

All experiments were performed using Google Colab [10], equipped with an NVIDIA L4 GPU (22.5 GB VRAM), an
Intel Xeon CPU, and approximately 53 GB of RAM. This environment provides a scalable and reliable platform for
evaluating federated learning experiments.

2) Software Stack
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The framework was implemented in Python using PyTorch for deep learning. Federated orchestration was managed
with Flower [11], allowing efficient client-server coordination and global model aggregation.

3) Dataset and Configurations

Experiments were conducted on the PathMNIST dataset [4]. We evaluated configurations with 5 and 10 clients under
both IID and non-1ID data distributions to examine the framework’s ability to maintain stable convergence and high
accuracy in heterogeneous environments.

3. EXPERIMENTAL SETUP
A. Dataset Description

Given the privacy-sensitive nature of healthcare data, our evaluation focuses on medical image classification. We
employed the PathMNIST subset from the MedMNIST v2 benchmark [4], which is a standardized collection designed
for lightweight, reproducible experimentation in biomedical imaging.

PathMNIST is derived from colorectal histopathology datasets (NCT-CRC-HE-100K and CRC-VAL-HE-7K) and
contains 107,180 RGB image patches resized to 28x28 pixels. The classification task involves nine tissue types,
making it a 9-class multi-class problem. The dataset has 89,996 training, 10,004 validations, and 7,180 test samples.
An overview of this process is provided in Table I.

Table I: PathMNIST Dataset Overview.

Aspect Details
Modality Colon Histopathology
Total samples 107,180
Training / Validation / Test 89,996 / 10,004 / 7,180
Image format RGB, 28x28 pixels
Classes 9 tissue types
Task Multi-class classification
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Fig 2: Example images from each of the nine tissue classes in PathMNIST.
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Data preprocessing included:
« Tensor Conversion: Converting images to tensors for GPU efficiency.

» Normalization: Scaling pixel intensities to [0, 1].

« Data Augmentation: Random flips, rotations, and crops to improve generalization.
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Fig 3: Class distribution in PathMNIST.
B. Performance Evaluation Metrics

We evaluated the framework under centralized and federated settings with 5 and 10 clients, using the following
standard classification metrics:

1) Accuracy:
Accuracy = (Number of Correct Predictions) / (Total Number of Predictions)
Accuracy = (TP + TN) /(TP + TN + FP + FN)ueoooeeeereeeeeeeeeeeveeeeenn, (1)

2) Precision:

PreciSion = TP [ (TP 4 FP) ettt eee st (2)
3) Recall:

Recall = TP [ (TP 4 FN)uuoooeoiirieieieiieeieeiente ettt et sne e (3)
4) 1-Score:

F1 = 2 X (Precision X Recall) / (Precision + Recall)........ccccveeeuuenn.... 4)

5) Confusion Matrix: For multi-class evaluation, we define the confusion matrix C € RCxC , where C is
the number of classes. Each element Ci, j represents the number of samples whose true label is i and
predicted label is j.

Where TP, TN, FP, and F N are True Positives, True Negatives, False Positives, and False Negatives, respectively.

C. Computational Performance Metrics
To assess computational efficiency of federated learning compared to centralized training, we measured:

« Training Time: Duration of local model updates per client.
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« Communication Time: Time for model updates to be transmitted and aggregated across clients.
« Total Round Time: End-to-end time per communication round.
4. RESULTS

Experiments were conducted under IID and non-IID data distributions with 5 and 10 clients. Each client locally
updated the model for a fixed number of epochs, and the global model was obtained by averaging client weights after
each communication round. The protocol ensured stable convergence across heterogeneous client data.

A. Centralized Benchmarking of Deep Learning Architectures

Before deploying our federated learning framework, we performed extensive benchmarking with centralized deep
learning models to determine the most performant architecture for downstream evaluation. This preliminary stage
was essential for establishing a high-quality baseline and ensuring a fair comparison between federated and
distributed setups. We evaluated both custom convolutional neural networks and state-of-the-art pretrained models
using the PathMNIST dataset. The models considered included CNNMed (with and without self-attention
enhancement), ResNet-18 [14], MobileNetV3 Small [15], and EfficientNet-Bo [16].

1) Custom CNN Architectures:

CNNMed is a lightweight convolutional neural network designed for histopathological image classification [17]. It
consists of three convolutional layers interspersed with batch normalization, ReLU activations, and maximum
pooling operations [18]. Dropout and adaptive average pooling were used to ensure regularization and feature
dimension consistency. The classification head consists of two fully connected layers, followed by a 9-class output
layer. An improved variant, CNNMed with self-attention, incorporates a spatial attention mechanism to improve
feature extraction, selectively emphasizing informative regions in the image to improve classification accuracy while
incurring minimal computational overhead.

2) Pre-trained Architectures:

To leverage prior knowledge from large-scale image models, we fine-tuned three well established architectures:
*ResNet-18: A residual network mitigating vanishing gradients via identity shortcuts [14].

*MobileNetV3 Small: A resource-efficient model designed for low-power devices [15]

+EfficientNet-Bo: A highly optimized model employing compound scaling [16].

These models were selected for their generalization capabilities and varying complexity levels, making them suitable
for comparative analysis.

3) Results of Centralized Architectures:

All models were trained with a batch size of 64, an initial learning rate of 0.001, and up to 30 epochs (10 for
pretrained networks to avoid overfitting). Evaluation employed standard classification metrics: precision, recall, F1-
score, and accuracy.

Table II: Comparison of Centralized Deep Learning Models

Model Epochs | Precision | Recall F1-score | Accuracy
CNNMed 30 93.57 93.55 93-33 93-55
CNNMed + Self-Attn. 30 94.00 94.11 93.94 94.11
MobileNetV3 10 94.83 94.85 94.82 94.85
ResNet-18 10 95.15 95.04 94.91 95.04
EfficientNet-Bo 10 95.38 95.35 95.23 95.35
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Fig 4: Model performance comparison (accuracy, precision, recall, F1).

EfficientNet-Bo achieved the highest accuracy and was selected as the baseline for subsequent federated experiments.
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Fig 5: Confusion matrix for EfficientNet-Bo.
B. Federated Learning under IID and Non-IID Distributions

We evaluated the federated learning paradigm using EfficientNet-Bo across two data distribution regimes: IID and
non-IID. Experiments were conducted with 5 and 10 clients, trained with the Federated Averaging (FedAvg)
algorithm. Hyperparameters are summarized in Table III.

Table III: Federated Learning Configuration

Hyperparameter Settings

Client Model Architecture EfficientNet-Bo

Number of clients 5 and 10

Data distribution types IID, Non-IID (Dirichlet a = 0.5)
Communication rounds 10
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Local batch size 64
Initial LR 0.001
Aggregation strategy FedAvg

1) IID Distribution: Uniform Statistical Balance: In the IID scenario, each client received a balanced subset of
data. Figure 6 shows accuracy and loss curves for 5 and 10 clients. Training was stable and performance degradation

with more clients was marginal.
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Fig 6: Federated Learning Accuracy and Loss Curves (IID).
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2) Non-IID Distribution: Real-World Statistical Heterogeneity: For non-IID data, we used a Dirichlet distribution
(a = 0.5) to induce class imbalance. Learning curves for 5 and 10 clients under non-IID conditions are shown in

Figure 7. Training is less stable and fluctuations are more pronounced with ten clients.
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Fig 7: Federated Learning Accuracy and Loss Curves (NonIID).
Table IV: Federated Performance: IID vs Non-IID.

Data Type Clients Accuracy (%)

Loss
1ID 5 95.29 0.1651
1ID 10 94.99 0.1595
Non-IID 5 94.26 0.1774
Non-IID 10 93.20 0.2055
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These results indicate that federated learning closely matches centralized performance under IID conditions and
remains competitive under non-IID, albeit with slightly reduced accuracy and increased loss due to statistical
heterogeneity.

5. DISCUSSION

The experiments conducted in this study provide strong evidence that the proposed federated learning framework
can maintain high predictive performance while preserving data privacy in decentralized medical imaging
applications. Centralized benchmarking identified EfficientNet-Bo as the most suitable model architecture, achieving
95.35% accuracy on the PathMNIST dataset with balanced computational efficiency. This choice ensured that
subsequent federated experiments would rely on a robust baseline for fair comparison. Federated learning
experiments under both IID and nonIID data distributions demonstrated the framework’s ability to closely match
centralized performance. For IID distributions, the federated model reached 95.29% and 94.99% accuracy across 5
and 10 clients, respectively, with stable convergence observed throughout training rounds. These results highlight
that, when client data are statistically homogeneous, federated averaging effectively aggregates model updates
without significant loss in accuracy or increase in loss.

Under non-IID conditions, simulating realistic heterogeneity in client data, the model achieved 94.26% and 93.20%
accuracy for 5 and 10 clients, respectively. Although slight reductions in performance and slower convergence were
observed due to statistical skew, the framework remained robust, showing consistent improvement over training
rounds. These findings indicate that the proposed framework is resilient to client-level variability and can generalize
well even under heterogeneous data distributions. The overall results demonstrate that the framework combines high
model utility (up to 94.26% accuracy) with computational efficiency, as evidenced by rapid convergence across
different federation scales. The minor performance degradation observed in larger and heterogeneous federations is
within acceptable bounds, confirming the practical applicability of the method in real-world, privacy-sensitive
domains such as healthcare.In summary, these outcomes suggest that carefully designed federated learning systems,
leveraging well-performing architectures like EfficientNet-Bo and accommodating client heterogeneity, can deliver
near-centralized performance while keeping data decentralized. This positions the proposed framework as a viable
solution for scalable, privacy-conscious medical Al applications.

6. CONCLUSION

This study presented a federated learning framework tailored for privacy-sensitive healthcare applications, capable
of handling heterogeneous (non-IID) client data while maintaining high predictive performance. Through
experiments on the PathMNIST dataset under both IID and non-IID distributions, across configurations of 5 and 10
clients, the framework achieved up to 95.29% accuracy, closely matching the performance of centralized training.
The results demonstrate stable convergence and robust generalization, even in the presence of statistical
heterogeneity among clients. The framework’s design ensures computational efficiency, with rapid convergence
observed across different federation scales, and only minor performance degradation in larger or more heterogeneous
federations. These outcomes highlight the practical applicability of federated learning in decentralized medical
imaging scenarios, where data privacy and security are critical concerns.

In summary, the proposed approach confirms that carefully orchestrated federated learning systems, leveraging well
performing model architectures and accommodating client heterogeneity, can deliver near-centralized accuracy
while keeping sensitive data decentralized. This positions the framework as a viable, scalable, and privacy-conscious
solution for real world healthcare Al deployments.
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