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Privacy-preserving machine learning has become essential in healthcare, where 

sensitive patient data cannot be centralized without risking confidentiality and 

regulatory non-compliance. Federated learning (FL) offers a viable alternative by 

enabling collaborative model training while retaining data on local medical 

institutions. This study presents a robust federated learning framework designed to 

maintain strong predictive performance across both independent and identically 

distributed (IID) and non-IID data scenarios, reflecting realistic variability in 

healthcare environments. Using EfficientNet-B0 as the core architecture and the 

PathMNIST dataset as the benchmark, we evaluate the framework across federations 

of 5 and 10 clients, systematically comparing centralized and federated setups. 

Experimental results demonstrate that the proposed framework achieves 95.29% 

accuracy under IID conditions with 5 clients and 94.99% with 10 clients, closely 

matching centralized performance. Under non-IID distributions generated via a 

Dirichlet partitioning, the framework maintains competitive performance with 94.26% 

accuracy for 5 clients and 93.20% for 10 clients. Additional metrics highlight the 

system’s robustness: precision reaches up to 95.38%, recall up to 95.35%, and F1-score 

up to 95.23% in centralized benchmarking, with only marginal degradation under 

federated settings. Convergence curves show stable optimization in IID scenarios and 

controlled fluctuations under non-IID heterogeneity, confirming the resilience of the 

federated averaging strategy. These findings demonstrate that the proposed federated 

learning framework delivers high model utility while ensuring decentralized data 

governance, making it suitable for scalable, privacy-conscious medical image analysis. 

Keywords: Federated Learning, Privacy Preservation, Non-IID Distributuion, Secure 

Aggregation, PathMNIST. 

 

1. INTRODUCTION 

Data security and privacy preservation are critical challenges in domains handling sensitive information, particularly 

in healthcare [1]. Traditional centralized learning methods require aggregating all data in a single location, increasing 

the risk of privacy breaches and unauthorized access [2]. Federated learning (FL) has emerged as a promising 

solution, enabling multiple institutions to collaboratively train a global model without exchanging raw data [3]. In 

this framework, each client trains a local model on its private dataset, and only model updates are shared with a 

central server for aggregation. This decentralized approach mitigates privacy risks while allowing effective distributed 

learning across multiple organizations. 

Despite its advantages, federated learning faces challenges when client data are heterogeneous or non-identically 

distributed (non-IID). Such statistical heterogeneity can affect model convergence and performance, particularly in 
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practical healthcare scenarios with diverse data sources. Addressing these challenges requires frameworks that 

maintain high model accuracy and stable convergence across IID and non-IID data distributions. In this work, we 

present a federated learning framework tailored for privacy-sensitive healthcare applications. The system 

orchestrates local model training across multiple medical centers and securely aggregates updates to construct a high-

quality global model. Experiments on the PathMNIST dataset [4], using configurations of 5 and 10 clients under  

both IID and non-IID settings, demonstrate that the proposed framework closely matches centralized performance, 

achieving 94.79 % accuracy with stable convergence. These results highlight the framework’s resilience to statistical 

heterogeneity, computational efficiency, and practical applicability in decentralized medical environments. Privacy-

preserving federated learning has emerged as a key paradigm for collaborative model training in healthcare, allowing 

institutions to jointly benefit from distributed medical data without compromising patient confidentiality. Building 

upon foundational mechanisms such as differential privacy and secure aggregation, recent research has focused on 

improving the robustness of federated learning under heterogeneous and non-IID data distributions that commonly 

arise in real-world medical environments. 

Adaptive aggregation strategies have been introduced to enhance convergence and model stability by dynamically 

adjusting the contribution of local updates according to data divergence, achieving improved performance on medical 

datasets such as tuberculosis chest X-rays and brain tumor MRIs [5]. Frameworks such as Health-FedNet provide 

scalable architectures for privacy-preserving medical analytics across institutions [6], while MultiProg addresses 

feature heterogeneity in multi-source Electronic Health Records through multi-channel architectures and feature 

calibration techniques [7]. These advances highlight the growing maturity of federated learning frameworks designed 

for healthcare applications, emphasizing both privacy preservation and learning efficiency under diverse data 

conditions. At the same time, recent studies continue to stress the importance of ethical and legal compliance, 

including informed patient consent and adherence to healthcare data protection regulations during deployment of 

federated learning systems [8]. 

2. PROPOSED METHODOLOGY 

 

A. System Overview 

The proposed framework implements standard federated learning (FL) for privacy-sensitive healthcare applications 

[1]. The system enables multiple medical centers to collaboratively train a global model without sharing raw patient 

data. Each client trains a local model on its private dataset and sends model updates to a central server for aggregation 

[9]. The server constructs a high-quality global model by combining the updates, which is then redistributed to clients 

for the next training round. This approach allows effective distributed learning while mitigating privacy risks 

associated with centralized data aggregation. 

 

Fig 1: Overview of the proposed federated learning framework. 
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We describe the workflow using simplified algorithmic representations of the client update and global aggregation 

procedures. These algorithms reflect the standard federated learning pipeline used in our experiments on the 

PathMNIST dataset [4]. 

 

Algorithm 1 describes the local training process performed independently on each healthcare client, where the model 

is updated using private data and the resulting weight differences are computed without exposing any raw 

information. 

 

        

 

 

 

 

 

 

Algorithm 2 outlines the global aggregation step using Federated Averaging, combining all client updates 

proportionally to their dataset sizes to produce a new global model that reflects collaborative learning across 

heterogeneous environments. 

 

B. Experimental Environment  

1) Hardware and Execution Platform 

All experiments were performed using Google Colab  [10], equipped with an NVIDIA L4 GPU (22.5 GB VRAM), an 

Intel Xeon CPU, and approximately 53 GB of RAM. This environment provides a scalable and reliable platform for 

evaluating federated learning experiments. 

2) Software Stack 

Algorithm 1 — ClientUpdate 

 

Require: Local model W_t, local dataset D_c, learning rate η 

Ensure: Local model update ΔW_t^(c) 

 

1 

 

Initialize local model W_t^(c) ← W_t 

2 Train W_t^(c) on D_c using gradient descent or optimizer 

3 Compute update : ΔW_t^(c) = W_t^(c) − W_t 

4 return ΔW_t^(c) 

Algorithm 2 — FederatedAveraging 

 

Require : Global model W_t, client updates {ΔW_t^(c)}_{c=1..K},  

client dataset sizes {n_c} 

Ensure: Updated global model W_{t+1} 

1 Compute total samples N = sum_{c=1..K} n_c 

2 Initialize aggregated update ΔW_t = 0 

3 for c = 1 to K do 

4  ΔW_t ← ΔW_t + (n_c / N) * ΔW_t^(c) 

5 end for 

6 Update global model: W_{t+1} ← W_t + ΔW_t 

7 return W_{t+1} 
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The framework was implemented in Python using PyTorch for deep learning. Federated orchestration was managed 

with Flower [11], allowing efficient client-server coordination and global model aggregation. 

3) Dataset and Configurations 

Experiments were conducted on the PathMNIST dataset [4]. We evaluated configurations with 5 and 10 clients under 

both IID and non-IID data distributions to examine the framework’s ability to maintain stable convergence and high 

accuracy in heterogeneous environments. 

3. EXPERIMENTAL SETUP 

A. Dataset Description 

Given the privacy-sensitive nature of healthcare data, our evaluation focuses on medical image classification. We 

employed the PathMNIST subset from the MedMNIST v2 benchmark [4], which is a standardized collection designed 

for lightweight, reproducible experimentation in biomedical imaging. 

PathMNIST is derived from colorectal histopathology datasets (NCT-CRC-HE-100K and CRC-VAL-HE-7K) and 

contains 107,180 RGB image patches resized to 28×28 pixels. The classification task involves nine tissue types, 

making it a 9-class multi-class problem. The dataset has 89,996 training, 10,004 validations, and 7,180 test samples. 

An overview of this process is provided in Table I. 

Table I: PathMNIST Dataset Overview. 

Aspect Details 

Modality Colon Histopathology 

Total samples 107,180 

Training / Validation / Test 89,996 / 10,004 / 7,180 

Image format RGB, 28×28 pixels 

Classes 9 tissue types 

Task Multi-class classification 

 

 

Fig 2: Example images from each of the nine tissue classes in PathMNIST. 
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Data preprocessing included: 

• Tensor Conversion: Converting images to tensors for GPU efficiency. 

• Normalization: Scaling pixel intensities to [0, 1]. 

• Data Augmentation: Random flips, rotations, and crops to improve generalization. 

 

Fig 3: Class distribution in PathMNIST. 

B. Performance Evaluation Metrics 

We evaluated the framework under centralized and federated settings with 5 and 10 clients, using the following 

standard classification metrics: 

1) Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) / (𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)…………………..……..……(1) 

2) Precision: 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)……………………………………………………….………(2) 

3) Recall: 

                                   𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)……………………………………………..………………….…(3) 

4) 1-Score: 

𝐹1 =  2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)…………………….…(4) 

5) Confusion Matrix: For multi-class evaluation, we define the confusion matrix C ∈ RC×C , where C is 

the  number of classes. Each element Ci, j represents the number of samples whose true label is i and 

predicted label is j. 

 

Where T P , T N , F P , and F N are True Positives, True Negatives, False Positives, and False Negatives, respectively. 

 

C. Computational Performance Metrics 

To assess computational efficiency of federated learning compared to centralized training, we measured: 

• Training Time: Duration of local model updates per client. 
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• Communication Time: Time for model updates to be transmitted and aggregated across clients. 

• Total Round Time: End-to-end time per communication round. 

4. RESULTS 

Experiments were conducted under IID and non-IID data distributions with 5 and 10 clients. Each client locally 

updated the model for a fixed number of epochs, and the global model was obtained by averaging client weights after 

each communication round. The protocol ensured stable convergence across heterogeneous client data. 

A. Centralized Benchmarking of Deep Learning Architectures 

Before deploying our federated learning framework, we performed extensive benchmarking with centralized deep 

learning models to determine the most performant architecture for downstream evaluation. This preliminary stage 

was essential for establishing a high-quality baseline and ensuring a fair comparison between federated and 

distributed setups. We evaluated both custom convolutional neural networks and state-of-the-art pretrained models 

using the PathMNIST dataset. The models considered included CNNMed (with and without self-attention 

enhancement), ResNet-18 [14], MobileNetV3 Small [15], and EfficientNet-B0 [16]. 

1) Custom CNN Architectures:  

CNNMed is a lightweight convolutional neural network designed for histopathological image classification [17]. It 

consists of three convolutional layers interspersed with batch normalization, ReLU activations, and maximum 

pooling operations [18]. Dropout and adaptive average pooling were used to ensure regularization and feature 

dimension consistency. The classification head consists of two fully connected layers, followed by a 9-class output 

layer. An improved variant, CNNMed with self-attention, incorporates a spatial attention mechanism to improve 

feature extraction, selectively emphasizing informative regions in the image to improve classification accuracy while 

incurring minimal computational overhead. 

2) Pre-trained Architectures:  

To leverage prior knowledge from large-scale image models, we fine-tuned three well established architectures: 

•ResNet-18: A residual network mitigating vanishing gradients via identity shortcuts [14]. 

•MobileNetV3 Small: A resource-efficient model designed for low-power devices [15] 

•EfficientNet-B0: A highly optimized model employing compound scaling [16]. 

These models were selected for their generalization capabilities and varying complexity levels, making them suitable 

for comparative analysis. 

3) Results of Centralized Architectures: 

 All models were trained with a batch size of 64, an initial learning rate of 0.001, and up to 30 epochs (10 for 

pretrained networks to avoid overfitting). Evaluation employed standard classification metrics: precision, recall, F1-

score, and accuracy. 

Table II: Comparison of Centralized Deep Learning Models 

Model Epochs Precision  Recall  F1 -score Accuracy  

 

CNNMed 30 93.57 93.55 93.33 93.55 

CNNMed + Self-Attn. 30 94.00 94.11 93.94 94.11 

MobileNetV3 10 94.83 94.85 94.82 94.85 

ResNet-18 10 95.15 95.04 94.91 95.04 

EfficientNet-B0 10 95.38 95.35 95.23 95.35 
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Fig 4: Model performance comparison (accuracy, precision, recall, F1). 

EfficientNet-B0 achieved the highest accuracy and was selected as the baseline for subsequent federated experiments. 

 

Fig 5: Confusion matrix for EfficientNet-B0. 

B. Federated Learning under IID and Non-IID Distributions 

We evaluated the federated learning paradigm using EfficientNet-B0 across two data distribution regimes: IID and 

non-IID. Experiments were conducted with 5 and 10 clients, trained with the Federated Averaging (FedAvg) 

algorithm. Hyperparameters are summarized in Table III. 

Table III: Federated Learning Configuration 

Hyperparameter Settings 

Client Model Architecture EfficientNet-B0 

Number of clients 5 and 10 

Data distribution types IID, Non-IID (Dirichlet α = 0.5) 

Communication rounds 10 
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Local batch size 64 

Initial LR 0.001 

Aggregation strategy FedAvg 

 

1) IID Distribution: Uniform Statistical Balance: In the IID scenario, each client received a balanced subset of 

data. Figure 6 shows accuracy and loss curves for 5 and 10 clients. Training was stable and performance degradation 

with more clients was marginal. 

Fig 6: Federated Learning Accuracy and Loss Curves (IID). 

2) Non-IID Distribution: Real-World Statistical Heterogeneity: For non-IID data, we used a Dirichlet distribution 

(α = 0.5) to induce class imbalance. Learning curves for 5 and 10 clients under non-IID conditions are shown in 

Figure 7. Training is less stable and fluctuations are more pronounced with ten clients. 

 

Fig 7: Federated Learning Accuracy and Loss Curves (NonIID). 

Table IV: Federated Performance: IID vs Non-IID. 

Data Type Clients Accuracy (%) 
Loss 

IID 5 95.29 0.1651 

IID 10 94.99 0.1595 

Non-IID 5 94.26 0.1774 

Non-IID 10 93.20 0.2055 
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These results indicate that federated learning closely matches centralized performance under IID conditions and 

remains competitive under non-IID, albeit with slightly reduced accuracy and increased loss due to statistical 

heterogeneity. 

5. DISCUSSION 

The experiments conducted in this study provide strong evidence that the proposed federated learning framework 

can maintain high predictive performance while preserving data privacy in decentralized medical imaging 

applications. Centralized benchmarking identified EfficientNet-B0 as the most suitable model architecture, achieving 

95.35% accuracy on the PathMNIST dataset with balanced computational efficiency. This choice ensured that 

subsequent federated experiments would rely on a robust baseline for fair comparison. Federated learning 

experiments under both IID and nonIID data distributions demonstrated the framework’s ability to closely match 

centralized performance. For IID distributions, the federated model reached 95.29% and 94.99% accuracy across 5 

and 10 clients, respectively, with stable convergence observed throughout training rounds. These results highlight 

that, when client data are statistically homogeneous, federated averaging effectively aggregates model updates 

without significant loss in accuracy or increase in loss. 

Under non-IID conditions, simulating realistic heterogeneity in client data, the model achieved 94.26% and 93.20% 

accuracy for 5 and 10 clients, respectively. Although slight reductions in performance and slower convergence were 

observed due to statistical skew, the framework remained robust, showing consistent improvement over training 

rounds. These findings indicate that the proposed framework is resilient to client-level variability and can generalize 

well even under heterogeneous data distributions. The overall results demonstrate that the framework combines high 

model utility (up to 94.26% accuracy) with computational efficiency, as evidenced by rapid convergence across 

different federation scales. The minor performance degradation observed in larger and heterogeneous federations is 

within acceptable bounds, confirming the practical applicability of the method in real-world, privacy-sensitive 

domains such as healthcare.In summary, these outcomes suggest that carefully designed federated learning systems, 

leveraging well-performing architectures like EfficientNet-B0 and accommodating client heterogeneity, can deliver 

near-centralized performance while keeping data decentralized. This positions the proposed framework as a viable 

solution for scalable, privacy-conscious medical AI applications. 

6. CONCLUSION 

This study presented a federated learning framework tailored for privacy-sensitive healthcare applications, capable 

of handling heterogeneous (non-IID) client data while maintaining high predictive performance. Through 

experiments on the PathMNIST dataset under both IID and non-IID distributions, across configurations of 5 and 10 

clients, the framework achieved up to 95.29% accuracy, closely matching the performance of centralized training. 

The results demonstrate stable convergence and robust generalization, even in the presence of statistical 

heterogeneity among clients. The framework’s design ensures computational efficiency, with rapid convergence 

observed across different federation scales, and only minor performance degradation in larger or more heterogeneous 

federations. These outcomes highlight the practical applicability of federated learning in decentralized medical 

imaging scenarios, where data privacy and security are critical concerns. 

In summary, the proposed approach confirms that carefully orchestrated federated learning systems, leveraging well 

performing model architectures and accommodating client heterogeneity, can deliver near-centralized accuracy 

while keeping sensitive data decentralized. This positions the framework as a viable, scalable, and privacy-conscious 

solution for real world healthcare AI deployments. 
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