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1. Introduction 

Federated analytics provides a new perspective on leveraging expertise and processing 

across multiple clouds without sharing sensitive data among the participating parties. 

However, empirical investigations on federated analytics in the context of national food 
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National level supply chain optimization demands federated analytics across 

multiple sovereign clouds to respect regulatory needs and avoid privacy 

concerns. In traditional centralized models, neither such aspects nor the 

sensitivity to data latency can be suitably considered. A real-world wholesaler 

of the food service sector engaged in the development of demand forecasting, 

inventory optimization, and transportation planning models from different 

data domains and sources, routed through AWS, Azure, and GCP. Data sharing 

agreements enforced mandatory storage duration and data sharing policies to 

satisfy ownership rules and a business partnering model was used to 

coordinate application developments. State-of-the-art algorithms were applied 

for the federated learning building blocks, and the communication overheads 

associated with model exchanges were assessed. Today's business world suffers 

from the lack of information about critical events that occur far away and could 

have a significant positive or negative influence on business outcomes. Big data 

opens up the possibility of having more information for analysis but brings with 

it new challenges and costs, especially when dealing with processing and 

scripting these big data analytics. The need for specialized know-how and costs 

are important factors that dictate the success of an analytics process and the 

return on investment. However, successful and careful analysis of data has its 

rewards. Developing scalable models on three major public clouds (AWS, 

Azure, and GCP) for national-level supply chain optimization and representing 

data and models accurately under privacy and security regulations are still in 

their infancy. 
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service supply chain loss prevention remain limited, and relevant architectural 

considerations are still vague. The national food service wholesale optimization challenge 

requires demand forecasting, inventory management, transportation planning, and 

decision-making processes. Big data sources for the involved models reside across the three 

major cloud providers—AWS, Azure, and GCP—making federated analytics a promising 

computing paradigm to balance effectiveness and data governance. These aspects motivate 

a dedicated framework for big data-driven national food service wholesale optimization 

supported by federated analytics.Data are organized in domains associated with individuals 

including supplier, distributor, and external markets, as well as cross-cloud regions 

covering the entire continental United States. Demand forecasts for the next 12 weeks are 

computed at SKU level and fed into the full, multi-modal national transport-routing 

optimization, which is repeated at a 4-week frequency and includes a carbon-emission 

metric. Prioritized store-level safety-stock levels aim to serve customer requirements at the 

desired service level. Cloud-agnostic throughput behavior is confirmed by a visualization 

over a scaling dataset, demonstrating the latency–privacy factor trade-off desired in 

national food service supply chain use cases. 

 

Fig 1: Adaptive Cloud-Based Big Data Analytics 

1.1. Problem Statement: Optimizing the supply chain in any national food service wholesale market 

is extremely difficult mainly due to the extensive number of participating wholesalers, distributors, and 

supplier-brewery combinations; the products offered by each supplier, distributor, or brewery; and the 

complex interrelationships among them. Each wholesaler and service provider operate within its own 

domain, and each is also poised to take action based on the demand and market flow only at some 

business point of time. The design and supply cycle often range from a few hours to a few days. However, 

such supply chain optimization could lead to substantial price reductions. Furthermore, data is fragile 

because of reverse supply chains, volatile multiclass demand, external environmental factors, and 

distribution management factors. There are no constant supply-demand relationships. Nevertheless, 

relying on forecasting and management of this multiclass national food service supply chain based on 

Big Data remains an unsolved challenge because storing all data produced by each 

wholesaler/manufacturer is either very cost-inefficient or conceptually impractical. For a sound 

analysis, it is also essential not only to reliably predict the required demand for the consumption level 

of wholesalers and their distributors, but also to ensure short response times, in order to avoid cost 

blow-ups, over- or undersupply, and customer dissatisfaction. 

A standard centralized network setup inevitably incurs drawbacks in terms of performance (high 

latency), privacy (sensitive input data leave the local environment), and expressiveness (no data 

exchange between clouds, requiring corresponding data copying) within a heterogeneous cloud 

environment. Cloud data may not be controlled by the owner, and operators are often not allowed to 

agglomerate data but given only restricted use or read access. Such restrictions motivate an alternative 
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federated design that minimizes data transmission across administrative borders and reduces the risk 

of privacy exposure. Following a federated learning strategy, sensitive data only leaves the local 

environment for model training purposes. In the analog federated analytics problem, Big Data 

generated or stored in multiple clouds with latent privacy concerns is considered. The aim is to 

maximize data privacy while exploiting the available data sources in a complementary manner, thus 

preserving a natural demand-expose behavior. 

1.2. Scope and Objectives: The adaptive big data-driven supply chain optimization problem is 

addressed in a national food service wholesale context. Data governance, privacy guarantees, and 

latency-sensitive use cases are considered. Data domains comprise national store-level demand, 

inventory, and transportation optimizations over horizons of weeks to months across time zones. Key 

objectives include daily SKU-level demand forecasting, weekly safety stock level determination by 

distributor, weekly routing and carrier selection, and corresponding metrics of carbon footprint and 

transportation cost. Performance is measured by forecasting accuracy and service levels, while the 

solution space for inventory and transportation optimizations is bounded by safety stock capacity 

constraints. 

Data demand is derived from stream–batch processing pipelines therefore lying in readily available 

formats in data capsules with full quality control, making supply chain modeling candidates for 

federated analytics. Demand forecasting studies span years of data, some with up to three-year-long 

SKU–store aggregation horizons. Additional supply–demand topics address the input–output vertex 

and high communication overheads typical in federated settings. Adaptation of privacy-preserving 

techniques toward the control of convergence rather than trained-model leakage is phasing Centralized 

federated comparisons into federated computations across heterogeneous clouds. 

Equation 1: Demand forecasting equations (SKU–store–time) 

1.1 Notation 

• 𝑖: SKU 

• 𝑠: store 

• 𝑡: time index (day or week depending on horizon) 

• 𝐷𝑖,𝑠,𝑡: actual demand 

• 𝐷̂𝑖,𝑠,𝑡: forecast demand 

1.2 Aggregation (store → DC → distributor) 

If DC 𝑑 serves a set of stores 𝑆(𝑑), then 

1. DC-level demand 

𝐷𝑖,𝑑,𝑡 = ∑ 𝐷𝑖,𝑠,𝑡
𝑠∈𝑆(𝑑)

 , 𝐷̂𝑖,𝑑,𝑡 = ∑ 𝐷̂𝑖,𝑠,𝑡
𝑠∈𝑆(𝑑)

 

2. Distributor-level demand (set of DCs 𝐷(𝑔) under distributor 𝑔) 
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𝐷𝑖,𝑔,𝑡 = ∑ 𝐷𝑖,𝑑,𝑡
𝑑∈𝐷(𝑔)

 , 𝐷̂𝑖,𝑔,𝑡 = ∑ 𝐷̂𝑖,𝑑,𝑡
𝑑∈𝐷(𝑔)

 

This matches the article’s “store → distribution-center → distributor” aggregation description. 

1.3 Forecast accuracy metrics (the ones the article alludes to) 

The paper mentions evaluating forecasts with “traditional accuracy measures.” 
The standard ones are: 

Let errors 𝑒𝑡 = 𝐷𝑡 − 𝐷̂𝑡 across 𝑇 periods. 

Step-by-step MAE 

1. Per-time absolute error: |𝑒𝑡| = |𝐷𝑡 − 𝐷̂𝑡| 

2. Average: 

MAE =
1

𝑇
∑|𝐷𝑡 − 𝐷̂𝑡|

𝑇

𝑡=1

 

Step-by-step RMSE 

1. Per-time squared error: 𝑒𝑡
2 = (𝐷𝑡 − 𝐷̂𝑡)

2
 

2. Mean squared error: 
1

𝑇
∑𝑒𝑡

2 

3. Square root: 

RMSE = √
1

𝑇
∑(𝐷𝑡 − 𝐷̂𝑡)

2
𝑇

𝑡=1

 

Step-by-step MAPE (%) 

1. Relative absolute error: |
𝐷𝑡−𝐷̂𝑡

𝐷𝑡
| 

2. Average and scale: 

MAPE(%) =
100

𝑇
∑|

𝐷𝑡 − 𝐷̂𝑡
𝐷𝑡

|

𝑇

𝑡=1

 

(Using a small guard when 𝐷𝑡 = 0 in implementation.) 

 

2. Literature Review 

National food service supply chains are increasingly adopting big-data-driven analytics for demand 

forecasting, inventory allocation, transportation optimization, and logistics management. Supplier 

shipment, distributor inventory, store-level sales, external socioeconomic indicators, and weather 

conditions form the factual basis for a layered model. However, organizing and leveraging the data 
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remains a challenge; centralized solutions suffer from slow responsiveness owing to time-zone 

differences, potential privacy leakage, and slow responses due to cross-cloud traffic when integrating 

service and pricing information from other clouds. Breaking the analytical silos using federated 

analytics preserves local data governance, alleviates privacy concerns, and avoids latency overheads 

associated with communicating sensitive data to third-party clouds. 

Federated data-intensive machine learning enables multiple parties to collaboratively train a global 

model while keeping their local datasets private. In federated analytics, the underlying computation 

workload is a high-level query or an analytics model that can be expressed in terms of sub-computations 

that generate intermediate results from local datasets. Cross-cloud governance minimizes the privacy 

risks of exposing sensitive or business-critical data in an untrusted environment. Accurate down-scaled 

data description using the density function along with a well-designed privacy-preserving mechanism 

ensures confidentiality without degrading model accuracy. Moreover, explicit cross-cloud orchestration 

further enhances cross-infrastructure communication and collaboration. 

 

2.1. Big Data Analytics in Supply Chain : Big Data sources in SCM originate from numerous 

structured and unstructured internal and external events, processes, and systems, whose integration 

and utilization represent a challenge for organizations seeking to leverage them for business impact. 

Data for the national food service supply chain (NFSSC) are generally available. SQL data files residing 

in a data lake service are juxtaposed with unstructured data sources such as social media and Twitter 

feeds. Representative use cases addressing different SC processes have been identified, providing value 

and serving as performance benchmarks. Machine learning (ML) techniques such as recurrent neural 

networks (RNNs), Long Short-Term Memory (LSTM) networks, convolutional neural networks 

(CNNs), Natural Language Processing (NLP), and reinforcement learning have been investigated, 

optimized, and successfully applied to SC problems. 

Data analytics research in SC has focused on modeling and integrating data for intelligent decision-

making. Different data sources, types, and corresponding machine-learning-based analytics techniques 

have been illustrated and categorized according to their SC functions. Diverse modeling approaches 

have been presented to forecast customer demand, predict consumer buying patterns, optimize store 

inventories, reduce transportation costs, and improve service levels, quality, and customer satisfaction. 

Successful implementations of Big Data Analytics in SC may furthermore enhance performance by 

improving sales forecasting accuracy, inventory management, customer satisfaction, and profitability. 

2.2. Federated Learning and Federated Analytics Federated environments are distributed 

configurations that encompass both data and computer resources. As federated paradigms emerge, data 

privacy is increasingly protected by performing local computations on the data, exchanging only 

intermediate statistical information, and obtaining global models without data pooling. Intuitionistic 

approaches such as federated learning for machine learning model training and federated query for 
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cross-server analytics have attracted widespread attention. Federated analytics generalizes federated 

learning into a broader analytics context and strives for cross-cloud analytics. 

Innovative federated designs, governed by data owners, obviate privacy issues but introduce limitations 

in communication overhead and speed when compared with centralized approaches. Laboratory 

experiments have demonstrated the feasibility of federated analytics for national food service supply 

chain demand forecasting and transportation optimization. A high-latency federated architecture was 

modeled, and cloud-agnostic performance was evaluated. Experiments indicated that privacy-bound 

federated demand forecasting on Amazon Web Services, Microsoft Azure, and Google Cloud Platform 

is no slower than centralized computation and carries negligible privacy risks. 

Equation 2: Safety stock equations (service level / stockout probability) 

2.1 Demand uncertainty over lead time 

Let: 

• 𝐿𝑖 = lead time (days) for SKU 𝑖 

• Daily demand during lead time is random with standard deviation 𝜎𝑑,𝑖 

If we assume daily demands are independent, variance adds: 

3. Variance over 𝐿𝑖 days: 

Var(𝐷𝑖
(𝐿)) = 𝐿𝑖𝜎𝑑,𝑖

2  

3. Standard deviation over lead time: 

𝜎𝐿,𝑖 = √𝐿𝑖𝜎𝑑,𝑖
2 = 𝜎𝑑,𝑖√𝐿𝑖 

2.2 Service-level safety stock 

For a target cycle service level 𝛼, the “z-value” 𝑧(𝛼) is the standard normal quantile. 

4. Safety stock definition: 

𝑆𝑆𝑖 = 𝑧(𝛼) ⋅ 𝜎𝐿,𝑖 

2. Substitute 𝜎𝐿,𝑖: 

𝑆𝑆𝑖 = 𝑧(𝛼) ⋅ 𝜎𝑑,𝑖√𝐿𝑖 

That’s the classic “service factor × lead-time sigma” rule used in practice for service-level safety stock. 

 

3. Methodology 

The proposed big data federated analytics architecture addresses both the demand forecasting and 

optimization needs of a national food service wholesaler, while also supporting aggregation of other 
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data domains. The first step formalizes the data architecture and governance, which define the three 

data domains and multiple areas of responsibility: supplier data; distributor data; and store-level 

demand, inventory, and supplier analyses. The second step develops the federated analytics framework, 

which orchestrates operations on the three data domains, performs privacy-preserving computations, 

aggregates local models trained on the three data domains under the Federated Averaging algorithm, 

and ensures fault tolerance. The third step presents specific modeling approaches for forecasting and 

optimization, focusing on demand forecasting and inventory optimization with local models that 

operate at a SKU level in each store. These models are the first to be demonstrated using computed 

supplier and distributor data and are deployed for centralized learning in the early trials. Performance 

comparisons identify the best algorithms for these tasks under validation-based feature engineering 

and also show how supply chain braking points affect the accuracy of the demand indicator and the 

need for subsequent data aggregation. 

A big data architecture has also been defined to cover data sources and flows across all domains, with 

the first deployment concentrating on store-level demand and inventory forecasting and optimization. 

Forecasts for these tasks are subsequently addressed at a higher level of granularity and supported by 

additional dimensions in the other domains, such as transport routing, carrier selection, and supply 

from third-party distributors. Delivery costs, sustainability aspects, and food age and obsolescence are 

introduced as secondary objectives. These actions run on centralized data for the time being, with 

corrections for the privacy and latency issues of centralized learning. Thus, a baseline with centralized 

analytics is established, defects and slacks in the data preparation and modeling pipelines are identified, 

and loss of privacy, communication overhead, and analytical performance are evaluated on federated 

procedures. 

 

3.1. Data Architecture and Governance: Data governance enables control over data quality, 

accessibility, consistency, and security throughout the data lifecycle. Data sources for the national food 

service wholesale use case are identified, and the relevant data architecture is defined using AWS Lake 

Formation. The architecture includes the data source metadata, data schemas, data lineage, data quality 

monitoring and validation, data access control policies, data retention and sharing agreements, and 

compliance with applicable laws and regulations. 

Data ingestion into a data lake from multiple suppliers, distributors, and logistics partners comes from 

on-premises, cloud, and edge sources in batch or streaming mode. Data governance compliance 

requires cataloging and transformation in accordance with source data and schema metadata before 

feeding various analytics tools and services. Data sharing agreements with suppliers and data flow 

monitoring along with retention rules ensure proper data usage. Data quality checks verify conformance 

to data standards, assess lineage, and guarantee usability for final consumer usage. 
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Fig 2: Data Architecture and Governance 

3.2. Federated Analytics Framework:  A federated analytics framework, supporting privacy-

preserving computations and local control over sensitive data, is proposed for supply chain optimization 

of national food service wholesale across AWS, Azure, and GCP clouds. The system employs a master 

worker pattern for modeling tasks. Federated users orchestrate analytics workflows spanning different 

clouds, with cloud-agnostic orchestration executing over a federated computer cluster. Sensitive 

properties of local computation demand and supply levels, carrier selection, and capacity reservation—

are preserved during federation via secure aggregation and differential privacy techniques. A federated 

face detection scenario indicates the framework’s cross-cloud orchestration ability; end-to-end latency 

and overhead for privacy-preserving operations are also characterized. 

Federated analytics enables cross-cloud sensitive computation federation without centralizing the data. 

Lower latency, compliance difficulties, and different privacy concerns are avoided during analysis when 

data remains within its custodian cloud. Sensitive local computations preserve their privacy, either 

through secure aggregation or differential privacy, with associated overhead during federation. 

However, the latency of such federated analytics is prone to data privacy. A federated analytics 

framework that incorporates a scheduling module for cross-cloud orchestration, management of secrets 

for data locality compliance, and a mechanism to trigger cloud-agnostic custom operations is proposed. 

The framework is designed to cover the workflow structured around Big Data Analytics Supply Chain 

Optimization, and the results of a use case are shared. 

3.3. Modeling Approaches: Forecasting and optimization models for demand, inventory, and 

routing processes are designed to meet the needs of the selected federate architecture. Demand is 

estimated by independent parties within supply-side and demand-side domains. Within the supply-side 

domain, demand at the wholesale level is modeled with a central place model, while supply chain 

participants model demand at the distributor and store levels. Distributed demand predictions are 

aggregated and serve as input for service-level optimization and safety stock determination in the 

demand-side domain. Safety stock calculations take place within the federated analytics framework and 

comply with privacy standards. Finally, inventory allocation, transportation routing, and carrier 

selection generate privacy-sensitive results at the wholesale level. 

Research on demand forecasting and inventory optimization is comprehensive, and the traffic routing 

problem is equally well studied. Many routing algorithms can be applied when the number of vehicles 

is large, but the number of routes remains small. Statistical methods for demand prediction, 

distribution modeling, and feature engineering have received less attention. Distributed demand 

prediction for supply chain management has been examined, but trade-offs in communication overhead 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376  

 

https://jisem-journal.com/ Research Article  

 

3403 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly cited. 

associated with the distribution of control variate information for warehouse–factory assignment 

problems remain unexplored. 

Index MAE 
RMSE 
MAPE_% 

Index MAE 
RMSE 
MAPE_% 

Index MAE 
RMSE 
MAPE_% 

Index MAE 
RMSE 
MAPE_% 

Index MAE 
RMSE 
MAPE_% 

SKU_A 37.15 
53.35 8.51 

SKU_A 37.15 
53.35 8.51 

SKU_A 37.15 
53.35 8.51 

SKU_A 37.15 
53.35 8.51 

SKU_A 37.15 
53.35 8.51 

SKU_B 47.54 
55.83 19.97 

SKU_B 47.54 
55.83 19.97 

SKU_B 47.54 
55.83 19.97 

SKU_B 47.54 
55.83 19.97 

SKU_B 47.54 
55.83 19.97 

SKU_C 22.62 
23.85 14.94 

SKU_C 22.62 
23.85 14.94 

SKU_C 22.62 
23.85 14.94 

SKU_C 22.62 
23.85 14.94 

SKU_C 22.62 
23.85 14.94 

         Table : Forecast error metrics (illustrative) 

 

4. System Architecture 

System Architecture 

A cloud-agnostic architecture for the federated analytics framework supports the deployment of native 

services in public clouds without data movement. AWS, Azure, and GCP services perform local data 

preparation, analytics, and model training and prediction. A cloud-agnostic orchestration layer 

schedules activities across distinct cloud vendors. 

Data Ingestion and Processing Pipelines 

Ingestion and processing pipelines enable the preparation of data pipelines to support forecasting, 

inventory optimization, and transportation and logistics applications. Data from Microsoft Access, 

Comma-Separated Value (CSV), and Google Sheets file formats are ingested and combined into unified 

flows from Windows, Linux, and BSD Operating Systems. Data in CSV input format are used in batch 

ingestion, while data stored in Google Sheets are ingested for near-real-time stock level observation. 

Microsoft Access data sources introduce a high degree of completeness, timeliness, and accuracy. Data 

preparation is automated using connectors developed with Airflow and Spark Streaming, with 

operation logs monitored through AWS CloudWatch service. 

Federated Compute and Privacy-Preserving Techniques 

Computations run on different cloud vendors are privacy-preserving. Each cloud retains only private 

input data. Federated analytics on latency-sensitive applications leverage local model training using all 

local data and sending model updates to the orchestrator. Secure aggregation of model updates guard 

against inference attacks. Differential and homomorphic encryption protect prediction results on 

latency-sensitive applications, while encrypted values remain in encrypted format throughout all stages 

of the analytics pipelines. Labeled trojan models generate auxiliary training data to avoid leakage of 
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information embedded in training data. For other applications, a reduced set of input data is adopted 

to balance privacy loss and prediction latency. 

Cross-Cloud Orchestration and Interoperability 

Cross-cloud orchestration of analytics pipelines requires scheduling different cloud-associated 

components to achieve the desired analytics objective. On top of these basic requirements, cloud 

vendors may also impose data locality constraints, separating the orchestration process into two 

subproblems: resource identity management and data locality management. Resources in different 

clouds are discovered using a common catalog hosted outside the clouds, which also holds the 

implementation details of each resource identity management mechanism. Data locality requirements 

are facilitated by making use of a data representation standard able to connect all the scheduling 

activities and inject data into the correct resources. 

Equation 3: Inventory replenishment optimization as a MILP (Mixed-Integer Linear 

Program) 

3.1 Decision variables (one common choice) 

For SKU 𝑖, location 𝑑, time 𝑡, mode 𝑚: 

• 𝑥𝑖,𝑑,𝑡,𝑚 ≥ 0: replenishment quantity ordered via mode 𝑚 

• 𝐼𝑖,𝑑,𝑡 ≥ 0: end-of-period on-hand inventory 

• 𝑦𝑖,𝑑,𝑡,𝑚 ∈ {0,1}: whether mode 𝑚 is used (fixed cost / mode selection) 

3.2 Inventory balance (step-by-step) 

Let: 

• 𝐷̂𝑖,𝑑,𝑡 = forecast demand at 𝑑 

• 𝑅𝑖,𝑑,𝑡 = receipts arriving at 𝑡 (orders placed earlier, depending on lead time per mode) 

5. Balance equation: 

𝐼𝑖,𝑑,𝑡 = 𝐼𝑖,𝑑,𝑡−1 + 𝑅𝑖,𝑑,𝑡 − 𝐷̂𝑖,𝑑,𝑡 

3. Receipts as sum of earlier orders: 
If mode 𝑚 has lead time ℓ𝑚, 

𝑅𝑖,𝑑,𝑡 =∑𝑥𝑖,𝑑,𝑡−ℓ𝑚,𝑚

𝑚

 

3.3 Safety stock constraint 

𝐼𝑖,𝑑,𝑡 ≥ 𝑆𝑆𝑖,𝑑,𝑡 

(where 𝑆𝑆 comes from Section 2 and can be time-varying if demand volatility changes.) 
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3.4 Mode activation constraints (linking continuous to binary) 

If you only allow ordering when a mode is “on”, with a big-𝑀: 

𝑥𝑖,𝑑,𝑡,𝑚 ≤ 𝑀𝑖,𝑑,𝑚  𝑦𝑖,𝑑,𝑡,𝑚 

3.5 Objective: minimize total replenishment + holding costs 

The article references “converted replenishment costs” and total inventory cost. 
A standard linear objective is: 

min ∑ (𝑐𝑖,𝑑,𝑚
𝑣𝑎𝑟 𝑥𝑖,𝑑,𝑡,𝑚 + 𝑐𝑖,𝑑,𝑚

𝑓𝑖𝑥
𝑦𝑖,𝑑,𝑡,𝑚)

𝑖,𝑑,𝑡,𝑚

 + ∑ℎ𝑖,𝑑
𝑖,𝑑,𝑡

𝐼𝑖,𝑑,𝑡 

This is linear (MILP) and captures: variable shipping cost + fixed activation + holding. 

4.1. Data Ingestion and Processing Pipelines: Public datasets from the Kaggle Data Exchange 

cover demand and price of food products sold across several locations in the USA, serving as a testbed 

for demand forecasting; the remaining modeling domains require confidential data that will be created 

with a data generator. Actual sales and logistic data from a national food distributor are used to develop 

and validate an inventory optimization model. The demand forecasting horizon spans six months, with 

model-generated forecasts replaced by actual data when available. Forecast models are evaluated with 

traditional accuracy measures expressed as percentages, and results reported at SKU-store-week and 

SKU-region-level granularity. Local safety stock computations consider supplier lead times, service 

levels, and forecast accuracy. 

Forecasts are treated as exogenous inputs in an inventory optimization model, which selects the optimal 

SKU-store safety levels by minimizing total inventory holding costs, subject to service-level constraints. 

A multi-commodity, multi-objective routing-problem model captures logistics operations; it minimizes 

total distribution costs while limiting GHG emissions. SKU-bulk-capacity constraints ensure that the 

assigned carriers can deliver all products on the routed trucks. The GHG metric considers both the 

distance traveled across methods and the volume delivered, while the cost metric incorporates per-

distance costs assigned to each transport method, adjusted by volume. 

4.2. Federated Compute and Privacy-Preserving Techniques : Local demand and inventory 

forecasting models are independently trained on sensor-driven data by cloud premises and private 

distributors, providers or third parties, and federated analytics techniques enable privacy-preserving 

model training and aggregation. 

Powerful analytical capabilities provide significant competitive advantages within supply chain 

ecosystems. However, organizations are reluctant to share data with competitors or other actors, and 

privacy-preserving methods for model training are, therefore, needed. Differential privacy reduces the 

probability of membership disclosure within a data-cleaning context, and secure aggregation can 

prevent any server from accessing the participating individuals' information. Advanced encryption 

techniques further enhance data protection. Since strong privacy protection may imply higher latency, 

a trade-off between privacy and computation speed needs consideration. 

Using the earlier diagram, local models trained on sensor-driven demand, inventory, and routing data 

are aggregated for federation and deployment. Consolidating demand at a regional level lowers the 

impact of differential privacy. Communication overhead can be limited by selecting a secure protocol 
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optimally suited to the local storage back end and adopting a hybrid encryption scheme based on 

Shamir's efficient secret-sharing approach. Performance impacts are reduced by defining fast-to-

compute predictive features that converge more rapidly. 

4.3. Cross-Cloud Orchestration and Interoperability Cross-cloud orchestration seamlessly 

schedules tasks across clouds for efficient compute utilization, accommodating individual cloud policies 

and workloads while managing data locality. It handles user identity management for task execution 

and federated model training or aggregation. Compatible batch jobs on different clouds can be 

processed independently and at any time. Supported by an interoperability layer that ensures 

standards-based cloud communication, it enables federated analytic pipelines across heterogeneous 

clouds, such as federated data engineering or federated model training, given the availability of 

configuration data. 

Interoperability across clouds helps share data with different data formatting and querying capabilities, 

serving diverse requirements. Federated pipeline execution requires communication with various 

clouds due to fragmented data with different compliance controls. Interoperability enables data 

exchange, provision of pre-trained models, or prepared auxiliary data, such as for feature engineering, 

to support federated pipeline execution while respecting data governance and privacy considerations. 

Cross-cloud scheduling addresses user requirements for the analytics cycle time, enabling local task 

execution or storage of intermediate outputs. The scheduling model considers the execution state of 

other tasks in each cloud region and uses a priority-based cross-cloud orchestration mechanism. 

Orchestrated scheduling of federated analytics pipelines with tasks on multiple clouds is supported, 

enabling applications such as federated pipeline execution across diverse clouds and federated learning 

across multiple clouds that share common model features. 

 

5. Case Study: National Food Service Wholesale 

Supply-side data from suppliers, storage centers, and distributors is complemented by data from retail-

level stores within a geographic area and from external sources, such as populations in the retail-level 

trade area, holidays, and other factors affecting demand. 

Data characteristics include, but are not limited to, data formats, data quality, and data timeliness. Data 

quality refers to the accuracy, completeness, and reliability of the data. Timeliness ensures the data 

becomes available when needed by downstream processes. Privacy is also a major consideration, as the 

availability of sensitive data to external parties must be prevented. All these factors must be evaluated 

before practical federated analytics is applied. Using unfit data for federated analytics will affect the 

performance of the distributed analytic result in the same way as using unfit data for fully centralized 

analytics. 

In the national food service wholesale supply chain, demand forecasting and inventory optimization 

processes focus on required SKUs (stock-keeping units). The demand quantity for each SKU should be 

forecasted for as detailed a forecasting horizon as possible—even at the single-day level. Safety stock 

levels for the SKUs are set according to service level requirements from customers regarding order 

fulfillment. The required quantity for each SKU in the storage center is then optimized. The 

transportation and logistics optimization process determines the best replenishment path, the most 

suitable carriers for each leg of the journey, the capacity of the different transportation means, and the 
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mode of transportation from storage center to distribution center and from distribution center to retail 

vendor. 

Actual carbon produced by transportation and logistics is a significant uplift cost, and thus also needs 

to be considered. This means that CO₂ is another metric to consider when evaluating the logical flow. 

In addition to CO₂ as a cost in mind, transport cost itself must also be considered, especially when 

routing between points that are close together. 

 

Fig 3: Food supply chain optimization 

5.1. Data Sources and Characteristics :  Data supporting the case study on national food service 

wholesale originates from four domains. Supplier information consists of historical orders, deliveries, 

and invoices, with all three required for analysis. Format, frequency, and quality vary by supplier and 

product. For distributor-level operations, delivery manifests document the quantity allocated and actual 

delivery of each SKU to customers. Store-level activity encompasses 13 years of customer transactions. 

Multiple files across four formats daily summarize the total sales and sales for each SKU in each store. 

Non-transactional external data combined with simulated external data includes time-series 

dimensions (e.g., holidays, shipping conditions) of specific industry sectors related to flower and plant 

purchases. 

The breadth and richness of the dataset—comprising both wholesale and selling data—facilitate end-to-

end optimization of wholesale replenishment and downstream distributors/stores. However, quality 

and granularity pose challenges. Supplier lead times vary from two to 14 days, and product availability 

is unknown until delivery, complicating traditional forecasting-based supply chain approaches. Daily 

demand estimates from 30 to 600 stores across 9 states, for more than 2,000 SKUs across seasons—

10,928,436 demand predictions across the forecast horizon—can support necessary improvements. 

5.2. Demand Forecasting and Inventory Optimization Demand Forecasting and Inventory 

Optimization involve generating SKU-specific demand forecasts at the store level and aggregating them 

into store-level, distribution-Centre-level, and distributor-level forecasts. These forecasts span three-

time horizons: short-term forecasts (weekly for the next 12 weeks for fully loaded SKU–store pairs), 

medium-term forecasts (12–16 weeks ahead, also weekly), and long-term forecasts (nudged beyond 16 
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weeks, done monthly). Store-based demand forecasts serve as the input for inventory replenishment 

problem formulations for the wholesale-distributor supply chain provisioned under two levels of safety 

stock for low-demand SKUs/SKU–stores (metric: stock-out probability) and high-demand SKUs/SKU–

stores (metric: service level). Safety stocks for the use case are determined when demand is forecasted 

for a week and input into the inventory replenishment model for the following week(s). The preferred 

replenishment policy uses converted replenishment costs, allowing the selected inventory model to 

automatically choose the mode for which replenishment is most profitable. 

Given the co-existence of multiple replenishment modes, the inventory replenishment optimization 

problem for the national-pharmaceutical-distribution supply chain seeks to mitigate total inventory 

replenishment cost while meeting distributor safety-stock requirements. This challenge has been 

modeled and solved as a mixed-integer linear programming problem in an off-line use case. The 

distribution-center-based aggregator has monthly demand forecasts, while the distributor-level 

aggregations are assumed to be constant across SKUs/SKU–stores. The key objectives are to optimize 

these safety stocks, covering total cost of inventories held by the distributor and the pipelines between 

the distributor and the store-level players. 

Equation 4: Transportation & routing optimization with CO₂ (multi-objective) 

4.1 Variables 

• Let 𝑎 be an arc (lane) between nodes (supplier/DC/store) 

• Let 𝑚 be a mode/carrier 

• Binary: 

𝑥𝑎,𝑚 ∈ {0,1} 

= choose arc 𝑎 using mode 𝑚 

4.2 Objective 

6. Total cost: 

𝐶 =∑𝑐

𝑎,𝑚

𝑜𝑠𝑡𝑎,𝑚  𝑥𝑎,𝑚 

4. Total emissions: 

𝐸 =∑𝑐

𝑎,𝑚

𝑜2𝑎,𝑚  𝑥𝑎,𝑚 

3. Combined: 

min 𝐶 + 𝜆𝐸 

where 𝜆 trades off dollars vs CO₂. 

4.3 Typical constraints (high level) 

• Flow conservation (pickup/delivery satisfaction) 
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• Vehicle/carrier capacity constraints 

• Time windows / service constraints 

• Carrier availability constraints 

5.3. Transportation and Logistics Optimization Transportation optimization decides the 

allocation of products to carriers and defines their routes, considering various constraints. The task can 

be divided into two subproblems: selecting which of the available carriers should be used to transport 

goods throughout the country and calculating the routes for pickup and delivery. The first phase consists 

of choosing several carriers with sufficient capacity to cover the required pickup and delivery requests. 

The second phase comprises calculating the routes that minimize transportation time and/or costs. 

Both phases can be considered as two-stage optimization problems, where the results of the first phase 

are constraints in the second one. Transportation time and costs are important, but they are not the 

only criteria guiding the process. Sustainability is rapidly turning into a new trend, and companies are 

being pressured to define strategies and metrics to measure, report, and improve the carbon footprint 

of their entire SC. For the national food service wholesale SC, these two aspects complement each other. 

Costs are of course crucial for maintaining competitiveness, while the carbon footprint needs to remain 

under control to exceed the internal sustainability targets. Therefore, the combined optimization 

focuses on minimizing both transportation costs and total CO2 emissions associated with the 

transportation services from the suppliers to the distributors and from the distributors to the stores. 

 

 

6. Experiments and Results 

In this section, the evaluation of the proposed federated method is presented. The first part provides a 

comparative study of federated (federated vs precise) and centralized approaches followed by the 

National Food Service Wholesale dataset. These analyses include baseline models trained on the same 

or similar data distributions (e.g., cross-validation), and they aim to understand the performance 

differences, ranging from accuracy to privacy, communication costs, convergence, and fault tolerance. 

The second part examines scalability through the growing size of datasets used in the federated settings 

and end-to-end latencies on the National Food Service Wholesale case study. 

There are two sides to a federated learning process; the first side is associated with model training and 

is thus characterized by size, localization, directionality, and informativeness of data. The other side 

distinguishes accuracy, convergence, and privacy leakage. A crucial concern is whether federated 

analytics can provide sufficient accuracy compared to centralized methods. Centralized baselines were 

taken either from literature with similar features or from tailored Space-Information models (SI9-
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Accord routes and SI10-supplier-selection-spanning-tree) using the same temporal-center split of the 

dataset. 

6.1. Baseline Comparisons :  Three real-world datasets serve as bases for centralized and federated 

analytics of national food service wholesale supply chains. These datasets correspond to three different 

grocery retailers in the U.S.—one that operates a bulk supply chain, one that operates a conventional 

supply chain, and one that operates both types of supply chains concurrently—offering many 

opportunities for performance comparisons across different domains. Two additional datasets from 

different countries represent food service wholesale suppliers and distributors. The baseline 

comparisons are conducted along two dimensions: centralized analytics with all valuable data stored in 

a single cloud versus federated analytics that leverage only the local data stored in different clouds. In 

both cases, demand forecasting, inventory optimization, and transportation logistics optimization are 

performed. 

When centralized analytics using all useful data in a single cloud are compared to deployed federated 

analytics that consider only local data and some privacy-sensitive data are shared within the supply 

chain, the revenue impact is perceived only in the privacy closures, while the accuracy decrease is 

compensated with savings in operation expenses. In the second set of comparisons, the two approaches 

are assessed in terms of prediction accuracy, information leakage, communication overhead, and 

convergence behavior, considering a well-trained demand model. 

6.2. Federated vs Centralized Analytics :Two central baselines evaluate centralized wholesale 

demand forecasting: one utilizing true historical data, the other applying a LOST approach with 

Internet-of-Things forecasting. Demand distribution for core SKUs varies according to supplier 

seasonality for the early and mid-holiday season. Four scenarios, differing in demand-sharing policies 

and the presence of sensitive data, assessing privacy leakage and communication-cost trade-offs among 

two data-sharing companies and an untrusted third-party platform. 

Tested over three distinct datasets, the federated-algorithm predictions maintain statistical accuracy 

comparable to traditional centralized analyses. Due to the multilayer differential-privacy embedded 

level utilities, the accuracy converges following a trade-off policy. Secrecy is guaranteed; 4.29 and 5.95 

bits are concurrently secured by two untrusted party platforms. Compared to centralized phones, 

communication overhead and convergence rate shift with the ratio of sensitive data volume. The 

capability of handling bulky systems is confirmed. 

Equation 5: Federated learning / federated analytics equations (FedAvg) 

5.1 Local training step 

In round 𝑟, each cloud/client 𝑘 starts from global weights 𝑤(𝑟) and runs local SGD: 

𝑤𝑘
(𝑟) = 𝑤(𝑟) − 𝜂∑∇

𝐸

𝑒=1

ℓ𝑘(𝑤) 

(Conceptually: after 𝐸 local epochs on client 𝑘’s local data.) 
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5.2 FedAvg aggregation (step-by-step) 

Let 𝑛𝑘 be sample count at client 𝑘. Define total samples 𝑁 = ∑ 𝑛𝑘𝑘 . 

7. Weight for client 𝑘: 

𝛼𝑘 =
𝑛𝑘
𝑁

 

5. Aggregate: 

𝑤(𝑟+1) =∑𝛼𝑘
𝑘

 𝑤𝑘
(𝑟)

 

This is the core FedAvg equation used in federated forecasting modules. 

6.3. Scalability and Latency Measurements: Throughput (number of federated aggregations 

within 30 minutes) and end-to-end processing latency (from input data availability to result 

distribution) are evaluated, focusing on the federated analytics orchestration. Results (Figure 8) 

confirm that the throughput scales almost linearly with the total number of plugins across the three 

clouds, dominated by the increased number of parallel federated aggregate requests generated across 

the three cloud providers. Figure 8 also shows that the processing latency for each federated aggregation 

results for both cooling load and the demand forecast. The parameters, service level, and 

share_market_onhand_sum that aggregate confidential information of region-account mode and 

locate-freight-mode demand forecasting are included. The overhead caused by orchestrating the 

federated layer is also negligible. Additionally, the processing latency remains low, confirming that 

current data volume has limited impact on end-to-end latency. 

When federated analytics orchestrates at the layer adjacent to the target region, communication 

overhead of cross-cloud analytics disrupts the global system most, leading to a trade-off between 

privacy–latency and privacy–locality. When communication overhead is high, scheduling cross-cloud 

analytics as far as possible from the result consumer reduces overall overhead. Prioritizing privacy–

latency trade-off during cross-cloud orchestration provides advantages, especially in local horizontal 

data-sharing scenarios, where distance cannot be neglected. The cloud-agnostic trend confirms the 

promise of supporting national food service supply chain applications across the three public clouds. 

Index 
LeadTime_day
s Sigma_week 
SafetyStock_u
nits 

Index 
LeadTime_day
s Sigma_week 
SafetyStock_u
nits 

Index 
LeadTime_day
s Sigma_week 
SafetyStock_u
nits 

Index 
LeadTime_day
s Sigma_week 
SafetyStock_u
nits 

Index 
LeadTime_day
s Sigma_week 
SafetyStock_u
nits 

SKU_A 5.00 
50.58 70.32 

SKU_A 5.00 
50.58 70.32 

SKU_A 5.00 
50.58 70.32 

SKU_A 5.00 
50.58 70.32 

SKU_A 5.00 
50.58 70.32 

SKU_B 7.00 
34.49 56.74 

SKU_B 7.00 
34.49 56.74 

SKU_B 7.00 
34.49 56.74 

SKU_B 7.00 
34.49 56.74 

SKU_B 7.00 
34.49 56.74 

SKU_C 10.00 
21.73 42.73 

SKU_C 10.00 
21.73 42.73 

SKU_C 10.00 
21.73 42.73 

SKU_C 10.00 
21.73 42.73 

SKU_C 10.00 
21.73 42.73 

Table: Safety stock computation inputs (illustrative) 
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7. Conclusion 

The proposed solution facilitates big data-driven analytics across AWS, Azure, and GCP, thereby 

improving the accuracy of supply chain optimization in the national food service wholesale sector, which 

includes supply, distribution, and economic supply service providers managed via the three major cloud 

service platforms. The federated capability addresses centralized data storage, potential data privacy 

disclosure when combining data in a third-party cloud, data governance across organizational 

boundaries, and latency issues in remote data access when combining supplier–distributor and 

distributor–store data to improve demand and inventory forecasting. Supported by the success of 

federated learning in machine learning model training, demand forecasting serves as analytics building 

block for data-hungry supply chain optimization problems and establishes a path to cross-cloud 

capabilities for other data-hungry algorithms needing supplier–distributor and distributor–store data 

combinations. 

As new challenges arise in the future, such as climate change, persistent shortages of energy and raw 

materials, food security, diversity of origins, food safety, and consumer health demands, they must be 

examined in parallel with compliance with European regulations, reduction of greenhouse gas 

emissions, technological capabilities, national welfare, and degree of care taken by industry players. 

Technological adaptations such as big data, artificial intelligence, the Internet of Things, and cloud 

computing will foster breakthroughs and contribute to optimizing supply chains, logistics, 

transportation, and routing. Directions for future developments are detection and data renovation at 

the store level, integration and renovation by cloud services, study of full partnership and service 

relations among producers and transporters, effects of storage length, and means of assisting with 

supply and logistics costs. 

7.1. Future Trends:  Data-driven federated analytics has the potential to facilitate national supply 

chain optimization for food-service wholesale. The basic requirements for success are well-defined data 

governance and policies that govern source-data retention, sharing, and cross-cloud data location. The 

demand-forecasting, inventory-optimization, and transportation-and-logistics-routing modules can 

operate effectively in production with a few hundred SKU time’s location combinations arranged for 

each week. The distribution division for each major area, namely, the West, East, Central, and Border 

regions, should contain independent suppliers that fulfill the interfacing requirement of low-latency 

development. The remaining supply-chain modules can be adapted progressively as the service demand 

grows or the data contribution burden can be shared with suppliers stationed in other major areas. With 

strong caution in applying data-derived results to decision making, federated analytics can enable 

strategic cloud-enabled national-level supply-chain decisions. 

Looking beyond food service, federated analytics can be advantageous for national requirements in 

public health, epidemic control, pandemic containment, and climate change. These areas typically 

demand support from many cloud service platforms for properly managing shared data and workloads 

with low latency. However, such requirements cannot be handled centrally due to numerous data-

gathering points, resource-demanding high-precision prediction demands, and the data risk factor that 

tends to limit citizen participation in delivery. With proper policy support and technological 

empowerment, federated analytics can readily model the national service domain in public health and 

epidemic control by combining analytical models from different service providers. 
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