Journal of Information Systems Engineering and Management

2025, 10(63s)
e-ISSN: 2468-4376

https://jisem-journal.com/

Research Article

Digital Merchandising and Enterprise UI Modernization in E-
Commerce: Front-End Architecture, React Patterns, and
Micro-Frontend Integration for Scalable Shopping

Experiences

Preejith Ponneth

Master of Computer Applications (MCA) and Professional experience

with Target Corporation, U.S. Bank, Bose, VMware, and IBM

ARTICLE INFO

ABSTRACT

Received: 01 Nov 2025
Revised: 08 Dec 2025

Accepted: 17 Dec 2025

Digital merchandising interfaces have undergone a fundamental transformation
from server-rendered templates into component-driven architectures powered by
modern JavaScript frameworks. Contemporary e-commerce platforms require
responsive user experiences managing dynamic product displays, real-time
inventory updates, and personalized content delivery across diverse devices and
network conditions. Legacy front-end systems create substantial barriers through
monolithic codebases, tightly coupled dependencies, and inefficient rendering
patterns. Monolithic JavaScript applications bundle entire feature sets into single
deployment artifacts preventing independent team releases. State management
through global variables and DOM manipulation introduces unpredictable
behavior and debugging challenges. Build processes consuming extended time
periods slow development velocity. Ul modernization addresses these constraints
through React-based component architectures decomposing interfaces into
reusable modules with explicit boundaries. Micro-frontend patterns enable
autonomous team development through runtime integration strategies including
Module Federation. Typed interfaces across federated modules provide compile-
time safety despite dynamic loading. State management architectures coordinate
concurrent updates across distributed applications. Performance optimization
employs code splitting, lazy loading, and virtual scrolling to handle extensive
product catalogs within strict rendering budgets. Server-side and static rendering
strategies balance initial load performance with interactive responsiveness.
Component libraries and design systems establish visual consistency while
enabling parallel development across distributed teams. Strangler fig migration
patterns enable incremental replacement of legacy interfaces minimizing
disruption. Usability validation ensures modernized experiences maintain or
improve user engagement metrics.

Keywords: Front-End Architecture, Micro-Frontend Systems, React Component
Patterns, Module Federation, UI Performance Optimization, Design System
Integration

Introduction

Front-end engineering in digital merchandising has evolved from server-side templating and jQuery-
based interactions toward component-driven architectures built on modern JavaScript frameworks.
Early e-commerce interfaces relied heavily on server-rendered HTML with progressive enhancement
through scattered JavaScript files. Global state management occurred through DOM manipulation
and event delegation patterns. Modern expectations demand fundamentally different technical
capabilities. User interfaces must respond instantaneously to interactions. Product displays update
dynamically without full page reloads. Personalized content is rendered based on behavioral signals.
Single-page application architectures enable fluid navigation experiences across extensive product

catalogs.

603

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Component-based frameworks revolutionized front-end development by introducing declarative
rendering patterns and unidirectional data flow. The introduction of hooks fundamentally
transformed how developers structure component logic and manage state within functional
components [1]. Hooks enable developers to extract stateful logic into reusable functions separate
from component hierarchies. The semantics of hooks introduce novel programming patterns where
effects execute based on dependency arrays and closure captures. Understanding hook execution
models becomes essential for preventing memory leaks and ensuring predictable component behavior
[1]. The transition from class-based components to functional components with hooks represents a
paradigm shift requiring developers to reason about component lifecycles differently. Effect cleanup
functions, dependency tracking, and memoization patterns form the foundation of modern React
development practices.

Micro-frontend architectures extend component modularity principles to organizational boundaries,
enabling independent team development and deployment. Research examining micro-frontend
adoption reveals both significant benefits and notable challenges in real-world implementations [2].
Organizations report improved development velocity through team autonomy and reduced
coordination overhead. Independent deployment cycles enable faster feature delivery without waiting
for monolithic release windows. Technology diversity becomes possible as teams select frameworks
suited to specific use cases. However, micro-frontend architectures introduce complexity through
runtime integration challenges and performance overhead from duplicated dependencies [2]. Shared
component libraries require careful versioning to prevent breaking changes across teams. Cross-
application state management becomes more complex when applications integrate at runtime rather
than build time.

Legacy merchandising interfaces often constitute the primary impediment to UI modernization
initiatives within established retail organizations. Monolithic JavaScript applications bundle all
functionality into single deployment artifacts. Tight coupling between product display logic,
navigation systems, and checkout flows prevents independent updates. Build processes taking
extended periods introduce friction in development workflows. Teams cannot deploy interface
improvements without coordinating across the entire front-end codebase. Server-side rendering
templates mix presentation logic with business rules creating maintenance challenges. CSS specificity
wars emerge as stylesheets grow without modular boundaries. Global JavaScript namespaces lead to
naming collisions and unexpected side effects. The inability to efficiently experiment with interface
variations or deploy component updates creates strategic disadvantages in competitive digital
markets.

Front-End Architectural Challenges in Legacy Merchandising Systems

Traditional merchandising interfaces demonstrate several architectural characteristics that limit
development velocity and impede modernization efforts. Monolithic application designs bundle all
front-end functionality within single codebases and build processes. Product catalog rendering
couples with shopping cart logic and user account management. This architectural pattern
complicates independent deployment of interface features. Teams cannot release product display
improvements without rebuilding entire applications. Build times extend as JavaScript bundles grow.
Developer experience degrades when hot module replacement takes significant time. Code splitting
remains manual and error-prone without clear module boundaries separating distinct functional
areas.

Empirical studies of JavaScript applications reveal complex information flow patterns that complicate
maintenance and security analysis [3]. Dynamic language features including prototype manipulation,
with statements, and eval constructs create unpredictable execution paths. Information flows through
closures, object properties, and global variables in ways that static analysis struggles to capture.

604
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Legacy merchandising applications often rely heavily on these dynamic patterns accumulated over
years of incremental development. Implicit type coercions and prototypal inheritance chains obscure
data transformations [3]. Callback-based asynchronous patterns introduce temporal dependencies
difficult to reason about. The prevalence of third-party libraries with opaque implementations further
complicates understanding complete information flows through applications. Security vulnerabilities
emerge when untrusted data flows into sensitive sinks without proper validation.

State management within legacy interfaces presents equally significant constraints. Global variables
and DOM data attributes serve as primary state storage mechanisms. Multiple JavaScript files read
and write shared state without coordination. Race conditions emerge as asynchronous operations
complete in unpredictable orders. User interactions trigger cascading updates through jQuery event
handlers. Debugging state changes requires tracing through multiple callback chains. The lack of
unidirectional data flow makes reasoning about application behavior challenging. Performance issues
arise from unnecessary re-renders as entire page sections update in response to minor state changes.
Shopping cart updates might trigger product recommendation refreshes even when recommendations
depend only on browsing history rather than cart contents.

Performance characteristics of legacy web applications suffer from suboptimal resource loading and
rendering strategies [4]. Browser behavior analysis reveals that component download times dominate
page load latency in typical web applications. Reducing the number of HTTP requests through
consolidation and caching provides substantial performance improvements. Gzip compression of
textual resources decreases transfer times significantly [4]. Placing stylesheets in document heads and
scripts at page bottoms optimizes rendering progression. However, legacy merchandising platforms
often load resources synchronously blocking page rendering during script execution. Large monolithic
JavaScript bundles delay time to interactive metrics. Images load without dimension specifications
causing layout shifts as content renders. The absence of lazy loading patterns means off-screen
product images consume bandwidth unnecessarily. Critical rendering path optimization remains
unaddressed as legacy systems lack modern build tooling to implement these strategies effectively.
The absence of component boundaries creates maintenance challenges as applications mature.
Duplicated logic spreads across multiple files without shared abstractions. Similar product card
implementations exist in search results, recommendations, and category pages with inconsistent
behavior. Changes to common patterns require updates across numerous locations. Regression risks
increase as modifications affect unintended areas. Testing becomes difficult without clear component
contracts. End-to-end tests provide the only confidence mechanism introducing slow feedback loops
that delay development iterations.

Constraint Technical Challenge Development Impact
Category

é,g Il)llcltcsltaleon Monolithic bundles with tight coupling Cannot deploy features independently
Information Dynamic language features and prototype | Complex execution paths and security
Flow manipulation vulnerabilities
State Global variables and DOM attribute Race conditions and unpredictable
Management storage updates
Performance girllﬁllgsmous resource loading and large Delayed time-to-interactive metrics
Code Duplicated logic without shared . L .
Organization abstractions High regression risk during changes

Table 1. Legacy Front-End Architecture Constraints Monolithic JavaScript Applications and State
Management Issues [3, 4].

605
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.




Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Modern Front-End Architecture and Component Patterns

Contemporary merchandising interfaces address legacy limitations through component-based
architectures and micro-frontend patterns. React component hierarchies decompose complex
interfaces into focused, reusable modules. Product cards encapsulate rendering logic for individual
items. Filter panels manage state for refinement controls. Search components handle query input and
suggestions independently. This decomposition enables independent development and testing of
interface sections. Component boundaries establish clear contracts through props interfaces.
TypeScript definitions provide compile-time verification of component interactions ensuring type
safety across large codebases.

Module federation represents a significant advancement enabling micro-frontend architectures to
share code while maintaining deployment independence [5]. Traditional approaches required
complete dependency duplication across independently deployed applications resulting in substantial
bundle size overhead. Module federation enables runtime sharing of common dependencies including
framework libraries and shared component packages. Bundler-independent implementations address
vendor lock-in concerns allowing teams to select build tools matching their requirements [5]. Type
safety across federated modules presents challenges as remote modules load dynamically without
compile-time type information. Emerging solutions generate type definitions from remote module
manifests enabling TypeScript validation across micro-frontend boundaries. This capability proves
essential for large-scale applications where multiple teams develop independently deployed interface
sections that must integrate seamlessly at runtime.

Micro-frontend integration strategies balance autonomy with consistency requirements. Independent
applications integrate at runtime rather than build time through various technical approaches.
JavaScript-based integration loads remote entry points that expose federated modules. Web
component-based approaches provide framework-agnostic boundaries using standard browser APIs.
Server-side composition assembles interfaces before delivery to browsers. Each strategy presents
distinct tradeoffs regarding initial load performance, runtime overhead, and development complexity.
Module federation specifically addresses the shared dependency problem reducing total JavaScript
payload while preserving team autonomy.

State management in distributed front-end architectures requires careful coordination patterns.
Cross-application communication occurs through custom events, shared state libraries, or event bus
patterns. Concurrent state updates from multiple micro-frontends necessitate conflict resolution
strategies [6]. Temporal ordering of events becomes critical when multiple components modify shared
data. Formal specification approaches clarify intended behavior helping developers reason about
complex interaction patterns [6]. State machines provide explicit models of valid state transitions. The
challenges of distributed state management in micro-frontends mirror broader concurrent system
coordination problems. Optimistic updates provide responsive user experiences while background
synchronization maintains consistency.

Component composition patterns establish reusable abstractions across merchandising experiences.
Compound components provide flexible APIs for complex UI patterns. Product grids accept
customizable product card components enabling visual variation while maintaining consistent
interaction patterns. Filter systems compose individual filter controls into coordinated panels
managing selection state collectively. Render props and higher-order components enable cross-
cutting concerns like analytics tracking and error boundaries. Context providers manage shared state
across component trees without prop drilling. Custom hooks encapsulate reusable logic for data
fetching, form handling, and animation orchestration. Design systems formalize component libraries
with documented patterns and usage guidelines. Atomic design principles structure components from
basic elements to complex organisms ensuring consistency while enabling composition flexibility.

606

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(63s)
e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article
Architecture . .
Technical Implementation Key Benefits
Component
Module Runtime dependency sharing across | Reduced bundle duplication while
Federation applications maintaining autonomy
Component React functional components with .
pore P Independent development and testing
Hierarchies hooks
State Concurrent state coordination Predictable updates across distributed
Management patterns frontends
. Atomic design with compound Visual consistency and reusable
Design Systems .
components abstractions
TypeScript definitions for federated | Compile-time verification across
Type Safety P P pre”
modules boundaries

Table 2. Modern Front-End Architecture Components, Micro-Frontend Integration and Component
Design Patterns [5, 6].

Performance Optimization and Rendering Strategies

Front-end performance directly impacts user engagement and conversion rates in e-commerce
interfaces. Rendering performance determines how quickly users perceive interface responsiveness.
JavaScript bundle sizes affect initial load times particularly on slower network connections.
Comparative analysis of modern web frameworks reveals substantial performance variations across
different rendering strategies [7]. Server-side rendering provides faster initial page loads by delivering
complete HTML from servers. Client-side rendering offers smoother transitions between views after
initial application load. Static generation combines benefits of both approaches for content that
changes infrequently. Hydration overhead affects server-rendered applications as -client-side
JavaScript attaches event handlers to existing markup [7]. Progressive hydration strategies reduce
time-to-interactive by prioritizing critical components. Partial hydration approaches hydrate only
interactive sections leaving static content as plain HTML. Framework selection significantly impacts
performance characteristics with lightweight libraries reducing baseline overhead.
Mobile device constraints amplify performance considerations for e-commerce applications. CPU
energy consumption analysis reveals that JavaScript execution dominates energy usage during web
browsing on mobile devices [8]. Parsing and compiling JavaScript consumes substantial processing
resources before code execution begins. Efficient code patterns and reduced bundle sizes directly
translate to improved battery life on mobile devices. Layout and rendering operations triggered by
DOM manipulation create additional CPU load [8]. Modern mobile processors employ sophisticated
power management varying clock speeds based on workload characteristics. Sustained JavaScript
execution prevents processors from entering low-power states. Performance optimization strategies
must consider not only execution time but also energy efficiency particularly for shopping experiences
where users might browse extensively.
React rendering optimization focuses on minimizing unnecessary component updates. Memoization
techniques prevent recalculation of derived values when dependencies remain unchanged.
React.memo wraps components to skip renders when props remain unchanged preventing wasted
reconciliation cycles. useMemo and useCallback hooks prevent reference changes from triggering
child component updates unnecessarily. Profiler API enables measurement of component render
frequencies and durations identifying optimization opportunities. Concurrent rendering features
enable React to interrupt long-running render work maintaining interface responsiveness during
heavy computations.
Code splitting strategies reduce initial bundle sizes by deferring non-critical JavaScript. Dynamic
imports enable route-based code splitting where each navigation loads required code on demand.
607
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.




Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Component-level splitting defers heavy components until actually needed by users. React.lazy enables
declarative lazy loading with Suspense boundaries handling loading states gracefully. Bundle analysis
tools visualize dependency graphs identifying optimization opportunities where shared code might be
extracted into separate chunks. Critical path CSS extraction prioritizes rendering of above-the-fold
content allowing page rendering before complete stylesheet downloads.

Virtual scrolling techniques handle extensive product catalogs without rendering thousands of DOM
nodes simultaneously. Windowing libraries render only visible items plus small buffers above and
below the viewport. Scroll position calculations determine which items require rendering at any given
moment. Item recycling reuses existing DOM nodes improving memory efficiency. Variable height
support accommodates products with different dimensions requiring dynamic height calculations.
Grid layouts virtualize in two dimensions handling both vertical and horizontal scrolling efficiently.
Image optimization significantly impacts performance in product-heavy interfaces. Responsive images
through srcset attributes serve appropriate resolutions per device capabilities. Modern formats like
WebP reduce file sizes while maintaining visual quality.

Op;r;:lltz(;t;on Implementation Approach Performance Impact
. Server-side, client-side, or static Faster initial loads and smoother
Rendering Strategy . ..
generation transitions
Code Splitting Rout.e—based and component-level lazy Reduced initial bundle sizes
loading
React Memoization with React.memo and Minimized unnecessary component
Optimization hooks updates
Virtual Scrolling Windowing libraries for product catalogs | Efficient handling of extensive lists
Mobile Efficiency REdl.lced JavaScript execution and Lower CPU energy consumption
parsing
Table 3. Performance Optimization Strategies Rendering Techniques and Resource Management [7,

8].

Implementation Strategies for Ul Modernization

Successful UI modernization employs incremental migration strategies minimizing disruption to user
experiences while progressively introducing modern capabilities. Initial phases establish foundational
infrastructure including build tooling, component libraries, and deployment pipelines. Modern
bundlers replace legacy concatenation scripts enabling advanced optimization techniques. ESLint and
Prettier enforce code quality and consistency across development teams. TypeScript adoption
provides type safety reducing runtime errors. Testing frameworks enable component-level and
integration testing improving confidence in refactoring efforts. Continuous integration pipelines
validate changes before deployment preventing regressions from reaching production environments.

Strangler fig patterns enable gradual migration from legacy interfaces to modern architectures
without requiring complete system rewrites [9]. The pattern derives its name from strangler fig plants
that gradually envelop host trees eventually replacing them entirely. Applied to software systems, new
functionality implements alongside legacy code with routing mechanisms directing requests to
appropriate implementations. Case study analysis demonstrates successful application of strangler fig
patterns in migrating monolithic systems to microservice architectures [9]. The pattern reduces
migration risk by enabling incremental validation of new implementations. Rollback capabilities
provide safety nets if new implementations encounter issues. Gradual traffic migration allows
performance comparison between old and new systems under production load. Monitoring

608
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.




Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

instrumentation tracks key metrics ensuring new implementations meet or exceed baseline
performance characteristics.

Component migration follows prioritization based on business value and technical risk assessment.
High-traffic pages with performance issues receive attention first maximizing user impact. Isolated
features with clear boundaries migrate more easily than highly coupled functionality. Shared
components like headers and footers establish visual consistency early in migration processes.
Product cards and search results benefit from modern rendering optimization techniques. Shopping
cart experiences leverage contemporary state management patterns improving reliability. Progressive
enhancement ensures existing functionality remains operational during transitions maintaining user
trust throughout modernization efforts.

Design system adoption coordinates visual consistency across migration phases. Component libraries
provide modern implementations of common interface patterns. Migration guides document
replacement patterns for legacy code facilitating developer transitions. Visual regression testing
prevents unintended appearance changes during component replacements. Accessibility audits ensure
compliance standards maintain throughout modernization processes. Documentation sites onboard
team members to new component APIs and usage patterns. Contribution guidelines standardize
component development practices across distributed teams. Version management of design system
packages coordinates updates across consuming applications following semantic versioning
conventions.

Cognitive and usability engineering methods validate that modernized interfaces maintain or improve
user experience metrics [10]. Usability evaluation combines multiple methodologies including think-
aloud protocols where users verbalize thought processes during task completion. Cognitive
walkthrough techniques systematically evaluate interface learnability and task efficiency. Heuristic
evaluation applies established usability principles identifying potential issues [10]. Performance
metrics alone insufficiently capture user experience quality requiring qualitative assessment. A/B
testing frameworks enable quantitative comparison of interface variations. Feature flags facilitate
gradual rollout to user segments enabling validation before broader deployment. Metric tracking
compares conversion rates, task completion times, and error frequencies between old and new
experiences. Synthetic monitoring provides continuous validation across release cycles detecting
regressions quickly.

Impll‘:::tlte;.t;luon Technical Approach Risk Management

Strangler Fig Incremental replacement with routing Gradual validation and rollback

Migration layers capability

Component High-traffic pages and isolated features Maximized user impact with

Prioritization first reduced risk

Design System Standardized component libraries with Visual consistency across migration

Adoption documentation phases

Usability Cognitive walkthroughs and think-aloud | Maintained or improved user

Validation protocols experience

Progressive Rollout | Feature flags and A/B testing frameworks Quantitative comparison before
full deployment

Table 4. UI Modernization Implementation Patterns Migration Strategies and Validation Methods [9,

10].

609
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.




Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

Conclusion

Enterprise UI modernization in digital merchandising represents comprehensive architectural
transformation extending across component design, state coordination, and rendering optimization.
Monolithic jQuery-based interfaces give way to modular React architectures enabling independent
component evolution. Component boundaries with explicit contracts facilitate isolated testing and
parallel development efforts. Micro-frontend integration through Module Federation addresses
dependency duplication while preserving team autonomy. Typed interfaces across application
boundaries maintain compile-time safety despite runtime composition. Concurrent state management
patterns coordinate updates across distributed front-end applications. Performance optimization
through strategic code splitting and lazy loading ensures responsive experiences even with extensive
product catalogs. Server-side and static generation strategies complement client-side rendering
balancing initial load speed with interactive fluidity. Virtual scrolling techniques handle large datasets
without overwhelming browser rendering capabilities. Mobile energy efficiency considerations guide
optimization decisions beyond simple execution time metrics. Design systems formalize component
libraries establishing visual language consistency across distributed teams. Strangler fig migration
patterns reduce risk through incremental validation of modernized implementations. Usability
engineering methods ensure interface changes preserve or enhance user experience quality. The
engineering foundations established through modernization create organizational capabilities
extending beyond immediate interface improvements toward continuous experimentation and data-
driven optimization. Component architectures facilitate rapid A/B testing of interface variations.
Design systems accelerate feature development through battle-tested components. Performance
budgets prevent regression through continuous monitoring and automated validation. Future e-
commerce interfaces will incorporate advanced interaction patterns including voice navigation,
augmented reality product visualization, and predictive interface adaptation. Progressive web
application capabilities will eliminate distinctions between web and native experiences. WebAssembly
integration may enable computationally intensive operations including real-time image processing
and three-dimensional product rendering directly within browsers. Architectural patterns and
infrastructure investments made during current modernization initiatives provide essential
foundations for adopting emerging technologies. Organizations possessing modular component
architectures, established design systems, and optimized rendering pipelines maintain competitive
positioning in rapidly evolving digital retail markets while preserving development velocity and
experience quality throughout continuous evolution.

References

[1] Jay Lee et al., "React-tRace: A Semantics for Understanding React Hooks," ACM, 2025. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/3763067 [2] Fabio Antunes et al., "Investigating
Benefits and Limitations of Migrating to a Micro-Frontends Architecture," arXiv, 2024. [Online].
Available: https://arxiv.org/pdf/2407.15829

[3] Cristian-Alexandru Staicu et al., "An Empirical Study of Information Flows in Real-World
JavaScript," arXiv, 2019. [Online]. Available: https://arxiv.org/pdf/1906.11507

[4] Steve Souders, "High Performance Web Sites," Communications of the ACM, 2008. [Online].
Available: https://dl.acm.org/doi/pdf/10.1145/1409360.1409374

[5] Billy Lando and Wilhelm Hasselbring, "Toward Bundler-Independent Module Federations:
Enabling Typed Micro-Frontend Architectures,” arXiv, 2025. [Online]. Available:
https://arxiv.org/pdf/2501.18225 [6] LESLIE LAMPORT, "A SIMPLE APPROACH TO SPECIFYING
CONCURRENT SYSTEMS," Communications of the ACM, 1989. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/63238.63240

610
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


https://dl.acm.org/doi/pdf/10.1145/3763067
https://dl.acm.org/doi/pdf/10.1145/3763067
https://arxiv.org/pdf/2407.15829
https://arxiv.org/pdf/2407.15829
https://arxiv.org/pdf/1906.11507
https://arxiv.org/pdf/1906.11507
https://dl.acm.org/doi/pdf/10.1145/1409360.1409374
https://dl.acm.org/doi/pdf/10.1145/1409360.1409374
https://arxiv.org/pdf/2501.18225
https://arxiv.org/pdf/2501.18225
https://arxiv.org/pdf/2501.18225
https://dl.acm.org/doi/pdf/10.1145/63238.63240
https://dl.acm.org/doi/pdf/10.1145/63238.63240
https://dl.acm.org/doi/pdf/10.1145/63238.63240

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

[7] Risto Ollila et al., "Modern Web Frameworks: A Comparison of Rendering Performance," Journal
of Web Engineering, 2022. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623 [8] Yuhao Zhu et al., "THE ROLE
OF THE CPU IN ENERGYEFFICIENT MOBILE WEB BROWSING," IEEE Computer Society, 2015.
[Online]. Available: https://www.researchgate.net/profile/Yuhao-Zhu-
2/publication/271723047_The_Role_of_the_Mobile_ CPU_in_Energy-

Efficient_ Mobile_ Web_ Browsing/links/552c965f0cf2gb22c9c45fcd/The-Role-of-the-Mobile-CPU-
in-Energy-Efficient-Mobile-Web-Browsing.pdf

[9] Chia-Yu Li et al., "Microservice Migration Using Strangler Fig Pattern: A Case Study on the Green
Button System,” [Online]. Available: https://www.researchgate.net/profile/Shang-Pin-Ma-
2/publication/349568403_Microservice_ Migration_Using_Strangler_Fig_Pattern_A_Case_Study__
on_the_Green_Button_System/links/66e460ddf84dd1716cebdas9/Microservice-Migration-Using-
Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf

[10] Andre W. Kushniruk and Vimla L. Patel, "Cognitive and usability engineering methods for the
evaluation of clinical information systems,” ScienceDirect, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1532046404000206

611
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.sciencedirect.com/science/article/pii/S1532046404000206
https://www.sciencedirect.com/science/article/pii/S1532046404000206
https://www.sciencedirect.com/science/article/pii/S1532046404000206

