
Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

603
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Digital Merchandising and Enterprise UI Modernization in E-

Commerce: Front-End Architecture, React Patterns, and

Micro-Frontend Integration for Scalable Shopping

Experiences

ARTICLE

Preejith Ponneth

Master of Computer Applications (MCA) and Professional experience
with Target Corporation, U.S. Bank, Bose, VMware, and IBM

INFO ABSTRACT

Received: 01 Nov 2025

Revised: 08 Dec 2025

Accepted: 17 Dec 2025

Digital merchandising interfaces have undergone a fundamental transformation
from server-rendered templates into component-driven architectures powered by
modern JavaScript frameworks. Contemporary e-commerce platforms require
responsive user experiences managing dynamic product displays, real-time
inventory updates, and personalized content delivery across diverse devices and
network conditions. Legacy front-end systems create substantial barriers through
monolithic codebases, tightly coupled dependencies, and inefficient rendering
patterns. Monolithic JavaScript applications bundle entire feature sets into single
deployment artifacts preventing independent team releases. State management
through global variables and DOM manipulation introduces unpredictable
behavior and debugging challenges. Build processes consuming extended time
periods slow development velocity. UI modernization addresses these constraints
through React-based component architectures decomposing interfaces into
reusable modules with explicit boundaries. Micro-frontend patterns enable
autonomous team development through runtime integration strategies including
Module Federation. Typed interfaces across federated modules provide compile-
time safety despite dynamic loading. State management architectures coordinate
concurrent updates across distributed applications. Performance optimization
employs code splitting, lazy loading, and virtual scrolling to handle extensive
product catalogs within strict rendering budgets. Server-side and static rendering
strategies balance initial load performance with interactive responsiveness.
Component libraries and design systems establish visual consistency while
enabling parallel development across distributed teams. Strangler fig migration
patterns enable incremental replacement of legacy interfaces minimizing
disruption. Usability validation ensures modernized experiences maintain or
improve user engagement metrics.

Keywords: Front-End Architecture, Micro-Frontend Systems, React Component
Patterns, Module Federation, UI Performance Optimization, Design System
Integration

Introduction

Front-end engineering in digital merchandising has evolved from server-side templating and jQuery-

based interactions toward component-driven architectures built on modern JavaScript frameworks.

Early e-commerce interfaces relied heavily on server-rendered HTML with progressive enhancement

through scattered JavaScript files. Global state management occurred through DOM manipulation

and event delegation patterns. Modern expectations demand fundamentally different technical

capabilities. User interfaces must respond instantaneously to interactions. Product displays update

dynamically without full page reloads. Personalized content is rendered based on behavioral signals.

Single-page application architectures enable fluid navigation experiences across extensive product

catalogs.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

604
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Component-based frameworks revolutionized front-end development by introducing declarative

rendering patterns and unidirectional data flow. The introduction of hooks fundamentally

transformed how developers structure component logic and manage state within functional

components [1]. Hooks enable developers to extract stateful logic into reusable functions separate

from component hierarchies. The semantics of hooks introduce novel programming patterns where

effects execute based on dependency arrays and closure captures. Understanding hook execution

models becomes essential for preventing memory leaks and ensuring predictable component behavior

[1]. The transition from class-based components to functional components with hooks represents a

paradigm shift requiring developers to reason about component lifecycles differently. Effect cleanup

functions, dependency tracking, and memoization patterns form the foundation of modern React

development practices.

Micro-frontend architectures extend component modularity principles to organizational boundaries,

enabling independent team development and deployment. Research examining micro-frontend

adoption reveals both significant benefits and notable challenges in real-world implementations [2].

Organizations report improved development velocity through team autonomy and reduced

coordination overhead. Independent deployment cycles enable faster feature delivery without waiting

for monolithic release windows. Technology diversity becomes possible as teams select frameworks

suited to specific use cases. However, micro-frontend architectures introduce complexity through

runtime integration challenges and performance overhead from duplicated dependencies [2]. Shared

component libraries require careful versioning to prevent breaking changes across teams. Cross-

application state management becomes more complex when applications integrate at runtime rather

than build time.

Legacy merchandising interfaces often constitute the primary impediment to UI modernization

initiatives within established retail organizations. Monolithic JavaScript applications bundle all

functionality into single deployment artifacts. Tight coupling between product display logic,

navigation systems, and checkout flows prevents independent updates. Build processes taking

extended periods introduce friction in development workflows. Teams cannot deploy interface

improvements without coordinating across the entire front-end codebase. Server-side rendering

templates mix presentation logic with business rules creating maintenance challenges. CSS specificity

wars emerge as stylesheets grow without modular boundaries. Global JavaScript namespaces lead to

naming collisions and unexpected side effects. The inability to efficiently experiment with interface

variations or deploy component updates creates strategic disadvantages in competitive digital

markets.

Front-End Architectural Challenges in Legacy Merchandising Systems

Traditional merchandising interfaces demonstrate several architectural characteristics that limit

development velocity and impede modernization efforts. Monolithic application designs bundle all

front-end functionality within single codebases and build processes. Product catalog rendering

couples with shopping cart logic and user account management. This architectural pattern

complicates independent deployment of interface features. Teams cannot release product display

improvements without rebuilding entire applications. Build times extend as JavaScript bundles grow.

Developer experience degrades when hot module replacement takes significant time. Code splitting

remains manual and error-prone without clear module boundaries separating distinct functional

areas.

Empirical studies of JavaScript applications reveal complex information flow patterns that complicate

maintenance and security analysis [3]. Dynamic language features including prototype manipulation,

with statements, and eval constructs create unpredictable execution paths. Information flows through

closures, object properties, and global variables in ways that static analysis struggles to capture.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

605
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Legacy merchandising applications often rely heavily on these dynamic patterns accumulated over

years of incremental development. Implicit type coercions and prototypal inheritance chains obscure

data transformations [3]. Callback-based asynchronous patterns introduce temporal dependencies

difficult to reason about. The prevalence of third-party libraries with opaque implementations further

complicates understanding complete information flows through applications. Security vulnerabilities

emerge when untrusted data flows into sensitive sinks without proper validation.

State management within legacy interfaces presents equally significant constraints. Global variables

and DOM data attributes serve as primary state storage mechanisms. Multiple JavaScript files read

and write shared state without coordination. Race conditions emerge as asynchronous operations

complete in unpredictable orders. User interactions trigger cascading updates through jQuery event

handlers. Debugging state changes requires tracing through multiple callback chains. The lack of

unidirectional data flow makes reasoning about application behavior challenging. Performance issues

arise from unnecessary re-renders as entire page sections update in response to minor state changes.

Shopping cart updates might trigger product recommendation refreshes even when recommendations

depend only on browsing history rather than cart contents.

Performance characteristics of legacy web applications suffer from suboptimal resource loading and

rendering strategies [4]. Browser behavior analysis reveals that component download times dominate

page load latency in typical web applications. Reducing the number of HTTP requests through

consolidation and caching provides substantial performance improvements. Gzip compression of

textual resources decreases transfer times significantly [4]. Placing stylesheets in document heads and

scripts at page bottoms optimizes rendering progression. However, legacy merchandising platforms

often load resources synchronously blocking page rendering during script execution. Large monolithic

JavaScript bundles delay time to interactive metrics. Images load without dimension specifications

causing layout shifts as content renders. The absence of lazy loading patterns means off-screen

product images consume bandwidth unnecessarily. Critical rendering path optimization remains

unaddressed as legacy systems lack modern build tooling to implement these strategies effectively.

The absence of component boundaries creates maintenance challenges as applications mature.

Duplicated logic spreads across multiple files without shared abstractions. Similar product card

implementations exist in search results, recommendations, and category pages with inconsistent

behavior. Changes to common patterns require updates across numerous locations. Regression risks

increase as modifications affect unintended areas. Testing becomes difficult without clear component

contracts. End-to-end tests provide the only confidence mechanism introducing slow feedback loops

that delay development iterations.

Constraint
Category

Technical Challenge Development Impact

Application
Structure

Monolithic bundles with tight coupling Cannot deploy features independently

Information
Flow

Dynamic language features and prototype
manipulation

Complex execution paths and security
vulnerabilities

State
Management

Global variables and DOM attribute
storage

Race conditions and unpredictable
updates

Performance
Synchronous resource loading and large
bundles

Delayed time-to-interactive metrics

Code
Organization

Duplicated logic without shared
abstractions

High regression risk during changes

Table 1. Legacy Front-End Architecture Constraints Monolithic JavaScript Applications and State

Management Issues [3, 4].

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

606
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Modern Front-End Architecture and Component Patterns

Contemporary merchandising interfaces address legacy limitations through component-based

architectures and micro-frontend patterns. React component hierarchies decompose complex

interfaces into focused, reusable modules. Product cards encapsulate rendering logic for individual

items. Filter panels manage state for refinement controls. Search components handle query input and

suggestions independently. This decomposition enables independent development and testing of

interface sections. Component boundaries establish clear contracts through props interfaces.

TypeScript definitions provide compile-time verification of component interactions ensuring type

safety across large codebases.

Module federation represents a significant advancement enabling micro-frontend architectures to

share code while maintaining deployment independence [5]. Traditional approaches required

complete dependency duplication across independently deployed applications resulting in substantial

bundle size overhead. Module federation enables runtime sharing of common dependencies including

framework libraries and shared component packages. Bundler-independent implementations address

vendor lock-in concerns allowing teams to select build tools matching their requirements [5]. Type

safety across federated modules presents challenges as remote modules load dynamically without

compile-time type information. Emerging solutions generate type definitions from remote module

manifests enabling TypeScript validation across micro-frontend boundaries. This capability proves

essential for large-scale applications where multiple teams develop independently deployed interface

sections that must integrate seamlessly at runtime.

Micro-frontend integration strategies balance autonomy with consistency requirements. Independent

applications integrate at runtime rather than build time through various technical approaches.

JavaScript-based integration loads remote entry points that expose federated modules. Web

component-based approaches provide framework-agnostic boundaries using standard browser APIs.

Server-side composition assembles interfaces before delivery to browsers. Each strategy presents

distinct tradeoffs regarding initial load performance, runtime overhead, and development complexity.

Module federation specifically addresses the shared dependency problem reducing total JavaScript

payload while preserving team autonomy.

State management in distributed front-end architectures requires careful coordination patterns.

Cross-application communication occurs through custom events, shared state libraries, or event bus

patterns. Concurrent state updates from multiple micro-frontends necessitate conflict resolution

strategies [6]. Temporal ordering of events becomes critical when multiple components modify shared

data. Formal specification approaches clarify intended behavior helping developers reason about

complex interaction patterns [6]. State machines provide explicit models of valid state transitions. The

challenges of distributed state management in micro-frontends mirror broader concurrent system

coordination problems. Optimistic updates provide responsive user experiences while background

synchronization maintains consistency.

Component composition patterns establish reusable abstractions across merchandising experiences.

Compound components provide flexible APIs for complex UI patterns. Product grids accept

customizable product card components enabling visual variation while maintaining consistent

interaction patterns. Filter systems compose individual filter controls into coordinated panels

managing selection state collectively. Render props and higher-order components enable cross-

cutting concerns like analytics tracking and error boundaries. Context providers manage shared state

across component trees without prop drilling. Custom hooks encapsulate reusable logic for data

fetching, form handling, and animation orchestration. Design systems formalize component libraries

with documented patterns and usage guidelines. Atomic design principles structure components from

basic elements to complex organisms ensuring consistency while enabling composition flexibility.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

607
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Architecture

Component
Technical Implementation Key Benefits

Module

Federation

Runtime dependency sharing across

applications

Reduced bundle duplication while

maintaining autonomy

Component

Hierarchies

React functional components with

hooks
Independent development and testing

State

Management

Concurrent state coordination

patterns

Predictable updates across distributed

frontends

Design Systems
Atomic design with compound

components

Visual consistency and reusable

abstractions

Type Safety
TypeScript definitions for federated

modules

Compile-time verification across

boundaries

Table 2. Modern Front-End Architecture Components, Micro-Frontend Integration and Component

Design Patterns [5, 6].

Performance Optimization and Rendering Strategies

Front-end performance directly impacts user engagement and conversion rates in e-commerce

interfaces. Rendering performance determines how quickly users perceive interface responsiveness.

JavaScript bundle sizes affect initial load times particularly on slower network connections.

Comparative analysis of modern web frameworks reveals substantial performance variations across

different rendering strategies [7]. Server-side rendering provides faster initial page loads by delivering

complete HTML from servers. Client-side rendering offers smoother transitions between views after

initial application load. Static generation combines benefits of both approaches for content that

changes infrequently. Hydration overhead affects server-rendered applications as client-side

JavaScript attaches event handlers to existing markup [7]. Progressive hydration strategies reduce

time-to-interactive by prioritizing critical components. Partial hydration approaches hydrate only

interactive sections leaving static content as plain HTML. Framework selection significantly impacts

performance characteristics with lightweight libraries reducing baseline overhead.

Mobile device constraints amplify performance considerations for e-commerce applications. CPU

energy consumption analysis reveals that JavaScript execution dominates energy usage during web

browsing on mobile devices [8]. Parsing and compiling JavaScript consumes substantial processing

resources before code execution begins. Efficient code patterns and reduced bundle sizes directly

translate to improved battery life on mobile devices. Layout and rendering operations triggered by

DOM manipulation create additional CPU load [8]. Modern mobile processors employ sophisticated

power management varying clock speeds based on workload characteristics. Sustained JavaScript

execution prevents processors from entering low-power states. Performance optimization strategies

must consider not only execution time but also energy efficiency particularly for shopping experiences

where users might browse extensively.

React rendering optimization focuses on minimizing unnecessary component updates. Memoization

techniques prevent recalculation of derived values when dependencies remain unchanged.

React.memo wraps components to skip renders when props remain unchanged preventing wasted

reconciliation cycles. useMemo and useCallback hooks prevent reference changes from triggering

child component updates unnecessarily. Profiler API enables measurement of component render

frequencies and durations identifying optimization opportunities. Concurrent rendering features

enable React to interrupt long-running render work maintaining interface responsiveness during

heavy computations.

Code splitting strategies reduce initial bundle sizes by deferring non-critical JavaScript. Dynamic

imports enable route-based code splitting where each navigation loads required code on demand.

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

608
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Component-level splitting defers heavy components until actually needed by users. React.lazy enables

declarative lazy loading with Suspense boundaries handling loading states gracefully. Bundle analysis

tools visualize dependency graphs identifying optimization opportunities where shared code might be

extracted into separate chunks. Critical path CSS extraction prioritizes rendering of above-the-fold

content allowing page rendering before complete stylesheet downloads.

Virtual scrolling techniques handle extensive product catalogs without rendering thousands of DOM

nodes simultaneously. Windowing libraries render only visible items plus small buffers above and

below the viewport. Scroll position calculations determine which items require rendering at any given

moment. Item recycling reuses existing DOM nodes improving memory efficiency. Variable height

support accommodates products with different dimensions requiring dynamic height calculations.

Grid layouts virtualize in two dimensions handling both vertical and horizontal scrolling efficiently.

Image optimization significantly impacts performance in product-heavy interfaces. Responsive images

through srcset attributes serve appropriate resolutions per device capabilities. Modern formats like

WebP reduce file sizes while maintaining visual quality.

Optimization

Strategy
Implementation Approach Performance Impact

Rendering Strategy
Server-side, client-side, or static

generation

Faster initial loads and smoother

transitions

Code Splitting
Route-based and component-level lazy

loading
Reduced initial bundle sizes

React

Optimization

Memoization with React.memo and

hooks

Minimized unnecessary component

updates

Virtual Scrolling Windowing libraries for product catalogs Efficient handling of extensive lists

Mobile Efficiency
Reduced JavaScript execution and

parsing
Lower CPU energy consumption

Table 3. Performance Optimization Strategies Rendering Techniques and Resource Management [7,

8].

Implementation Strategies for UI Modernization

Successful UI modernization employs incremental migration strategies minimizing disruption to user

experiences while progressively introducing modern capabilities. Initial phases establish foundational

infrastructure including build tooling, component libraries, and deployment pipelines. Modern

bundlers replace legacy concatenation scripts enabling advanced optimization techniques. ESLint and

Prettier enforce code quality and consistency across development teams. TypeScript adoption

provides type safety reducing runtime errors. Testing frameworks enable component-level and

integration testing improving confidence in refactoring efforts. Continuous integration pipelines

validate changes before deployment preventing regressions from reaching production environments.

Strangler fig patterns enable gradual migration from legacy interfaces to modern architectures

without requiring complete system rewrites [9]. The pattern derives its name from strangler fig plants

that gradually envelop host trees eventually replacing them entirely. Applied to software systems, new

functionality implements alongside legacy code with routing mechanisms directing requests to

appropriate implementations. Case study analysis demonstrates successful application of strangler fig

patterns in migrating monolithic systems to microservice architectures [9]. The pattern reduces

migration risk by enabling incremental validation of new implementations. Rollback capabilities

provide safety nets if new implementations encounter issues. Gradual traffic migration allows

performance comparison between old and new systems under production load. Monitoring

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

609
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

instrumentation tracks key metrics ensuring new implementations meet or exceed baseline

performance characteristics.

Component migration follows prioritization based on business value and technical risk assessment.

High-traffic pages with performance issues receive attention first maximizing user impact. Isolated

features with clear boundaries migrate more easily than highly coupled functionality. Shared

components like headers and footers establish visual consistency early in migration processes.

Product cards and search results benefit from modern rendering optimization techniques. Shopping

cart experiences leverage contemporary state management patterns improving reliability. Progressive

enhancement ensures existing functionality remains operational during transitions maintaining user

trust throughout modernization efforts.

Design system adoption coordinates visual consistency across migration phases. Component libraries

provide modern implementations of common interface patterns. Migration guides document

replacement patterns for legacy code facilitating developer transitions. Visual regression testing

prevents unintended appearance changes during component replacements. Accessibility audits ensure

compliance standards maintain throughout modernization processes. Documentation sites onboard

team members to new component APIs and usage patterns. Contribution guidelines standardize

component development practices across distributed teams. Version management of design system

packages coordinates updates across consuming applications following semantic versioning

conventions.

Cognitive and usability engineering methods validate that modernized interfaces maintain or improve

user experience metrics [10]. Usability evaluation combines multiple methodologies including think-

aloud protocols where users verbalize thought processes during task completion. Cognitive

walkthrough techniques systematically evaluate interface learnability and task efficiency. Heuristic

evaluation applies established usability principles identifying potential issues [10]. Performance

metrics alone insufficiently capture user experience quality requiring qualitative assessment. A/B

testing frameworks enable quantitative comparison of interface variations. Feature flags facilitate

gradual rollout to user segments enabling validation before broader deployment. Metric tracking

compares conversion rates, task completion times, and error frequencies between old and new

experiences. Synthetic monitoring provides continuous validation across release cycles detecting

regressions quickly.

Implementation

Pattern
Technical Approach Risk Management

Strangler Fig

Migration

Incremental replacement with routing

layers

Gradual validation and rollback

capability

Component

Prioritization

High-traffic pages and isolated features

first

Maximized user impact with

reduced risk

Design System

Adoption

Standardized component libraries with

documentation

Visual consistency across migration

phases

Usability

Validation

Cognitive walkthroughs and think-aloud

protocols

Maintained or improved user

experience

Progressive Rollout Feature flags and A/B testing frameworks
Quantitative comparison before

full deployment

Table 4. UI Modernization Implementation Patterns Migration Strategies and Validation Methods [9,

10].

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

610
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Conclusion

Enterprise UI modernization in digital merchandising represents comprehensive architectural

transformation extending across component design, state coordination, and rendering optimization.

Monolithic jQuery-based interfaces give way to modular React architectures enabling independent

component evolution. Component boundaries with explicit contracts facilitate isolated testing and

parallel development efforts. Micro-frontend integration through Module Federation addresses

dependency duplication while preserving team autonomy. Typed interfaces across application

boundaries maintain compile-time safety despite runtime composition. Concurrent state management

patterns coordinate updates across distributed front-end applications. Performance optimization

through strategic code splitting and lazy loading ensures responsive experiences even with extensive

product catalogs. Server-side and static generation strategies complement client-side rendering

balancing initial load speed with interactive fluidity. Virtual scrolling techniques handle large datasets

without overwhelming browser rendering capabilities. Mobile energy efficiency considerations guide

optimization decisions beyond simple execution time metrics. Design systems formalize component

libraries establishing visual language consistency across distributed teams. Strangler fig migration

patterns reduce risk through incremental validation of modernized implementations. Usability

engineering methods ensure interface changes preserve or enhance user experience quality. The

engineering foundations established through modernization create organizational capabilities

extending beyond immediate interface improvements toward continuous experimentation and data-

driven optimization. Component architectures facilitate rapid A/B testing of interface variations.

Design systems accelerate feature development through battle-tested components. Performance

budgets prevent regression through continuous monitoring and automated validation. Future e-

commerce interfaces will incorporate advanced interaction patterns including voice navigation,

augmented reality product visualization, and predictive interface adaptation. Progressive web

application capabilities will eliminate distinctions between web and native experiences. WebAssembly

integration may enable computationally intensive operations including real-time image processing

and three-dimensional product rendering directly within browsers. Architectural patterns and

infrastructure investments made during current modernization initiatives provide essential

foundations for adopting emerging technologies. Organizations possessing modular component

architectures, established design systems, and optimized rendering pipelines maintain competitive

positioning in rapidly evolving digital retail markets while preserving development velocity and

experience quality throughout continuous evolution.

References

[1] Jay Lee et al., "React-tRace: A Semantics for Understanding React Hooks," ACM, 2025. [Online].

Available: https://dl.acm.org/doi/pdf/10.1145/3763067 [2] Fabio Antunes et al., "Investigating

Benefits and Limitations of Migrating to a Micro-Frontends Architecture," arXiv, 2024. [Online].

Available: https://arxiv.org/pdf/2407.15829

[3] Cristian-Alexandru Staicu et al., "An Empirical Study of Information Flows in Real-World

JavaScript," arXiv, 2019. [Online]. Available: https://arxiv.org/pdf/1906.11507

[4] Steve Souders, "High Performance Web Sites," Communications of the ACM, 2008. [Online].

Available: https://dl.acm.org/doi/pdf/10.1145/1409360.1409374

[5] Billy Lando and Wilhelm Hasselbring, "Toward Bundler-Independent Module Federations:

Enabling Typed Micro-Frontend Architectures," arXiv, 2025. [Online]. Available:

https://arxiv.org/pdf/2501.18225 [6] LESLIE LAMPORT, "A SIMPLE APPROACH TO SPECIFYING

CONCURRENT SYSTEMS," Communications of the ACM, 1989. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/63238.63240

https://dl.acm.org/doi/pdf/10.1145/3763067
https://dl.acm.org/doi/pdf/10.1145/3763067
https://arxiv.org/pdf/2407.15829
https://arxiv.org/pdf/2407.15829
https://arxiv.org/pdf/1906.11507
https://arxiv.org/pdf/1906.11507
https://dl.acm.org/doi/pdf/10.1145/1409360.1409374
https://dl.acm.org/doi/pdf/10.1145/1409360.1409374
https://arxiv.org/pdf/2501.18225
https://arxiv.org/pdf/2501.18225
https://arxiv.org/pdf/2501.18225
https://dl.acm.org/doi/pdf/10.1145/63238.63240
https://dl.acm.org/doi/pdf/10.1145/63238.63240
https://dl.acm.org/doi/pdf/10.1145/63238.63240

Journal of Information Systems Engineering and Management
2025, 10(63s)

e-ISSN: 2468-4376

https://jisem-journal.com/ Research Article

611
Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

[7] Risto Ollila et al., "Modern Web Frameworks: A Comparison of Rendering Performance," Journal

of Web Engineering, 2022. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623 [8] Yuhao Zhu et al., "THE ROLE

OF THE CPU IN ENERGYEFFICIENT MOBILE WEB BROWSING," IEEE Computer Society, 2015.

[Online]. Available: https://www.researchgate.net/profile/Yuhao-Zhu-

2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-

Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-

in-Energy-Efficient-Mobile-Web-Browsing.pdf

[9] Chia-Yu Li et al., "Microservice Migration Using Strangler Fig Pattern: A Case Study on the Green

Button System," [Online]. Available: https://www.researchgate.net/profile/Shang-Pin-Ma-

2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_

on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-

Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf

[10] Andre W. Kushniruk and Vimla L. Patel, "Cognitive and usability engineering methods for the

evaluation of clinical information systems," ScienceDirect, 2004. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1532046404000206

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10243623
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Yuhao-Zhu-2/publication/271723047_The_Role_of_the_Mobile_CPU_in_Energy-Efficient_Mobile_Web_Browsing/links/552c965f0cf29b22c9c45fcd/The-Role-of-the-Mobile-CPU-in-Energy-Efficient-Mobile-Web-Browsing.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.researchgate.net/profile/Shang-Pin-Ma-2/publication/349568403_Microservice_Migration_Using_Strangler_Fig_Pattern_A_Case_Study_on_the_Green_Button_System/links/66e460ddf84dd1716cebda59/Microservice-Migration-Using-Strangler-Fig-Pattern-A-Case-Study-on-the-Green-Button-System.pdf
https://www.sciencedirect.com/science/article/pii/S1532046404000206
https://www.sciencedirect.com/science/article/pii/S1532046404000206
https://www.sciencedirect.com/science/article/pii/S1532046404000206

