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Alzheimer's Disease (AD) classification through medical imaging is important for early 

detection and planning treatment, but it's still hard to do because neuropathological changes 

are so minor and complicated. This work presents new layers of advanced deep learning (DL), 

intended to enhance automated feature extraction, hence improving the accuracy of 

categorisation. Conventional approaches for AD diagnosis may rely on manual identification of 

brain biomarkers, which can take a lot of time and vary for every observer. Our work developed 

a novel set of convolutional neural network (CNN) layers able to automatically identify and 

rank structural MRI features connected to AD, hence addressing these issues. Three well-

known deep learning architectures—density network, inception network, and ResNet—were 

employed in this work. Every model was trained and tested using a set of MRI images from AD 

patients and healthy controls made accessible for public use. The upgraded layers were meant 

to highlight early AD symptoms like hippocampus atrophy and loss of cortical thickness. The 

accuracy of categorisation is shown to be much greater than with standard DL models. Showing 

a 12% increase above the average, our enhanced layers included into the DenseNet architecture 

made it the most accurate. Our models were also robust in feature extraction; they could 

routinely identify significant AD-related changes in photos with different sizes and brightness 

levels. This approach not only accelerates the classification of AD but also provides the 

foundation for future research on accurate and automated neurodegenerative disease testing, 

which can significantly influence patient outcomes and therapeutic practices. 

Keywords: Alzheimer's Disease Classification, Deep Learning Architectures, Automatic 

Feature Extraction, Convolutional Neural Networks, Neuroimaging Biomarkers, MRI Analysis 

 

I. Introduction 

A neurological condition, Alzheimer's disease (AD) causes individuals to lose their memory and cognitive capacity 

and worsens with time. Millions of individuals all over are impacted by it. Treating AD depends much on an early 

and accurate diagnosis as it enables individuals to act fast and organise their therapies, thereby perhaps slowing the 

course of the illness. Deep learning (DL) has evolved into a really valuable technique in medical imaging during the 

last several years, particularly for illness diagnosis improvement. Especially convolutional neural networks (CNNs), 

digital learning models can automatically extract and learn features from big datasets.  This has fundamentally 

altered the analysis of medical images including MRI scans. To diagnose Alzheimer's in the past, expert radiologists 

had to manually select characteristics from neuroimaging data. These radiologists would search for indicators of the 

illness including changes in cortical thickness, hippocampal atrophy, and ventricle enlargement. However, this 

approach requires a lot of effort and the outcomes vary as many practitioners interpret what it entails differently. 

Given its consistent, repeatable approach that could be quicker and more accurate than human approaches, DL 

models for automated feature extraction provide a promising solution [1]. Deep learning for medical imaging has 

advanced a lot, although there are still major issues in the area particularly with regard to generalising the models 

and simplifying their interpretation. While most conventional CNN designs are decent for dealing with large sets of 

pictures, they are not meant to be optimal for the nuanced and complicated patterns that exhibit themselves in 
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early-stage Alzheimer's disease. Our work is on developing advanced DL layers that enable MRI images to 

automatically extract qualities relevant for the brain, hence addressing these issues. These specific layers help to 

increase the sensitivity of the models to early AD symptoms, which normal DL models usually overlook [2]. 

This work employs a novel approach by including these higher levels into well-known deep learning models like 

DenseNet, InceptionNet, and ResNet. Every one of these models is renowned for having certain unique abilities. 

ResNet is strong at learning deep representations without slowing down because to fading gradients; InceptionNet 

is good at dealing with data from various sizes; DenseNet is good at recycling features. Our unique layers will help 

us to leverage the capabilities of existing models and also improve their ability to identify minor AD-related signals 

in MRI images. New pooling techniques and convolutional filters were applied to enhance the layers in 

documenting the changes in anatomy resulting from Alzheimer's disease. Furthermore, the layers maintain the 

stability of the learning process by means of improved activation functions and normalisation techniques, hence 

enhancing the convergence rate [3]. Training deep models on fewer sets of medical images is therefore simpler and 

more successful. Although our preliminary findings are still encouraging, they indicate that these enhanced models 

not only identify AD from MRI images but also have more dependability in a variety of testing scenarios. This 

includes improved performance at many phases of the illness and a significant decrease in false positives, which is 

rather crucial in clinical environments where an erroneous diagnosis might be quite costly. A recurrent issue in 

scanning research, the models also improve in handling variations in brain anatomy across individuals. Propsoed 

research helps detect AD by surpassing the present capabilities of deep learning. It has significant therapeutic 

ramifications as well as a technological contribution to the discipline of machine learning. More reliable and precise 

testing instruments might enable early discovery of Alzheimer's, therefore altering the treatment and care received 

by millions of people worldwide. Other neurological illnesses might potentially benefit from the developed 

techniques; hence the impact of this research would be even more significant. 

II. Background and Related Work 

Researchers have given much focus over the last 10 years on how deep learning (DL) techniques may be used in 

medical diagnosis, particularly in the categorisation of Alzheimer's disease (AD). Deep learning was first largely 

used with simple CNN architectures in medical imaging. For many general picture recognition challenges, they 

performed really well; unfortunately, they were not particularly effective in identifying neurodegenerative disorders 

like AD as the early symptoms of the disease are so subtle and complex [4]. Academics started focussing on creating 

and modifying DL models that could better handle the special characteristics of medical imaging data when they 

learnt about these issues. A particularly crucial area of progress has been in enhancing the feature extraction 

abilities of DL models to more precisely depict the disease alterations characteristic of AD. Adding layers to regular 

CNNs that are particularly adept at identifying neuro-specific features has shown researchers to greatly improve the 

model's diagnostic accuracy [5]. Models like DenseNet, for instance, have been re-designed with more neural layers 

or revised pooling algorithms to better capture the changes in brain structure that are indicators of AD, including 

the hippocampal shrinkage and the ventricles increasing larger [6, 7]. Furthermore, a great advance in AD 

classification has come from integrating attention processes into CNN designs. These factors help the models to 

concentrate on MRI scan areas more likely to reveal early indications of AD. Consequently, the diagnosing 

procedure becomes more accurate [8]. Several researches that included attention-based layers to their networks 

have shown that this approach works as it significantly increases the sensitivity and specificity of AD detection [9, 

10]. Both InceptionNet and ResNet have been modified for the purpose of AD classification by including enhanced 

deep learning layers that enable simpler extraction of intricate characteristics from brain data. For continuous 

neuroimaging datasets, researchers have developed hybrid approaches combining Inception modules with 

recurrent brain structures to identify both spatial and temporal abnormalities [11, 12]. This helps one to have a 

better understanding of AD development. ResNet has also been enhanced using residual learning techniques to 

handle the vanishing gradient issue. Deep learning models taught on complex medical datasets as those utilised in 

Alzheimer's research [13, 14] often suffer with this problem.  

Another crucial contribution to this discipline is the use of generative adversarial networks (GANs) and 

autoencoders in data augmentation and feature extraction for AD. These techniques enable to overcome the typical 

issue of not having enough labelled medical imaging data, which results from attempting to train appropriate deep 

learning models for healthcare applications [15, 16]. Making fictitious but realistic MRI images of the brain has 

allowed researchers to expand the training sets. This has made learning more consistent and enabled the models to 

function better at many phases of AD [17, 18]. These developments have great impact as they not only improve the 

accuracy of AD diagnosis but also reduce the detection time. Early detection is important for managing and treating 

AD because it lets people take steps that might slow the disease's development [19]. The better DL models, which 

can automatically capture more features, are very important to reaching this goal. These models also help 
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personalised medicine by making it easier to make treatment plans for each patient that are based on the exact 

stage and type of AD shown by the brain study. Personalised care like this can greatly enhance patients' quality of 

life and shows how powerful deep learning can change healthcare [20, 21]. 

Table 1: Related Work Summary Using Deep Learning Approaches For Alzheimer's Disease Classification 

Method Approach Findings Feature Extraction 

Method Used 

Scope 

GANs Data 

augmentation 

for training 

Expanded dataset 

size, improved 

model robustness 

Synthetic image 

generation 

Overcoming limited data issues 

Autoencoders Feature 

representation 

and 

dimensionality 

reduction 

Enhanced feature 

significance 

extraction 

Compression and 

reconstruction 

Detailed feature analysis for 

early AD markers 

Attention 

CNNs 

Integration of 

attention 

mechanisms 

Higher sensitivity 

and specificity in 

detection 

Focus on critical 

regions 

Improved diagnostic precision 

CNNs with 

advanced 

pooling 

Custom pooling 

strategies 

Better capture of 

morphological 

brain changes 

Customized feature 

pooling 

Targeted extraction of AD-

specific features 

U-Net Segmentation-

based feature 

extraction 

Precise localization 

of AD-related 

anomalies 

Image segmentation Detailed anatomical feature 

extraction 

Siamese 

Networks 

Comparative 

analysis of brain 

scans 

Ability to 

distinguish 

between similar 

cases 

Paired image analysis Differential diagnosis support 

VGG-Net Transfer 

learning 

approach 

Utilization of pre-

trained networks 

for efficiency 

Pre-trained visual 

feature extraction 

Quick adaptation to AD 

diagnosis 

Hybrid CNN-

RNN 

Combining 

spatial and 

sequence data 

analysis 

Effective in 

handling multi-

modal imaging data 

Sequential and spatial 

feature extraction 

Multi-stage AD detection 

Capsule 

Networks 

Hierarchical 

processing units 

Improved 

interpretation of 

interrelated 

features 

Dynamic routing 

between capsules 

Enhanced feature hierarchy 

understanding 

3D CNNs Exploiting 

volumetric data 

Better 

representation of 

3D brain structures 

Volumetric data 

processing 

Utilizing MRI scan depth 

Ensemble 

Methods 

Combination of 

multiple DL 

models 

Increased accuracy 

through model 

averaging 

Diverse feature 

extraction methods 

combined 

Robustness against varied data 

inputs 

 

III. Methodology 

A. Description of the dataset (MRI scans dataset) 

The advanced Alzheimer's MRI dataset, sample data images illustrate in figure 1, which includes both real and fake 

axial MRIs, is a big step forward in fixing the class mismatch that was present in the original Kaggle Alzheimer's 

dataset. This dataset effectively gets around the problems that come with uneven class distributions. For example, 

the sample numbers for the original groups of "No Impairment," "Very Mild Impairment," "Mild Impairment," and 

"Moderate Impairment" were very different. The dataset makes it easier to train and test machine learning models 

by including high-quality synthetic images that were made to closely match real scans in terms of fidelity and 

diversity. This is shown by impressive metrics like a mean FID Score of 0.13, SSIM of 0.97, PSNR of 32 dB, and 
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Sharpness Difference of 0.04. The 1.5 Tesla MRI machine and T1-weighted sequence make sure that the pictures 

are of high quality and can be used for deep learning. The step of removing the head during pre-processing reduces 

the amount of unnecessary data, allowing the analysis to focus on brain tissues. However, the fact that the fake 

MRIs haven't been checked by a doctor does raise a question about their clinical validity. Concerns about privacy 

are well taken care of because the fake MRIs don't match up with real patient data. This means that the information 

can be used by many people without any ethics or privacy problems. This dataset stands out because it creates a 

fairer learning environment and shows that it might be better than standard methods like oversampling and 

SMOTE, especially when it comes to improving performance in minority classes without having a big effect on 

results for the majority classes. 

  

Figure 1. Sample dataset Images 

B. Explanation of the deep learning models 

1. DenseNet 

The design of DenseNet (Densely Connected Convolutional Networks) is one of a kind. Each layer is directly linked 

to every other layer in a feed-forward way. When using MRI pictures to classify Alzheimer's Disease (AD), 

DenseNet can be very helpful because it is good at spreading and reusing features, which is important for finding 

the complicated patterns that come with neurological changes. Vanishing gradients are a common problem when 

training deep networks. DenseNet fixes it by making sure that each layer gets data from all the layers that came 

before it. This pattern of connections also makes the network very parameter-efficient, which means it can be 

deeper while using fewer parameters than other designs. Because of its deep and dense connectivity, DenseNet can 

provide better feature extraction for AD, where small and detailed features are very important for early detection. 

The model's ability to keep low-level traits across the network helps keep the important details needed to tell the 

difference between Alzheimer's stages, which improves the ability to classify people in different stages of the 

disease. 

 Step 1: Feature Map Generation 

H_l(x) = x_l + F([x_0, x_1, ..., x_(l-1)], W_l) 

Where: 

  H_l(x) = Output of l-th layer 

  x_l = Input of l-th layer 

  F = Composite function (BN-ReLU-Conv) 

  [x_0, x_1, ..., x_(l-1)] = Concatenation of all previous feature maps 

  W_l = Weights of the l-th layer 

 

 Step 2: Batch Normalization (BN) 

y = γ * ((x - μ) / sqrt(σ^2 + ε)) + β 

Where: 

  μ = Mean of input features 

  σ^2 = Variance of input features 
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  γ, β = Parameters to be learned 

  ε = Small constant for numerical stability 

 

 Step 3: Activation Function (ReLU) 

f(x) = max(0, x) 

 

 Step 4: Convolutional Operation 

y = Sum(W * x + b) 

Where: 

  W = Weights of the convolutional kernel 

  b = Bias 

  x = Input feature map 

  * = Convolution operation 

 

 Step 5: Transition Layers (Conv + Pooling) 

y = Pool(Conv(x, W_conv), stride) 

Where: 

  Pool = Average pooling function 

  Conv = Convolution function using W_conv weights 

 

 Step 6: Classification Layer 

y = Softmax(W_fc * Flatten(x) + b_fc) 

Where: 

  W_fc = Weights of fully connected layer 

  b_fc = Bias of fully connected layer 

  Flatten = Function to flatten the feature maps into a vector 

2. InceptionNet 

The inception modules in InceptionNet make it possible to handle data at multiple scales at the same time. This 

makes it a good choice for classifying AD in brain MRIs, which show a lot of different and complex structures. The 

origin modules are made up of concurrent convolutions with various receptive fields and then a combination step. 

This lets the model effectively catch both local and more global useful features. This skill is very important for 

classifying AD because changes in brain anatomy can make the disease look and feel very different in different 

people and stages. By changing InceptionNet to focus on Alzheimer's, researchers can change these modules to 

make them more sensitive to AD-specific traits like hippocampal shrinkage and cortical thickness, which can show 

up in different ways based on the scan and how far along the disease is. Also, InceptionNet's design automatically 

lowers the amount of work that needs to be done by using 1x1 convolutions before the more expensive 3x3 and 5x5 

convolutions. This means that it can be used on large sets of high-resolution MRI images without slowing down or 

losing accuracy. 

 Step 1: Inception Module Calculation 

𝐼(𝑥) =  [𝐹1(𝑥), 𝐹2(𝑥), 𝐹3(𝑥), 𝐹4(𝑥)] 

Where: 

  F_1, F_2, F_3, F_4 = Different convolution operations or pooling 
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 Step 2: Convolutional Calculations in Modules 

𝑦 =  𝐶𝑜𝑛𝑣(𝑥, 𝑊, 𝑠) +  𝑏 

Step 3: Dimensionality Reduction with 1x1 Convolutions 

𝑦 =  𝐶𝑜𝑛𝑣1𝑥1(𝑥,𝑊1𝑥1) +  𝑏1𝑥1 

Step 4: Depth Concatenation 

𝑦 =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝑥1, 𝑥2, 𝑥3, … ]) 

Step 5: Auxiliary Classifiers  

𝐴𝑢𝑥(𝑥) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐶𝑜𝑛𝑣(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥), 𝑊𝑎𝑢𝑥) + 𝑏𝑎𝑢𝑥) 

Where: 

  AvgPool = Average pooling 

  W_aux = Weights for auxiliary classifier convolution 

  b_aux = Bias for auxiliary classifier 

Step 6: Final Classifier 

𝑦 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐶𝑜𝑛𝑣 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝑥))) , 𝑊𝑓𝑐) +  𝑏𝑓𝑐) 

3. ResNet 

ResNet, which stands for "Residual Networks," is meant to make training networks much deeper than was possible 

before. A "residual learning" concept is at the heart of ResNet. Instead of learning unreferenced functions, the 

network learns residual maps based on the layer inputs. This approach solves the fading gradient issue by use of 

identity shortcut connections skipping one or more levels. ResNet can train deep models without stopping, hence it 

can be very helpful for identifying Alzheimer's disease. This helps to identify the subtle and complicated alterations 

in brain images associated with various stages of Alzheimer's. Using unused blocks sensibly will help the network to 

widen its design and increase its capacity to identify characteristics. This makes it rather useful in early stages of 

AD in spotting little but crucial issues. ResNet's deep feature sets might potentially merge complex brain imaging 

data into a robust classification model, hence improving accuracy and dependability over more basic deep learning 

models. For those who want to create extremely practical and very successful AD evaluation systems in the real 

world, ResNet is a terrific solution. 

Step 1: Residual Block 

𝑅(𝑥) =  𝑥 +  𝐹(𝑥, 𝑊) 

Where: 

  F = Residual function (BN-ReLU-Conv-BN-ReLU-Conv) 

  W = Weights associated with the residual function 

Step 2: Identity Shortcut Connection 

𝑦 =  𝑥 +  𝐹(𝑥, 𝑊) 

Step 3: Batch Normalization 

𝑦 =  𝛾 ∗  (
𝑥 −  𝜇

𝑠𝑞𝑟𝑡(𝜎2 +  𝜀)
) +  𝛽 

Step 4: Activation Function (ReLU) 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 

Step 5: Convolutional Block (for adjusting dimensions) 

𝑦 =  𝐶𝑜𝑛𝑣(𝑥, 𝑊_𝑐𝑜𝑛𝑣)  +  𝐵_𝑐𝑜𝑛𝑣 

Step 6: Global Average Pooling and Final Classification 

𝑦 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑓𝑐 ∗  𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥) + 𝑏𝑓𝑐) 
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C. Development of advanced deep learning layers 

1. InceptionNet with Residual Learning Blocks 

By combining InceptionNet with Residual Learning Blocks, you create a hybrid architecture using the benefits of 

residual connections for deep network training along with the multi-scale processing capacity of Inception modules. 

This mix allows deeper networks to learn better free from the danger of fading gradients. This facilitates the 

acquisition of relevant characteristics from vast, intricate datasets such as those used in medical imaging. 

Step 1: Standard Inception Block with Residual Connection 

Inception Block Output 

𝐼(𝑥) =  [𝐹1(𝑥,𝑊1), 𝐹2(𝑥,𝑊2), 𝐹3(𝑥,𝑊3), 𝐹4(𝑥,𝑊4)] 

Residual Connection 

𝑅(𝑥) =  𝑥 +  𝐼(𝑥) 

Step 2: Batch Normalization (applied to each feature map independently) 

Batch Normalization for k-th feature map 

𝐵𝑁𝑘(𝑥) =  𝛾𝑘 ∗
𝑥 −  𝜇𝑘

𝑠𝑞𝑟𝑡(𝜎𝑘
2 +  𝜀)

+ 𝛽𝑘 

Step 3: Convolution in Inception Module (applied separately in each path) 

Convolution for path i 

𝐶𝑜𝑛𝑣𝑖(𝑥,𝑊𝑖) =  𝑆𝑢𝑚(𝑊𝑖 ∗  𝑥 + 𝑏𝑖) 

Step 4: Concatenation of Outputs from Different Paths 

Concatenating feature maps from different convolution paths 

𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, 𝐹3, 𝐹4) =  𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([𝐹1(𝑥), 𝐹2(𝑥), 𝐹3(𝑥), 𝐹4(𝑥)]) 

Step 5: Adding Residual Connection to Inception Output 

Applying the residual connection 

𝑦 =  𝑥 +  𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1, 𝐹2, 𝐹3, 𝐹4) 

Step 6: Activation Function (ReLU applied after adding the residual) 

Activation for output y 

𝑅𝑒𝐿𝑈(𝑦) = max(0, 𝑦) 

2. ResNet Enhanced with Attention Mechanisms 

Particularly beneficial for the identification of minor issues in MRIs of individuals with Alzheimer's disease, adding 

attention processes to ResNet enhances the network's capacity to concentrate on significant areas of an image. 

Attention layers direct the model's focus on significant regions, hence improving its accuracy and simplicity of use. 

Step 1: Residual Block with Attention Mechanism 

Basic Residual Block Calculation 

𝑅(𝑥) =  𝑥 +  𝐹(𝑥, 𝑊) 

Attention Mechanism Application 

𝐴(𝑥) =  𝜎(𝐶𝑜𝑛𝑣(𝑥, 𝑊𝑎)) 

Step 2: Applying the Attention Map to the Residual Output 

Modulated Residual Output with Attention 

𝑅𝑎(𝑥) =  𝑥 +  𝐴(𝑥) ∗  𝐹(𝑥, 𝑊) 

Step 3: Convolutional Operation in Residual Function 
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Convolution operation within the residual function F 

𝐹(𝑥, 𝑊) =  𝐶𝑜𝑛𝑣(𝑥, 𝑊𝑓) + 𝑏𝑓 

Step 4: Batch Normalization 

Batch normalization after the convolution 

𝐵𝑁(𝑥) =  𝛾 ∗
𝑥 −  𝜇

𝑠𝑞𝑟𝑡(𝜎2 +  𝜀)
+  𝛽 

Step 5: Activation Function (ReLU) 

ReLU activation for enhancing non-linearity 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

Step 6: Final Classification Layer with Global Average Pooling 

Applying global average pooling followed by a dense layer for classification 

𝑦 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐷𝑒𝑛𝑠𝑒(𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑅𝑎(𝑥)), 𝑊𝑓𝑐) +  𝑏𝑓𝑐) 

3. DenseNet with Attention Mechanisms 

Including selective focus at every dense block, DenseNet integrates attention mechanisms. This facilitates the 

model's search and emphasis of critical features required for illness diagnosis, including those pertaining to 

Alzheimer's This produces a model that not only automatically ranks significant characteristics at the top of the list 

but also maintains data security throughout the network. 

Step 1: Dense Block with Attention Mechanism 

Basic Dense Block Calculation 

𝐻𝑙(𝑥) =  𝑥𝑙 +  𝐹([𝑥0, 𝑥1, … , 𝑥{𝑙−1}], 𝑊𝑙) 

Attention Mechanism Application 

𝐴𝑙(𝑥) =  𝜎 (𝐶𝑜𝑛𝑣([𝑥0, 𝑥1, … , 𝑥{𝑙−1}], 𝑊𝑎)) 

Step 2: Applying the Attention Map to the Dense Block Output 

Modulated Dense Block Output with Attention 

𝐻𝑎(𝑥) =  𝐻𝑙(𝑥) ∗  𝐴𝑙(𝑥) 

Step 3: Composite Function in Dense Blocks 

Composite function typically BN-ReLU-Conv 

𝐹(𝑥, 𝑊) =  𝐶𝑜𝑛𝑣(𝑅𝑒𝐿𝑈(𝐵𝑁(𝑥)), 𝑊𝑓) + 𝑏𝑓 

Step 4: Batch Normalization 

Batch normalization before ReLU 

𝐵𝑁(𝑥) =  𝛾 ∗
𝑥 −  𝜇

𝑠𝑞𝑟𝑡(𝜎2 +  𝜀)
+  𝛽 

 

Step 5: Activation Function (ReLU) 

ReLU activation to introduce non-linearity 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 

Step 6: Transition Layers for Downscaling 

Applying convolution and pooling in transition layers 

𝑦 =  𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐶𝑜𝑛𝑣(𝐻𝑎(𝑥), 𝑊𝑡) +  𝑏𝑡) 
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Step 7: Final Classification Layer 

Global average pooling followed by a softmax classification layer 

𝑦 =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐻𝑙𝑎𝑠𝑡(𝑥))) 

IV. Feature Extraction Techniques 

A. Detailed feature extraction methods 

1. Depthwise Separable Convolutions 

One kind of effective convolution that divides a conventional convolution in two distinct processes are deeply 

separable convolutions. This reduces the amount of work on the computer and the number of variables. Particularly 

valuable for models used on devices with limited computational capability, this approach allows one to rapidly 

extract characteristics from images. 

Effective convolutions lowering computing cost and number of parameters are depthwise separable convolutions. 

Depthwise convolution is the distinct application of each input channel under its own set of kernels. 

   𝑌𝑐 =  𝑋𝑐 ∗  𝐾𝑐  

• where X_c is the input channel c, K_c is the kernel for channel c, and Y_c is the output for channel c. 

Pointwise Convolution: A 1x1 convolution that combines the outputs of the depthwise convolution across channels. 

   𝑌 =  𝑠𝑢𝑚(𝑌𝑐 ∗  𝐾1𝑥1) 

• where K^1x1 represents the 1x1 convolution kernel applied across all channels. 

2. Dilated Convolutions 

Also known as atrous convolutions, dilated convolutions provide an additional choice known as dilation rate, which 

increases the size of the kernel by adding empty spaces between its component components. Without adding extra 

weights, this approach allows the convolution cover a greater area of the input image. This results in decreased 

locality and resolution even when it allows you to see more of the input data. 

Dilated Convolution Operation: 

   𝑌[𝑖, 𝑗] =  𝑠𝑢𝑚(𝑋[𝑖 +  𝑟 ∗  𝑚, 𝑗 +  𝑟 ∗  𝑛] ∗  𝐾[𝑚, 𝑛]) 

• where X is the input, K is the convolutional kernel, r is the dilation rate, and Y is the output feature map. 

Expansion of Receptive Field: 

   𝑅𝑒𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝐹𝑖𝑒𝑙𝑑 =  𝐾 +  (𝐾 −  1) ∗  (𝑟 −  1) 

• where K is the size of the kernel, enhancing the network’s ability to view more extensive parts of the input. 

V. System Architecture 

A. Diagram and explanation of the overall system architecture 

To improve the classification of Alzheimer's disease using advanced deep learning layers, the system framework has 

several key parts that work together to get the most out of extracting and analysing data from MRI pictures. 

Modules for handling input, pre-processing, advanced feature extraction, classification, and performance 

evaluation would usually be shown in the picture of this design. This is where the first MRI pictures come in. The 

system is designed to work with different MRI data types and levels, so it can be used with a range of imaging 

methods. Some important steps in pre-processing are skull stripping, which gets rid of brain tissue that isn't brain 

tissue, normalisation, which makes the sharpness levels of all the pictures the same, and data enrichment methods 

like flipping, rotating, and scaling to make the dataset more diverse. These steps are very important for making sure 

that there is less variation between pictures, which could mess up the learning process. 

Feature Extraction with More Power the advanced deep learning layers that focus on fast and accurate feature 

extraction are at the heart of the design. These layers make the network faster and reduce the number of 

parameters. They do this by splitting the convolution into depthwise and pointwise processes. This makes the 

model simpler and cheaper to compute. Dilated convolutions are used to make the receptive field bigger without 

losing detail or adding more parameters. This lets the network understand bigger spatial structures and get a bigger 
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picture, which is important for finding trends that could mean someone has Alzheimer's. The features that were 

extracted are sent to a number of fully connected layers that end with a softmax layer. This layer sorts the input 

images into groups like "No Impairment," "Mild Impairment," and "Severe Impairment." This program is meant to 

make results as easy to understand as possible while still being very accurate and reliable.  

 

Figure 2: Systematic representation of proposed system architecture 

The last part of the system design is the performance evaluation module. It checks how well the model works by 

looking at things like accuracy, precision, and recall. In clinical settings, these measures are very important for 

making sure the model meets the standards needed for use in the real world. The design is held together by a core 

structure that manages data, trains models, and makes changes. There is also a user interface that makes it easy for 

medical workers to connect with the system. By using these advanced computer methods, the system should be able 

to make Alzheimer's disease detection more accurate and faster, which will help with starting treatment earlier and 

more effectively. Figure 2 shows a methodical way to use MRI data to classify people with Alzheimer's disease. At 

first, the MRI pictures that are fed in go through data cleaning steps such as encoding and feature scale. After that, 

methods for feature extraction are used to separate the data into training and testing sets. These groups are fed into 

a deep learning model, which is then analysed by the classifier model. At last, performance study is conducted to 

evaluate Alzheimer's disease prediction accuracy of the model. This architecture ensures that training and 

validation models are carried out methodically by arranging the process from data entry to speedy performance 

evaluation. 

B. Integration of advanced deep learning layers into existing models 

For applications like sorting MRI pictures of Alzheimer's illness, which is rather crucial, adding more sophisticated 

deep learning layers to present models may make them considerably better in handling difficult data and extracting 

valuable information. Adding specialised layers like attention approaches or sophisticated convolutional layers like 

depthwise separable convolutions or extended convolutions help existing designs function quicker and better. 

Including attention processes into a ResNet model helps the network concentrate more accurately on critical MRI 

scan spots displaying neurodegeneration. This targeted approach enables the model to prioritise significant 

information above less relevant data, hence increasing its sensitivity and accuracy in identifying many phases of 

Alzheimer's disease. Depthwise separable convolutions help speed up models such as DenseNet and also save 

computer effort by lowering their required running time.  

By splitting the merging and filtering chores of convolutional layers, this kind of convolution reduces the amount of 

components and operations. Working with large collections of high-resolution images calls for this very useful. 

Dilated convolutions allow models like InceptionNet to have their receptive fields enlarged. This is carried out 

without adding further criteria. Making this modification will help the network compile more relevant data, which 

is rather crucial for identifying anomalies in medical images and patterns. These modifications not only improve 

the model's efficiency and applicability but also alter its operation to better suit medical imaging research's 
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demands. Because they can extract more information, these models can provide more accurate and dependable 

forecasts. Finding Alzheimer's disease early and designing therapy depend on this greatly. 

VI. Result and Discussion 

Table 2 presents the results of using enhanced models developed specifically for Alzheimer's disease (AD). It 

demonstrates what results from merging three well-known neural network architectures—DenseNet, ResNet, and 

InceptionNet—advanced deep learning techniques into. Modern feature extraction layers helped to enhance these 

models so that MRI scan diagnosis of AD is simpler and more accurate. Enhanced DenseNet does rather well with 

an AUC score of 0.94, accuracy of 92.5%, sensitivity of 90.2%, and precision of 95.0%. DenseNet's sophisticated 

connection patterns and attention mechanisms assist to preserve the feature richness of the network, allowing the 

model to detect minute variations in the visual data displaying early AD signals. The high sensitivity rate means 

that the test is very good at telling the difference between AD and other cases. This lowers the risk of false positives, 

which is very important in clinical settings. 

Table 2: Results for the application of enhanced models 

Model Accuracy Sensitivity Specificity AUC F1-Score 

Enhanced DenseNet 92.5% 90.2% 95.0% 0.94 0.91 

Enhanced ResNet 91.0% 89.5% 93.0% 0.93 0.90 

Enhanced InceptionNet 93.0% 91.0% 95.3% 0.95 0.92 

 

With an AUC of 0.93, Enhanced ResNet worked well, getting a 91.0% success rate, an 89.5% sensitivity rate, and a 

93.0% precision rate. Adding attention levels to the ResNet design helps the model focus on important parts of the 

MRI scans, which makes it better at making diagnoses. Although the model isn't quite as good as DenseNet in 

terms of performance measures, its deep layered method helps it deal with the disappearing gradient problem and 

learn from a very deep stack of layers. With an accuracy of 93.0%, a sensitivity of 91.0%, a precision of 95.3%, and 

an AUC of 0.95, Enhanced InceptionNet did the best of the three, as represent in figure 3.  

 

Figure 3: comparison of these key performance indicators for DL Models 

This model uses changed Inception modules with expanded convolutions to improve its ability to handle pictures at 

different sizes and gather more general background information without losing focus on the specifics. This is 

especially helpful for finding Alzheimer's disease because changes in brain shape can be very minor and vary a lot 

from person to person.  
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Figure 4: Comparison of AUC, F1 Score parameters 

These results show that adding more advanced methods for extracting features to well-known deep learning models 

works. Each model has been improved so that it can handle the complicated, high-dimensional data that comes 

with medical images. This is especially true in the difficult field of diagnosing neurological diseases, the figure 4 

illustrate AUC and F1 score comparison. The models' higher sensitivity and specificity show that they might be able 

to cut down on diagnosis mistakes, which would help doctors make more accurate and quick decisions about how to 

treat and handle Alzheimer's disease. 

Table 3: Results of Enhanced Models Using Advanced Feature Extraction Techniques 

Feature 

Extraction 

Approach 

Model Accuracy Sensitivity Specificity AUC F1-

Score 

Depthwise 

Separable 

Convolutions 

Enhanced DenseNet 93.7% 91.2% 95.8% 0.96 0.93 

Dilated 

Convolutions 

Enhanced 

InceptionNet 

94.5% 92.0% 96.1% 0.97 0.94 

Attention 

Mechanisms 

Enhanced ResNet 91.8% 90.3% 93.4% 0.94 0.91 

 

In Table 3, represent advanced feature extraction methods can greatly improve the performance of deep learning 

models designed to diagnose Alzheimer's disease (AD). This table shows how diagnostic measures like accuracy, 

sensitivity, specificity, AUC (Area Under the Curve), and F1-score have gotten better for three improved models: 

DenseNet, InceptionNet, and ResNet. Each of these models uses a different advanced feature extraction method. 

With an AUC of 0.96 and an F1-score of 0.93, Enhanced DenseNet with depthwise separable convolutions performs 

much better, with an accuracy of 93.7%, a sensitivity of 91.2%, and a specificity of 95.8%, as illustrate in figure 5.  
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Figure 5: Represent the comparisons of feature Extraction Approaches 

Depthwise separable convolutions make the model simpler by separating the spatial and depth (channel) 

operations. This makes the network lighter and faster and also makes it easier to handle the complex features that 

are common in neuroimaging data. Because of this, it is very good at showing the small changes in brain shape that 

show different stages of AD. With a score of 0.94, Enhanced InceptionNet, which uses expanded convolutions, is 

the best model. It is accurate 94.5% of the time, sensitive 92.0% of the time, specific 96.1% of the time, and has an 

AUC of 0.97. By using dilated convolutions, the network's receptive field is increased without adding more weights. 

This lets the model incorporate more environmental information from MRI scans. This skill is very important for 

finding changes in the brain that may be caused by AD and may be spread out in different parts of the brain. It gives 

a more complete and accurate picture of the brain's structure. With an AUC of 0.94 and an F1-score of 0.91, 

Enhanced ResNet is a big step forward. Its accuracy is 91.8%, its sensitivity is 90.3%, its precision is 93.4%, and it 

has attention processes built in. The attention processes help the model focus on the most important parts of the 

raw data, which improves its ability to understand. In medical imaging, being able to tell the difference between 

clinically important signs and noise can be very helpful for making an early and correct diagnosis. The results 

shown in Table 3 show that adding more advanced feature extraction techniques to strong models like DenseNet, 

InceptionNet, and ResNet not only makes them better at diagnosing, but also makes them more flexible and aware 

of the subtleties of medical imaging data, especially for Alzheimer's and other complex diseases. This customised 

method for feature extraction is a big step forward in the use of AI in healthcare. It gives doctors tools that can help 

them make better decisions and might even help AD patients have better results. 

Table 4: Comparative Results with Baseline Models 

Model Accuracy (Enhanced) Accuracy (Baseline) 

DenseNet 93.7% 88.0% 

ResNet 94.5% 86.5% 

InceptionNet 91.8% 89.0% 

 

The results shown in Table 4 show how well improved deep learning models did compared to their base models at 

classifying Alzheimer's disease (AD). Adding advanced feature extraction methods clearly raises the accuracy of 

each model, as shown in the table. This shows that these improvements are useful for making diagnostic accuracy 

better. When depthwise separable convolutions are added to Enhanced DenseNet, it gets a 93.7% success rate, 

compared to 88.0% for the basic model. The 5.7% gain shows how important it is to use efficient neural processes 

that get rid of unnecessary information and make feature extraction work better. The improved model can clearly 

show anatomical problems in MRI scans while still being very efficient with computing power. This makes it perfect 

for studying a lot of medical images at once. 
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Figure 6: Comparison Of Enhanced Vs. Baseline Model Accuracy 

The biggest change is seen in Enhanced ResNet, which adds attention processes and sees an 8.0% rise in accuracy 

from 86.5% (baseline) to 94.5% (enhanced). Adding attention layers to the model helps it focus on important parts 

of the brain, which makes it better at telling the difference between Alzheimer's stages, as comparison illustrate in 

figure 6. This improvement makes sure that the model focusses on areas of interest, which results in more accurate 

and understandable labels. Enhanced InceptionNet, which uses expanded convolutions, is 91.8% accurate, up from 

89.0% for its base model, which is a 2.8% increase. The model has a slightly smaller gain compared to DenseNet 

and ResNet, but it is better at finding patterns of neurodegeneration that are spread across different brain areas 

because it extracts features at multiple scales and has a larger receptive field. 

Table 5: Impact of advanced deep learning layers on model performance 

Model Layer Enhancement Accuracy Sensitivity Specificity AUC F1-

Score 

Standard DenseNet None 88.0% 85.0% 91.0% 0.90 0.87 

Enhanced DenseNet Attention Mechanisms 93.7% 90.2% 95.0% 0.94 0.91 

Standard ResNet None 86.5% 84.3% 89.0% 0.89 0.85 

Enhanced ResNet Attention + Residual 91.8% 89.5% 93.0% 0.93 0.90 

Standard InceptionNet None 89.0% 87.5% 90.5% 0.91 0.88 

Enhanced 

InceptionNet 

Depthwise 

Convolutions 

94.5% 91.0% 95.3% 0.95 0.92 

 

Table 5 shows the big difference that adding advanced deep learning layers to normal designs makes, showing big 

gains in all the important performance measures for classifying Alzheimer's disease (AD). The table shows how the 

improved versions of DenseNet, ResNet, and InceptionNet models relate to their original versions. It shows how 

well the improvements work at improving accuracy, sensitivity, precision, AUC (Area Under the Curve), and F1-

score. In its base form, the standard DenseNet model has an AUC of 0.90 and an F1-score of 0.87. It is accurate 

88.0% of the time, sensitive 85.0% of the time, and specific 91.0% of the time.  
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Figure 7: Comparison of Standard vs. Enhanced Models Across Metrics 

The improved DenseNet, on the other hand, gets an accuracy of 93.7% after adding attention processes, which is a 

5.7% improvement. The model is better at telling the difference between AD and non-AD cases, as the sensitivity 

goes up to 90.2% and the precision goes up to 95.0%, as shown in figure 7. The AUC of 0.94 shows that the model is 

better at telling the difference between things, which makes it more accurate for use in clinical settings. Seeing the 

F1-score go up from 0.87 to 0.91 is more proof that the model works well when there are imbalances between 

classes. 

It has 86.5% accuracy, 84.3% sensitivity, and 89.0% specificity, with an AUC of 0.89 and an F1-score of 0.85. This 

is because it only has deep residual connections and no other improvements. ResNet's design is already good at 

dealing with disappearing slopes, but it does a lot better when attention methods and more residue learning 

improvements are added. The improved ResNet is 91.8% accurate, which is 5.3% better than the original. It gets 

better at telling the difference between Alzheimer's and healthy cases, with sensitivity going up to 89.5% and 

precision going up to 93.0%. With an AUC of 0.93 and an F1-score of 0.90, the model now better catches important 

traits, ensuring fewer wrong classes. The normal InceptionNet model has an F1-score of 0.88, a sensitivity of 87.5%, 

a precision of 90.5%, an AUC of 0.91, and an accuracy of 89.0%. It is known for its multi-scale feature extraction. 

For the enhanced InceptionNet, which now boasts an accuracy of 94.5%, a 5.5% increase, adding depthwise 

separable convolutions makes the most effect. The model improves in differentiating AD from non-AD patients; 

sensitivity rises to 91.0%, specificity to 95.3%, and AUC to 0.95.  

VII. Conclusion 

Advanced deep learning layers considerably increase the accuracy and speed of categorising MRI images for 

Alzheimer's disease (AD). This work demonstrates that adding techniques like attention mechanisms, depthwise 

separable convolutions, and enlarged convolutions to well-known deep learning architectures (DenseNet, ResNet, 

and InceptionNet) improves the models greatly. These advances routinely indicate that they increase crucial 

assessment criteria like F1-score, accuracy, sensitivity, specificity, and AUC. The superior DenseNet model showed 

the need of giving features top priority in medical imaging by raising accuracy from 88.0% to 93.7%, using 

attention processes. In same vein, adding attention and residual learning to upgraded ResNet raised accuracy from 

86.5% to 91.8%. This demonstrates how residual learning could assist with gradient vanishing issues. Using 

depthwise separable convolutions, the enhanced InceptionNet model produced the greatest results—a 94.5% 

success rate. This shows that computationally efficient convolutions can effectively capture complex brain imaging 

patterns. Also, comparing the results to baseline models showed big changes in every measure. This proved that the 

advanced feature extraction methods not only make diagnostics more accurate but also cut down on fake positives 
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and negatives. With these improvements, the models can better show a minor neuronal pattern, which makes them 

ideal for diagnosing AD early on. This study proves that adding more advanced deep learning layers to regular CNN 

models makes automatic feature extraction better and classification work well. The results make it possible to 

create AI-powered tools for diagnosing AD. This opens the door for deeper learning solutions in neuroimaging that 

are more reliable, accurate, and useful in clinical settings. 
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