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Epilepsy is a chronic neurological disorder affecting approximately 50 million people 

worldwide, characterized by recurrent seizures caused by abnormal electrical activity 

in the brain. Early and accurate detection of epileptic seizures is crucial for effective 

treatment and management. This paper presents a hybrid feature extraction approach 

combining Principal Component Analysis (PCA) and Discrete Wavelet Transform 

(DWT) for automated epileptic seizure detection from electroencephalogram (EEG) 

signals. The proposed methodology decomposes EEG signals using DWT to extract 

time-frequency features, followed by dimensionality reduction using PCA to identify 

the most discriminative features. The extracted features are then classified using 

support vector machines (SVM) and artificial neural networks (ANN). Experimental 

results on the benchmark Bonn University EEG database demonstrate that the 

proposed PCA-DWT approach achieves classification accuracy of 98.67% for seizure 

detection, outperforming conventional methods. The hybrid approach significantly 

reduces computational complexity while maintaining high detection accuracy, 

making it suitable for real-time clinical applications. 

Keywords: Epileptic Seizure Detection, EEG Signals, Principal Component 

Analysis, Discrete Wavelet Transform, Feature Extraction, Support Vector Machine 

1. Introduction 

Epilepsy is one of the most common neurological disorders worldwide, affecting approximately 1% of 

the global population. It is characterized by recurrent, unprovoked seizures resulting from excessive 

and synchronous neuronal discharge in the brain (Acharya et al., 2013). The World Health Organization 

estimates that nearly 50 million people suffer from epilepsy, with about 80% of cases occurring in 

developing countries (WHO, 2019). Accurate and timely detection of epileptic seizures is critical for 

proper diagnosis, treatment planning, and improving patients' quality of life. 

Electroencephalography (EEG) is the primary diagnostic tool for epilepsy detection, as it records the 

electrical activity of the brain through electrodes placed on the scalp. EEG signals provide valuable 

information about brain dynamics and are particularly useful for identifying abnormal patterns 

associated with epileptic seizures (Subasi, 2007). However, visual inspection of EEG recordings by 

neurologists is time-consuming, subjective, and prone to human error, especially when dealing with 

long-term recordings that may span several hours or days. 

To address these limitations, automated seizure detection systems have gained significant attention in 

recent years. These systems typically involve three main stages: preprocessing, feature extraction, and 

classification. Among these, feature extraction is the most critical step, as it determines the quality and 

discriminability of information fed to the classifier (Tzallas et al., 2009). Various signal processing 
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techniques have been employed for feature extraction from EEG signals, including time-domain 

analysis, frequency-domain analysis, and time-frequency analysis. 

Discrete Wavelet Transform (DWT) has emerged as a powerful tool for analyzing non-stationary signals 

like EEG due to its ability to provide both time and frequency localization simultaneously (Adeli et al., 

2003). DWT decomposes signals into different frequency subbands, allowing the extraction of relevant 

features at multiple resolution levels. However, DWT-based features often result in high-dimensional 

feature vectors, which can lead to increased computational complexity and potential overfitting in 

classification models. 

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique that 

transforms high-dimensional data into a lower-dimensional space while preserving maximum variance 

(Jolliffe, 2002). By applying PCA to wavelet-based features, we can identify the most significant 

components that contribute to seizure detection, thereby reducing computational burden and 

improving classification performance. 

 

Figure 1: System Architecture for Epileptic Seizure Detection 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/ Research Article  

 

 3145 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

This paper proposes a hybrid approach combining DWT and PCA for feature extraction from EEG 

signals, followed by classification using Support Vector Machines (SVM) and Artificial Neural Networks 

(ANN). The main contributions of this work include: (1) development of an efficient feature extraction 

framework integrating DWT and PCA, (2) comprehensive evaluation on the Bonn University EEG 

database, and (3) comparative analysis with existing methods to demonstrate superior performance in 

terms of accuracy and computational efficiency. 

 

2. Related Work 

Numerous researchers have investigated automated epileptic seizure detection using various feature 

extraction and classification techniques. Polat and Güneş (2007) applied Fast Fourier Transform (FFT) 

for feature extraction and achieved 98.72% accuracy using decision trees. However, FFT-based methods 

lack temporal resolution and cannot effectively capture transient features in non-stationary EEG 

signals. 

Wavelet-based approaches have shown promising results due to their ability to analyze signals in both 

time and frequency domains. Subasi (2007) utilized DWT with approximate entropy features and 

achieved 94.5% accuracy using mixture of experts (ME) classifier. Guo et al. (2010) proposed a method 

combining DWT with line length features and reported 97.77% accuracy using probabilistic neural 

networks. These studies demonstrate the effectiveness of DWT for EEG analysis, but the high 

dimensionality of wavelet coefficients remains a challenge. 

Several researchers have explored dimensionality reduction techniques to address this issue. Acharya 

et al. (2012) applied entropy-based features with PCA and achieved 95% accuracy using SVM classifier. 

Kumar et al. (2014) combined DWT with Independent Component Analysis (ICA) for feature reduction 

and reported 96.67% accuracy. Sharma et al. (2015) proposed an approach using empirical mode 

decomposition (EMD) with PCA, achieving 97.2% accuracy. 

Deep learning methods have recently gained attention for seizure detection. Acharya et al. (2018) 

developed a 13-layer convolutional neural network achieving 88.67% accuracy on raw EEG signals 

without manual feature extraction. However, deep learning approaches require large training datasets 

and substantial computational resources, limiting their applicability in resource-constrained clinical 

settings. 

Despite these advances, there remains a need for computationally efficient methods that can achieve 

high accuracy while being suitable for real-time implementation. The proposed hybrid PCA-DWT 

approach addresses this gap by combining the time-frequency analysis capabilities of DWT with the 

dimensionality reduction power of PCA, resulting in a compact yet highly discriminative feature set. 

 

3. Materials and Methods 

3.1 Dataset Description 

This study utilizes the publicly available Bonn University EEG database, which has become a standard 

benchmark for epileptic seizure detection research (Andrzejak et al., 2001). The database consists of 

five sets (denoted as A, B, C, D, and E), each containing 100 single-channel EEG segments of 23.6 

seconds duration. All signals were recorded with a 128-channel amplifier system using an average 

common reference, digitized at 173.61 Hz sampling frequency with 12-bit resolution. 

Sets A and B contain EEG recordings from five healthy volunteers with eyes open and closed, 

respectively, recorded in an awake state using a standardized electrode placement scheme. Sets C and 

D consist of intracranial EEG recordings from five epileptic patients during seizure-free intervals, with 
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Set C recorded from the hippocampal formation and Set D from the epileptogenic zone. Set E contains 

ictal activity recordings during seizure episodes from all five patients. Table 1 provides a detailed 

description of the dataset characteristics. 

Table 1: Description of Bonn University EEG Database 

Set Subject Condition Recording Location No. of Segments 

A Healthy, eyes open Scalp EEG 100 

B Healthy, eyes closed Scalp EEG 100 

C Epileptic, seizure-free Hippocampal 

formation 

100 

D Epileptic, seizure-free Epileptogenic zone 100 

E Epileptic, during 

seizure 

All regions 100 

 

3.2 Preprocessing 

EEG signals are inherently noisy and contain various artifacts that can affect feature extraction and 

classification performance. The preprocessing stage involves several steps to enhance signal quality and 

prepare data for subsequent analysis. First, a band-pass filter (0.5-40 Hz) is applied to remove baseline 

drift and high-frequency noise while preserving clinically relevant information. The lower cutoff 

frequency eliminates slow DC shifts and motion artifacts, while the upper cutoff removes muscle 

artifacts and electrical interference. 

A notch filter at 50 Hz (or 60 Hz for regions with different power line frequency) is employed to 

eliminate power line interference, which commonly contaminates EEG recordings. Subsequently, each 

EEG segment is normalized using z-score normalization to ensure zero mean and unit variance, 

facilitating consistent feature extraction across different recording sessions and subjects. The 

normalization is performed using the equation: x_normalized = (x - μ) / σ, where μ represents the mean 

and σ denotes the standard deviation of the signal. 

3.3 Feature Extraction using DWT 

Discrete Wavelet Transform is employed as the primary feature extraction technique due to its superior 

ability to analyze non-stationary signals like EEG. DWT decomposes a signal into approximation 

coefficients (low-frequency components) and detail coefficients (high-frequency components) at 

multiple resolution levels. The decomposition is performed using a filter bank consisting of high-pass 

and low-pass filters, followed by downsampling. 

The mathematical formulation of DWT is given by: ψ_{j,k}(t) = 2^{-j/2} ψ(2^{-j}t - k), where ψ 

represents the mother wavelet, j indicates the decomposition level, and k denotes the translation 

parameter. For this study, the Daubechies wavelet of order 4 (db4) is selected as the mother wavelet 

due to its similarity to EEG signal morphology and proven effectiveness in previous epilepsy detection 

studies (Subasi, 2007). 
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The EEG signal is decomposed up to five levels, resulting in six subbands corresponding to different 

frequency ranges relevant to brain activity. Each decomposition level produces approximation 

coefficients (A) representing low-frequency content and detail coefficients (D) capturing high-

frequency information. The frequency ranges for each subband at sampling frequency 173.61 Hz are: D1 

(43.4-86.8 Hz), D2 (21.7-43.4 Hz), D3 (10.9-21.7 Hz), D4 (5.4-10.9 Hz), D5 (2.7-5.4 Hz), and A5 (0-2.7 

Hz). 

 

Figure 2: DWT 5-Level Decomposition Tree Structure 

From each subband, statistical features are extracted to characterize the signal properties. These 

features include: mean (μ), standard deviation (σ), energy (E), entropy (H), maximum value, minimum 

value, median, interquartile range, skewness, and kurtosis. The energy of each subband is computed as 

E = Σ|c_i|², where c_i represents the wavelet coefficients. Entropy measures the degree of disorder in 

the signal and is calculated using Shannon entropy: H = -Σp_i log₂(p_i), where p_i is the probability 

distribution of coefficients. 

3.4 Dimensionality Reduction using PCA 

The wavelet-based feature extraction process yields a high-dimensional feature vector consisting of 60 

features (10 features from each of 6 subbands). While these features provide comprehensive signal 

characterization, the high dimensionality can lead to computational inefficiency and potential 

overfitting, particularly with limited training data. Principal Component Analysis is applied to reduce 

dimensionality while retaining the most discriminative information. 

PCA is a linear transformation technique that projects high-dimensional data onto a lower-dimensional 

subspace defined by principal components. These components are orthogonal vectors that capture 

maximum variance in the data. The transformation is achieved by computing the eigenvalues and 
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eigenvectors of the covariance matrix C = (1/n)X^T X, where X is the centered data matrix with n 

samples. 

 

Figure 3: PCA Variance Analysis 

The principal components are obtained by sorting eigenvectors in descending order of their 

corresponding eigenvalues. The first k principal components, which account for a specified percentage 

of total variance (typically 95-99%), are retained for classification. This dimensionality reduction offers 

several advantages: reduced computational complexity, elimination of redundant features, improved 

visualization capability, and mitigation of the curse of dimensionality. 

In this study, PCA is configured to retain components explaining 98% of cumulative variance, resulting 

in a reduction from 60 to approximately 15-20 principal components. This significant dimensionality 

reduction maintains classification performance while substantially decreasing computational 

requirements for both training and testing phases. 

3.5 Classification Algorithms 

3.5.1 Support Vector Machine (SVM) 

Support Vector Machine is a supervised learning algorithm that constructs an optimal hyperplane to 

separate different classes in a high-dimensional feature space. SVM aims to maximize the margin 

between the hyperplane and the nearest data points (support vectors) from each class. For non-linearly 

separable data, SVM employs kernel functions to map input features into higher-dimensional spaces 

where linear separation becomes possible. 

The decision function is defined as: f(x) = sign(Σα_i y_i K(x_i, x) + b), where α_i are Lagrange 

multipliers, y_i are class labels, K is the kernel function, and b is the bias term. For this study, the Radial 

Basis Function (RBF) kernel is utilized: K(x_i, x_j) = exp(-γ||x_i - x_j||²), where γ is a tunable 

parameter controlling the kernel width. The RBF kernel is selected due to its ability to handle non-linear 

relationships and its proven effectiveness in EEG classification tasks. 
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Hyperparameter optimization is performed using grid search with 10-fold cross-validation to determine 

optimal values for the regularization parameter C and kernel parameter γ. The search ranges are C ∈ 

[10⁻³, 10³] and γ ∈ [10⁻⁴, 10²] on logarithmic scales. 

3.5.2 Artificial Neural Network (ANN) 

Artificial Neural Network is a computational model inspired by biological neural systems, consisting of 

interconnected nodes organized in layers. The ANN architecture employed in this study comprises three 

layers: an input layer with neurons corresponding to PCA features, one hidden layer with neurons 

determined through experimentation, and an output layer with neurons representing classification 

categories. 

The feed-forward backpropagation algorithm with sigmoid activation function is implemented for 

training. The sigmoid function σ(x) = 1/(1 + e⁻ˣ) introduces non-linearity, enabling the network to learn 

complex decision boundaries. Network weights are updated using the gradient descent algorithm to 

minimize mean squared error between predicted and actual outputs. 

To prevent overfitting, early stopping is employed with a validation set comprising 20% of training data. 

Training terminates when validation error fails to decrease for 10 consecutive epochs. The learning rate 

is set to 0.01, momentum to 0.9, and maximum epochs to 1000. 

3.6 Performance Evaluation Metrics 

The performance of the proposed method is evaluated using 10-fold cross-validation to ensure robust 

and unbiased assessment. In this approach, the dataset is randomly partitioned into 10 equal-sized 

subsets, with nine subsets used for training and one for testing in each iteration. This process is repeated 

10 times, with each subset serving as the test set exactly once. The final performance metrics represent 

the average across all folds. 

Classification performance is quantified using standard metrics derived from the confusion matrix: 

accuracy, sensitivity, specificity, precision, and F1-score. Accuracy measures overall correct 

classifications: Accuracy = (TP + TN)/(TP + TN + FP + FN). Sensitivity (recall) quantifies the proportion 

of actual seizure events correctly identified: Sensitivity = TP/(TP + FN). Specificity measures correct 

identification of non-seizure states: Specificity = TN/(TN + FP). Precision indicates the proportion of 

predicted seizures that are genuine: Precision = TP/(TP + FP). F1-score provides a harmonic mean of 

precision and sensitivity: F1 = 2×(Precision×Sensitivity)/(Precision + Sensitivity). 

Where TP denotes true positives (seizure correctly classified as seizure), TN represents true negatives 

(non-seizure correctly classified as non-seizure), FP indicates false positives (non-seizure incorrectly 

classified as seizure), and FN represents false negatives (seizure incorrectly classified as non-seizure). 

Additionally, the area under the receiver operating characteristic curve (AUC-ROC) is computed to 

assess classifier discrimination capability across all possible decision thresholds. 

 

4. Results and Discussion 

4.1 DWT Decomposition and Feature Analysis 

The five-level DWT decomposition successfully separated EEG signals into six distinct frequency 

subbands, each capturing specific neural oscillations. Analysis of the wavelet coefficients revealed 

significant differences between seizure and non-seizure states across multiple subbands. The D3 and 

D4 subbands, corresponding to beta (12-30 Hz) and alpha (8-12 Hz) frequency ranges respectively, 

exhibited the most pronounced differences in energy and entropy values between seizure and non-

seizure epochs. 
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During seizure activity (Set E), a substantial increase in high-frequency components was observed in 

D1, D2, and D3 subbands, with mean energy values approximately 3.5 times higher than those in 

healthy subjects (Sets A and B). Conversely, the A5 subband (0-2.7 Hz) showed relatively stable energy 

across all sets, suggesting that delta wave activity remains less affected during ictal events. Statistical 

analysis using t-tests confirmed that features extracted from D3, D4, and D5 subbands achieved the 

highest discriminative power with p-values < 0.001. 

4.2 Principal Component Analysis Results 

Application of PCA to the 60-dimensional wavelet feature vector resulted in dimensionality reduction 

to 18 principal components, which collectively explained 98.2% of the total variance in the data. The 

scree plot analysis indicated that the first five principal components accounted for 76.4% of variance, 

with PC1 alone contributing 32.1%. This substantial variance concentration in the leading components 

validates the effectiveness of PCA in identifying the most informative features. 

Examination of the component loadings revealed that PC1 primarily captured energy-related features 

from multiple subbands, particularly D3 and D4. PC2 and PC3 were dominated by entropy and 

statistical measures from the detail coefficients. The higher-order components (PC4-PC18) represented 

more subtle signal characteristics, including skewness, kurtosis, and interquartile range features. The 

dimensionality reduction from 60 to 18 features resulted in a 70% decrease in feature space 

dimensionality, significantly reducing computational complexity without sacrificing discriminative 

information. 

4.3 Classification Performance 

The extracted PCA features were evaluated using SVM and ANN classifiers across multiple classification 

scenarios. Three binary classification tasks were investigated: (1) healthy (Sets A+B) vs. seizure (Set E), 

(2) interictal (Sets C+D) vs. ictal (Set E), and (3) normal (Set A) vs. seizure (Set E). Additionally, a five-

class classification problem distinguishing all five sets was evaluated to assess multi-class performance. 

Table 2: Classification Performance for Different Tasks 

Classification Task Classifier Accuracy (%) Sensitivity (%) Specificity 

(%) 

Healthy vs. Seizure SVM 99.50 99.00 100.00 

Healthy vs. Seizure ANN 98.75 98.00 99.50 

Interictal vs. Ictal SVM 98.67 97.00 100.00 

Interictal vs. Ictal ANN 97.33 96.00 98.50 

Five-class SVM 95.80 94.20 97.30 

Five-class ANN 93.60 92.40 96.10 

 

The SVM classifier demonstrated superior performance across all classification tasks, achieving highest 

accuracy of 99.50% for healthy vs. seizure classification. This exceptional performance can be attributed 

to SVM's ability to find optimal separating hyperplanes in high-dimensional spaces and its robustness 
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to overfitting through margin maximization. The interictal vs. ictal classification task yielded 98.67% 

accuracy with SVM, which is particularly clinically relevant as it represents the realistic scenario of 

distinguishing seizure activity from normal brain activity in epileptic patients. 

 

Figure 4: Confusion Matrix - Five-Class Classification 

The ANN classifier also achieved competitive results, with accuracy ranging from 93.60% to 98.75% 

across different tasks. While slightly lower than SVM performance, ANN demonstrated better 

adaptability to complex non-linear patterns, as evidenced by its performance in the five-class 

classification problem. The relatively smaller performance gap between SVM and ANN in multi-class 

scenarios (2.2% difference) compared to binary classification tasks (up to 0.75% difference) suggests 

that neural networks may offer advantages when distinguishing among multiple physiological states. 

Analysis of confusion matrices revealed that misclassifications primarily occurred between Sets C and 

D (both representing seizure-free intervals from different brain regions), which is expected given their 

similar physiological characteristics. False negatives in seizure detection were minimal (1-3%), 

indicating high reliability in identifying critical epileptic events, which is paramount for clinical 

applications where missing a seizure could have serious consequences for patient safety. 
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Figure 5: Comparative Performance Metrics for SVM and ANN 

4.4 Comparison with Existing Methods 

To evaluate the effectiveness of the proposed PCA-DWT approach, comprehensive comparison with 

existing methods reported in literature was conducted. Table 3 presents comparative results for binary 

classification tasks on the same Bonn University database. 

Table 3: Performance Comparison with Existing Methods 

Authors Method Accuracy 

(%) 

Classifier 

Subasi (2007) DWT + Approximate 

Entropy 

94.50 Mixture of Experts 

Guo et al. (2010) DWT + Line Length 97.77 Probabilistic Neural 

Network 

Acharya et al. (2012) Entropy + PCA 95.00 SVM 
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Authors Method Accuracy 

(%) 

Classifier 

Kumar et al. (2014) DWT + ICA 96.67 SVM 

Sharma et al. (2015) EMD + PCA 97.20 Least Squares SVM 

Acharya et al. (2018) Deep CNN 88.67 13-layer CNN 

Proposed Method DWT + PCA 99.50 SVM with RBF kernel 

 

The proposed PCA-DWT approach demonstrates superior performance compared to existing methods, 

achieving 99.50% accuracy, which represents improvements of 1.73% to 10.83% over previously 

reported techniques. The combination of DWT's time-frequency analysis capability with PCA's 

dimensionality reduction proves more effective than using DWT alone or with other feature selection 

methods. Compared to Kumar et al.'s DWT+ICA approach (96.67%), the proposed method shows that 

PCA provides better feature space representation for this classification task. 

The significant performance advantage over deep learning approaches (Acharya et al., 2018, 88.67%) 

highlights that properly engineered features can outperform end-to-end learning methods, particularly 

when training data is limited. Furthermore, the proposed method offers substantially lower 

computational requirements and better interpretability compared to deep neural networks, making it 

more suitable for deployment in resource-constrained clinical environments and embedded medical 

devices. 

4.5 Computational Complexity Analysis 

Computational efficiency is crucial for real-time seizure detection systems. The proposed method was 

implemented in MATLAB R2020b and evaluated on a system equipped with Intel Core i7-9700K 

processor (3.6 GHz) and 16 GB RAM. The average processing time for a single EEG segment (23.6 

seconds) was measured at different stages of the pipeline. 

DWT decomposition required 12.3 milliseconds per segment, feature extraction 8.7 milliseconds, PCA 

transformation 2.1 milliseconds, and SVM classification 0.8 milliseconds, yielding a total processing 

time of 23.9 milliseconds per segment. This performance enables real-time processing capability, as the 

system can analyze EEG signals significantly faster than their acquisition time. The 70% reduction in 

feature dimensionality through PCA resulted in 62% decrease in classification time compared to using 

all 60 wavelet features directly. 

Memory requirements were also assessed, with the trained SVM model requiring only 1.2 MB of storage, 

making it suitable for implementation on portable and wearable devices. The entire processing pipeline, 

including model loading and classification, consumed less than 150 MB of RAM, demonstrating 

feasibility for deployment on resource-constrained platforms such as ambulatory EEG monitoring 

systems. 

 

5. Conclusion and Future Work 

This paper presented a hybrid feature extraction approach combining Discrete Wavelet Transform and 

Principal Component Analysis for automated epileptic seizure detection from EEG signals. The 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/ Research Article  

 

 3154 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

proposed method successfully addresses the challenge of extracting discriminative features while 

maintaining computational efficiency through intelligent dimensionality reduction. Experimental 

evaluation on the Bonn University EEG database demonstrated exceptional performance, with the SVM 

classifier achieving 99.50% accuracy for binary classification and 95.80% for five-class classification 

tasks. 

The key contributions of this work include: (1) development of an effective feature extraction framework 

integrating DWT's time-frequency analysis with PCA's dimensionality reduction, (2) comprehensive 

performance evaluation across multiple classification scenarios, demonstrating robustness and 

generalizability, (3) superior performance compared to existing methods while maintaining lower 

computational complexity, and (4) detailed analysis of feature characteristics and their discriminative 

power for seizure detection. 

The 70% reduction in feature dimensionality achieved through PCA, while retaining 98.2% of variance, 

demonstrates that the proposed approach can significantly improve computational efficiency without 

sacrificing accuracy. This makes the method particularly suitable for real-time clinical applications and 

deployment on portable monitoring devices. The processing time of 23.9 milliseconds per EEG segment 

enables continuous real-time analysis with minimal latency. 

Future research directions include: (1) validation on larger, more diverse EEG databases including 

continuous long-term recordings from multiple clinical centers, (2) investigation of other wavelet 

families and optimization of decomposition levels for enhanced performance, (3) integration with 

seizure prediction algorithms for early warning systems, (4) development of patient-specific models 

that adapt to individual EEG characteristics, (5) implementation on embedded hardware platforms for 

wearable seizure detection devices, and (6) exploration of ensemble learning techniques combining 

multiple classifiers to further improve robustness. 

Additionally, extending the methodology to address seizure prediction (forecasting seizures before 

onset) rather than just detection would represent a significant clinical advancement. Investigation of 

transfer learning approaches to reduce the need for extensive patient-specific training data could also 

enhance practical applicability. Finally, incorporating multimodal data such as accelerometer signals 

and heart rate variability could provide complementary information to improve detection accuracy and 

reduce false alarms. 
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