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Several Models of Deep Learning (DL) have demonstrated impressive performance across 

multiple object detection problems. Large object detection methods based on DL are typically 

computationally and memory-intensive. Hence, this paper presents model compression 

strategies for object identification with Parallel Recurrent Convolutional Neural Networks (MCS-

OD-PRCNN). Initially, the input photos come from the Common Objects in Context (COCO) 

2017 dataset. Next, using Improved Bilateral Texture Filtering (IBTF), the input images are pre-

processed. The pre-processed images are then given to the suggested deep-learning model, 

Parallel Recurrent Convolutional Neural Networks (PRCNNs), which identifies and localizes the 

objects in the image. After training and validating the PRCNN model on the pre-processed 

dataset, compression model precision is decreased with the application of strategies like 

quantization and pruning, eliminating redundant weights and connections, and training a 

smaller, more efficient student model based on the larger PRCNN model. To ensure optimal 

performance, hybrid fox and chimp optimization algorithms (Hyb-FCOA) are employed for the 

compression model’s parameter tuning. The suggested methodology is carried out in Python 

environment, and fundamental evaluation metrics such as Accuracy, Precision, Recall, F-

Measure, mean Average Precision (mAP), Matthew’s Correlation Coefficient (MCC), Intersection 

over Union (IoU), and Positive Predictive Value (PPV) are employed to evaluate the strategy's 

performance. The proposed method attains 20.08%, 23.35%, and 27.79% higher accuracy 

compared to existing techniques such as using one-to-one instruction and guided hybrid 

quantization for remote sensing object detection (GHOST-GQSD), Fast Region-Based 

Convolutional Neural Network (Fast-RCNN), and You Only Look Once version 4 (YOLOv4), 

respectively. 

Keywords: Deep Learning, Hybrid Fox and Chimp optimization algorithm, Improved 

Bilateral Texture Filtering, Model Compression Strategies, Object Detection, Parallel Recurrent 

Convolutional Neural Network 

 

1. Introduction 

Convolutional neural networks (CNNs) have become more and more popular in recent years, especially for 

segmentation, object recognition, and picture classification [1]. Object detection networks include YOLOv3∖v4, 

FasterRCNN, and SSD, whereas classification uses AlexNet, ResNet, and MobileNets [2]. Some jobs require neural 

network models with over 100 layers, up from eight earlier. Large networks, despite the additional resources needed, 

can better represent features. The YOLOv4 network model, for example, is 256 MB in size, with 64 million parameters 

and 162 layers of depth [3]. 29G FLOPs (Floating Point Operations Per Second) are needed to process a 416 by 416 

image, and additional RAM is required for the intermediate variables. The scale of the model means that embedded 

systems with low resources cannot fulfill the memory requirements for inference and computational load [4]. Model 

compression approaches aimed at neural network deployment on embedded or mobile devices rely on methods 

including lightweight network design, quantification, pruning, and knowledge distillation [5]. Weight-level pruning 
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strategies were proposed as a means to reduce the model's parameter count without sacrificing network accuracy. 

However, weight-level pruning models demand the use of specialized hardware accelerators [6]. Filter-level pruning 

techniques have been proposed as a way to reduce deployment costs without requiring extra hardware support. The 

binary and ternary networks which integrate quantization and pruning were initially introduced in the quantification 

work [7] and are employed in the classification network. Each layer's compression ratio is determined by the pre-

trained parameter information, and the effective compression impact is measured using the shared codebook 

technique. Low-bit quantification networks have the potential to reduce model sizes, but accuracy may deteriorate 

significantly in the process. Furthermore, its implementation usually necessitates the use of a specific software 

acceleration library [8]. Few studies have looked at employing the aforementioned pruning and quantization 

approaches for detection networks; they are more commonly used in classification networks. Through quantization 

and pruning, the present network parameters and structure will be compressed [9]. To prevent accuracy loss due to 

quantization or pruning, optimization or direct design are utilized in knowledge distillation and lightweight network 

architecture. One tactic for leveraging the increased student network performance through teacher networks is 

knowledge distillation. The distillation principle was initially applied in the classification network by Hinton [10].  

Natural language processing, computer vision, and speech recognition all make extensive use of knowledge 

distillation nowadays [11]. Knowledge distillation has little to no impact on lowering the model's size and parameters, 

but it can enhance the student network's performance. Additionally, there is a barrier that prevents the instructor 

and student networks from conveying the knowledge that has to be condensed [12]. The structural differences 

between student and instructor networks have a substantial impact on the distillation effect. To mitigate the effects 

of structural differences on distillation, representation learning is combined with knowledge distillation [13]. For 

each class in the image, item counts and picture labels are all that are needed for this approach. Regression activation 

maps and class activation maps are masked to achieve this. When combined, they provide an accurate localization of 

items in the scene [14]. These efforts might partially resolve the distillation's knowledge representation issue. It offers 

a poorly supervised method for object detection and explains how to address the partial view alignment problem 

using representation learning [15]. Lightweight network design, or the direct building of small networks or modules, 

offers a simple network application for tasks involving object identification. Constant channel modules reduce 

memory access costs, whereas attention feature modules boost network accuracy [16]. For semantic segmentation 

tasks, two separate encoder-decoder lightweight designs were proposed. The ensuing work minimizes the encoder's 

parameter count by using channel split and shuffle modules and also improves accuracy in the decoder by adding an 

attention module [17]. The former work enhances contextual clues by up-sampling the deep layer's convolution 

features to the shallow deconvolution layers. Directly building lightweight modules allows for a fair balance between 

model size and precision. Activities involving autonomous driving can be easily included with these thin networks 

[18]. These well-planned networks or modules can usually be run on host computers in laboratories. To properly 

integrate these networks on edge devices, however, much testing and tuning will be required to ensure their efficacy 

[19]. Before deploying the parameters and network to the edge device, they must be compiled and quantified. Certain 

creative modules or network layers are usually impossible to develop and pass due to the hardware device's limited 

instruction set and fundamental operators, which reduces these networks' adaptability and makes it more difficult to 

deploy them to edge devices [20].  

CNNs are one of the most popular deep learning models and have recently shown exceptional performance in a 

variety of computer vision uses, such as object identification. However, these models present substantial hurdles in 

real-world applications due to their high computational and memory requirements, particularly on devices with 

constrained resources like mobile phones and embedded systems. Traditional CNNs, with their complicated 

structures and a large number of parameters, are frequently overly resource-intensive, leading to long inference times 

and excessive energy usage. This constraint reduces their practical utility in applications needing real-time processing 

and low-latency answers. Furthermore, current object detection techniques demand significant storage and 

processing resources, limiting their scalability and accessibility. The COCO 2017 dataset, which is widely used to train 

object detection models, presents a considerable computing challenge due to its size and complexity. Thus, there is 

an urgent need for effective model compression algorithms that can minimize these models' computing weight while 

retaining their performance and correctness. The goal of this manuscript is to overcome the aforementioned issues 

by presenting a compression approach designed exclusively for object detection tasks. The suggested strategy 

employs several novel techniques to improve model efficiency while maintaining accuracy. 

The primary contributions of the manuscript are as follows, 



250  

 

J INFORM SYSTEMS ENG, 10(10s) 

• By combining PRCNN with IBTF, the model becomes more adept at locating and identifying items in intricate 

images. 

• Model efficiency can be raised by using model compression techniques such as quantization, pruning, and 

knowledge distillation, which can significantly lower computing and memory needs. 

• Compressed models can be implemented on resource-constrained devices, like mobile phones and embedded 

systems, increasing the practical utility of high-performance object identification. 

• The suggested approach is adaptable to other deep learning models and datasets, providing a versatile 

solution for computer vision challenges.  

• Hyb-FCOA algorithms optimize compressed models, maintaining high accuracy despite reduced size and 

precision. 

The manuscript's remaining sections are arranged as follows:  Important works are displayed in Section 2, the 

proposed part is covered in Section 3, the results and discussion are presented in Section 4, and the manuscript is 

concluded in Section 5.     

2. Related Work: A Brief Review 

This section contains recent attempts among several studies on object detection utilizing model compression and 

deep learning approaches.            

In 2023, Zhang, J., et al., [21] have shown an one-to-one self-teaching in conjunction with guided supervised hybrid 

quantization for remote sensing image object detection. To accomplish lightweight, first design a framework called 

GQSD, a novel idea that blends quantization and distillation. The method of training was driven by the full-precision 

model of the quantization model, which saved time and money by removing the requirement to build a previously 

trained model in advance. Second, include an HQ module that uses a distribution distance threshold between the 

center and samples in the weight value search space to automatically choose the appropriate bit-width within a 

constrained constraint. Third, offer an OST module so that the student network can assess itself and improve 

knowledge transformation.  

In 2023, Zhang, L. and Ma, K., [22] have contributed to the organized knowledge extraction process for precise and 

effective object detection. First, suggest the major reasons about knowledge distillation fails in object detection were 

disparities in pixel counts between foreground and background, as well as a lack of information distillation 

concerning the relationships between distinct pixel counts. Next, offer a structured method for knowledge distillation 

that addresses the two issues by fusing non-local distillation with attention-guided distillation. The idea behind 

attention-guided distillation is to have students work harder to understand the characteristics of foreground things 

by identifying critical pixels that have attention mechanisms. In addition to teaching students about the attributes of 

a single pixel, it was suggested that non-local distillation be used to teach students about the relationships between 

pixels collected by non-local modules.  

In 2022, Chu, Y., et al., [23] have demonstrated spatial attention distilling and group channel pruning for object 

identification. First, provide a dynamic sparse training technique with changeable sparse rate. The network was 

trained to get rid of unnecessary channels and strike a good compromise between precision and sparsity. Secondly, 

offer a unique pruning technique called group channel pruning to mitigate the impact of pruning on network 

accuracy. Specifically, categorizes the network into multiple categories based on the closeness of its module structure 

and feature layer sizes. The channels within each category were then trimmed using various criteria. Utilize an 

enhanced knowledge distillation method to regain the trimmed network's accuracy.  

In 2022, Junos, M.H., et al., [24] have shown how to employ a condensed CNN model for automated object detection 

on aerial photographs for embedded devices with constrained storage. A movable inverted bottleneck module serves 

as the cornerstone for a viable, lightweight deep CNN-based object identification model. Concatenating the multi-

scale local region features with an upgraded spatial pyramid pooling approach further broadened the network's 

receptive field. The experimental results demonstrated that, in terms of average precision and memory storage 

requirements, the proposed model performed better than previous studies. Furthermore, the suggested model 

provides optimal trade-offs between detection time, model size, and accuracy, making it a top choice for deployment 

on capacity-constrained embedded devices.  
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In 2022, Chen, C., et al., [25] have shown how to improve object detection's resilience using 6G vehicle edge 

computing. A recommended technique for improving the resilience of AI model deployment using 6G-VEC was 

demonstrated using object recognition as an example. Two phases comprised this technique: model adaption and 

model stability. In the former, incorporating cutting-edge methodologies improves the model's robustness. In the 

latter, trade-offs between runtime resources and model performance are required due to the application of two 

targeted compression strategies: knowledge distillation and model parameter trimming. The suggested method 

performed better than the other possibilities in onboard edge terminals, according to numerical results, and it was 

simple to implement there. 

In 2022, Zheng, Y.J., et al., [26] have offered model compression that utilizes pruned differentiable network 

channels. Provide a model compression method based on DNCP. The suggested method uses gradient descent to 

effectively discover the ideal substructure that satisfies resource restrictions, unlike existing approaches that need 

sampling and evaluating multiple substructures. More precisely, assign a learnable probability to every potential 

number of channels in each network layer, relax the selection of a specific number of channels to a softmax over all 

possible channels, and apply gradient descent to maximize the learnable probability in an end-to-end manner. Once 

the network's parameters have been adjusted, use the learnable probability to trim the network until you reach the 

optimal substructure.  

In 2022, Pikoulis, E.V., et al., [27] have shown how to accelerate deep convolutional networks using a new clustering-

based method. Compared to traditional k-means-based approaches, offer a clustering-based method that can speed 

up the procedure and use more centroids/representatives. To that purpose, the specifics of the current issue allow 

for the imposition of a unique framework on the employed representatives. Furthermore, the system's major 

hyperparameters that influence theoretical acceleration increases were identified and supplied. Comprehensive 

evaluation trials were conducted using different cutting-edge DNN models trained in image classification are used to 

show how effective the suggested methodology over existing approaches for MCA tasks.  

3. Proposed Methodology 

In this section, model compression strategies for object detection using Parallel Recurrent Convolutional Neural 

Networks (MCS-OD-PRCNN) is discussed. The proposed methodology involves initially preprocessing input images 

from the COCO 2017 dataset using Improved Bilateral Texture Filtering (IBTF), followed by training and validating 

the parallel Recurrent Convolution Neural Networks (PRCNN) on these preprocessed images to accurately identify 

and localize objects, and subsequently applying model compression techniques such as quantization, pruning, and 

knowledge distillation, complemented by hybrid optimization strategies for parameter tuning, to achieve an efficient 

and high-performance object detection model suitable for deployment on resource-constrained devices. The 

suggested methodology's block diagram is depicted in Figure 1, and the proposed framework's thorough description 

is provided below.      

 
Figure 1: Block Diagram for the Proposed MCS-OD-PRCNN Methodology   



252  

 

J INFORM SYSTEMS ENG, 10(10s) 

3.1. Image Acquisition 

Initially, the training procedure uses a publicly accessible COCO-2017 database [28]. This enormous collection 

contains 328,000 images, totaling 2.5 million categorized instances. The dataset addresses three major research 

challenges in scene recognition: exact two-dimensional object localization, contextual inference between objects, and 

recognizing non-famous or insignificant angles of view. Choosing object categories is a difficult task. All classes must 

be covered in the categories, which should also be relevant to real-world applications and frequently large enough to 

allow for the collection of significant datasets.    

3.2. Preprocessing Using IBTF 

The IBTF [29] is used to the input images as a pre-processing step to normalize and improve image quality. With the 

IBTF adjustment, the bilateral filter becomes a non-linear filter that decreases noise while preserving edges. The 

bilateral filter considers the degree of similarity between the intensities and locations of pixels during the smoothing 

process. Taking these methods reduces the noise in the supplied images. The spatial weights are first generated using 

a Gaussian kernel, and the image resolution affects the standard deviation, as shown in equation (1).    

 
, ,

, ,

,
a a a b

b a b b

Y Y
l a b

Y Y

 
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 

                                                                                                                     (1) 

The adjacent pixel of l  is represented as Y  and  ,a b  when the pixel for spatial weight in the equation above is given 

as  ,l a b . This yields the spatial weights of the Gaussian kernel's standard deviation. The intensity weights are then 

constructed using a Gaussian kernel, and equation (2) expresses the standard deviation in terms of the amount of 

noise contained in the image.  

( )1a a a aI I l = + −                                                                                                                         (2) 

In the computation above l , the pixel's intensity weight is given as aI , and its intensity is shown as  . l , the pixel 

next to it, l , is represented as 
aI , and the Gaussian kernel's standard deviation, 1 a− , is displayed when 

calculating the intensity weight. Lastly, determine the weighted average of the pixels that surround each pixel in the 

image. Multiply the intensity weights by the product of the spatial weights to determine the weights. The formula (3) 

is used to calculate it.       
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where pixel l 's filtered intensity is represented by the equation above as 
a , the pixels surrounding pixel l  are 

defined as ( )a , the pixel's spatial weight is indicated by   as l , the pixel's intensity weight l  is represented as 

( )
a

l , and the pixel's next neighbor's intensity is indicated by m  as l .  

3.3. Parallel Recurrent Convolutional Neural Network for Object Detection 

The recommended Parallel Recurrent Convolutional Neural Network (PRCNN) [30] is a crucial and often-used 

instrument for object detection in the field of classification and prediction techniques. The two deep learning 

structures that make up the model successfully include the best features of both Recurrent Neural Network (RNN) 

and Convolutional Neural Network (CNN) for temporal and spatial feature extraction, respectively. The enhanced 

RNN structure, or "Long Short-Term Memory (LSTM)" model, gathers contextual data for streaming 1D input 

vectors, while the CNN unit is devoted to mining cross-channel correlations and extracting features from 2D frames. 

The object identification procedure is finished by combining the recovered attributes using a feature fusion technique 

after these two units have finished operating. To extract spatial data, the CNN segment consists of three consecutive 

2D convolutional layers sharing a 4×4 kernel size. Despite 3×3 kernels being frequently utilized in computer vision, 

a 4×4 filter is required because object classification frames are sparse. The 4x4 filter may look for correlations 
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between extra channels when this option is used. Zero padding is used in every convolutional layer to avoid 

information loss at the frame edges. From the original 32 feature maps, the number of feature maps in each successive 

layer of the convolutional layer is doubled.  

Consequently, the second and third convolutional layers have feature maps of 64 and 128 respectively. This model 

does not have a pooling layer after the convolutional layer, in contrast to traditional CNN designs that usually have. 

Although the pooling layer is occasionally implemented for data dimension reduction at the risk of some information 

loss, it is not necessary for this assault recognition because the data frame is significantly smaller than in computer 

vision applications. In order to preserve all the data, the model doesn't use pooling techniques. To speed up the 

model's training process, a batch normalization (BN) step is applied following each convolution process. Following 

the three convolutional layers, a depth concatenate operation is used to integrate the spatial feature vectors with the 

temporal feature vectors that the RNN produced to create a cohesive cube from the spatial feature maps. When 

processing incoming data frames, the CNN module prioritizes spatial information. On the other hand, the RNN 

module, which is responsible for extracting temporal features, works with 1D data vectors without translating them 

into 2D frame sequences. This design decision highlights a purposeful approach to preserve the data's sequential 

structure, enabling the RNN to recognize temporal relationships essential for successful object detection. Equation 

(4) is used to create a Spatial Feature Vector following the 2D-CNN processing of each segment. 

2 ( ),i i iUHX Conv FD U UHX=                                                                                                        (4) 

There is no translation of the 1D object recognition data vectors to 2D frames because the RNN component extracts 

the temporal features. The 
thj  input windowed segment is processed in its original 1D format by the RNN.   

1, 1,..., u Ti u u wT w w
+ −+

 =                                                                                                                            (5) 

The hidden state is represented in equation (6), at the final time step of a given section. 

1 1( ),u U i u Ui LSTM T i+ − + −=                                                                                                                   (6) 

In order to enhance the ability to communicate temporal information, a completely linked layer where d represents 

the hidden state size of the LSTM unit is positioned both before and after the LSTM layers. Therefore, using equation 

(7) for segment iT , the Temporal Feature Vector can be expressed as follows., 

( )1 ,i u U iVHX GD i VHX+ −=                                                                                                                 (7) 

Before and after the LSTM layers, a fully linked layer is employed to enhance the attack categorization data 

representation. The suggested method successfully identifies the object as a result.   

3.4. Compression Pipeline 

This section further details the compression algorithm in this part, covering quantization, knowledge distillation, and 

pruning to compress the proposed PRCNN deep learning model. 

3.4.1. Pruning  

The absolute value of the scale factor   indicates each channel's significance, which is a function of the Batch 

Normalization layers in neural networks. Here, employ some real statistics to represent the effect of   on feature 

map channels intuitively. For comparison and statistics, choose the PRCNN network's Batch Normalization layers. 

To quantify and examine every channel in the feature map, employ the 1L  norm. It is evident that the feature map's 

1L  norm, It is occasionally dispersed close to 0  and was acquired after the convolution layer. Nevertheless, the 

following Batch Normalization layer, which comprises many scale factors distributed about 0 , results in a significant 

number of channels with minimal 1L  norm in the feature map. The network's scale factors are all expressed as H  

in absolute terms: 

 1 2, ,..., nH   =                                                                                                                                                  (8) 
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where n  indicates how many channels there are in the network overall. By defining a pruning rate in H , can choose 

a relatively modest threshold, which is specified as  . For a scale factor with an absolute value less than  , pruning 

is feasible.  This framework employs an iterative pruning technique to get a better fitting ability. Following several 

rounds of pruning and fine-tuning can obtain a slim network that not only fulfills the requirements but also results 

in a comparatively reduced accuracy loss. The trial has demonstrated the effectiveness of this strategy.  

As the pruning process proceeds, certain convolutional layers might be removed due to the irregular distribution of 

scale factors. Accuracy would suffer greatly as a result. The initial trimming would have significantly altered the 

network's structure. The goal is to merely eliminate a portion of each layer's filters, not to remove an entire 

convolutional layer. The chain derivative principles dictate that a substantial change in the structure would cause a 

considerable movement in the gradient. Eventually, the model would become too inaccurate, and fine-tuning would 

take longer. It also needs to consider the scale factors in the current layer and their overall significance for the Batch 

Normalization layers. To preserve the network structure's integrity, it has placed another scale factor threshold list 

  here: 

 1 2, ,..., N   =                                                                                                                                                         (9) 

Were,  

 ( )1 2 3max , ,...,i i i i    =                                                                                                                                 (10) 

The number   is both more than 0 and less than 1, and there are N  convolutional layers. The 
thi  Batch 

Normalization layer is set to have an extra i  point cutoff. For instance, the channel may be rejected if the associated 

scale factor absolute value is below both the i  and   limits. This accomplishes two goals. One benefit is that it can 

prevent the removal of some convolutional layers by retaining at least a small portion of the channels during pruning.  

3.4.2. Knowledge Distillation 

Following pruning, the thin model's accuracy is somewhat less than the original network's. Reducing knowledge is a 

good strategy to compensate for reduced accuracy. The first step in knowledge distillation involves moving knowledge 

from a large, pre-trained network to a smaller, smaller network. The following equation can be used to represent the 

small model's ultimate loss function during the backpropagation phase of the small network. 

t o kdL L L= +                                                                                                                                                            (11) 

The numbers tL , oL ,  Display the first loss function, the final loss function, and the output difference between small 

and big network and kdL  in the equation, respectively. It must change the weight coefficient of  . The cooperative 

training of two networks is called mutual learning. In other words, teacher network training can be guided by student 

networks as well. The large and tiny networks can be represented by  1Net − and 2Net − , respectively, and their 

overall mutual learning loss may be calculated using the formula below: 

1 1 1t o kdL L L= +                                                                                                                                                             (12) 

2 2 2t o kdL L L= +                                                                                                                                                            (13) 

Through mutual learning, 1Net − and 2Net − take part in the process of backpropagation. In mutual learning,   

remains constant as opposed to the initial one-way knowledge distillation, which can save a significant amount of 

tuning time. Figure 2 shows the compression model for object detection. 
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Figure 2: Compression Model for Object Detection 

In the task of classifying images, feed the network Batchsize  training data and receive an output in the shape of 

Batchsize Classes . Use cross-entropy as the loss function in optimization. The ( )Kullback Leibler KL−  

divergence [14] is a popular tool for describing the difference between two probability distributions. You can calculate 

the output's KL  divergence by feeding the same input into both networks. The final step in the knowledge distillation 

process is to make the output of two networks tend to be consistent by incorporating KL divergence into the loss 

function and backpropagation. The following formula is used to calculate KL  divergence, 

( ) ( )
( )

( )
log

Q x
KL Q R Q x

R x
=                                                                                                                        (14) 

where Q  and R  stand for two distinct probability distributions with Batchsize Classes as their shape. To obtain 

total loss, we add the original cross-entropy and the KL  divergence of the two distributions.  

Batch samples are also used as the input for PRCNN, from which both classification and regression results. PRCNN 

object detection is predicated on previous boxes. First place a sequence of previous boxes on every pixel of feature 

maps with varying scales. Next, allow the regression and classification processes to be coordinated by each prior box. 

Each pixel in the feature map corresponds to four separate preceding boxes, such as if the size of the j  feature map 

is j ji x  and there are J  Feature maps for regression and classification results. Next, each preceding box on the 

feature map is matched using convolution to jo  coordinate values and the classification outcome. As a result, 

J

j j jj
i x o   can be used to symbolize the total of previous boxes. In contrast to the image classification task, 

there are PrNum iorBoxes  outputs for every image data in the PRCNN. The output has two different classification 

shapes: PrNum iorBoxes Classes  and  Pr 4Num iorBoxes . Only positive and negative samples are used to 

calculate total loss, even when one image data set includes PrNum iorBoxes  prior boxes. The early boxes with a 
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Ground Truth IOU of more than 0.5 are regarded as the positive sample; the earlier boxes with a larger classification 

loss and a lower IOU are regarded as the negative sample. Because the coordinates of prior boxes are fixed, the 

selection of positive samples for a given piece of picture data is always the same, regardless of the training state. 

Negative sample selection, on the other hand, depends on network components and is dynamic.  

The investigation has shown that the best results can only be obtained by condensing knowledge on the categorization 

branch. Given that the regression branch's output is non-discrete, it is not possible to describe the difference in their 

distribution using just KL  divergence. It was found that the method's performance on PRCNN was inferior to that 

of knowledge distillation alone when it came to the classification branch.  In PRCNN, the term "entire loss" is defined 

as follows:   

( ) ( )( )
1

, ,conf loc label

pos

L L p plabel L l l
O

= +                                                                                      (15) 

Where, 

( ) ( )
1

, ,
pos negO O

conf j

j

L p plabel CE p plabel

+

=

=                                                                                                           (16) 

Positive and negative sample numbers are indicated by posO  and negO . The results of the classification and label of 

each previous item are shown in boxes p  and plabel . The regression label and output for each previous box are 

shown in boxes l  and labell . locL  is the regression part's smooth 1L  loss function. The Cross Entropy−  loss 

function is represented by CE . The PRCNN uses the boxes that came before it to define its loss function rather than 

identifying each image as an item. Here select positive samples for knowledge distillation since they are unrelated to 

the model.  This is unable to guarantee the constancy of the negative samples because they vary depending on the 

network. The object detection network's knowledge distillation technique revolves around this.  
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                                                             (18) 

There is an additional branch of object confidence in the distillation's loss function for PRCNN. Therefore, this branch 

needs to be included while creating the knowledge distillation loss function.  

3.4.3. Quantization 

After knowledge distillation is complete, quantize the over-parameterized neural network model using FP-32 to Int-

8 with the least amount of accuracy drop. This is unable to simply convert the thin model into the Int-8 integer model 

due to its very low resilience. In lightweight models, quantization-aware training could yield good results. Hence 

incorporate fictitious quantization nodes into recognizable procedures. These nodes are used to count the highest 

and lowest values of data that pass through them as they are being trained. This does not do quantization; instead, 

this training procedure only models the quantization procedure. FP-32 is still used in both the forward computation 
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and backpropagation processes. To improve performance after training, transform it to an Int-8 model.  The 

quantization formula from the floating point to the fixed point is as follows: 

S
R round U

T

 
= + 

 
                                                                                                                         (19) 

The inverse quantization formula from fixed point to floating point is as follows: 

( )S R U T= −                                                                                                                                               (20) 

A floating-point value is represented by S ; a quantized fixed-point value is represented by U ; a floating-point value 

is represented by T ; and the lowest scale that may be conveyed following fixed-point quantization is represented by 

R . A floating-point type is converted to an integer type by the process of rounding. The following formula can be 

used to determine numbers T  and U .  

max min

max min

S S
T

R R

−
=

−
                                                                                                                                 (21) 

 And 

max
max

S
U R round

T

 
= −  

 
                                                                                                                  (22) 

The maximum floating-point number in the suggested approach is maxS , the smallest is minS , the highest fixed-point 

value is maxR , and the lowest fixed-point value is minR , or ( )0 . Insert the quantization node and use the optimizer 

to lower the quantization loss in order to incorporate the previously mentioned method into the training process. In 

addition, each Batch Normalization layer and the convolution layer need to be fused. This is the exact formula for the 

algorithm. The new convolution layer finishes the work left by batch normalization and the first convolution by 

adjusting the weight and offset value. The convolution layer can be computed using the formula below:  

1z x y c=  +                                                                                                                                                             (23) 

where x , y , and c  stand for the convolutional layer's weight, input, and bias, respectively. The convolutional layer's 

output is represented by 1z . After merging, may obtain the following output directly, taking into account the function 

of the Batch Normalization layer:  

 

1

2

z
z


 



−
=  +

+
                                                                                                                             (24) 

 

( )
2

x y c
z


 



  + −
=  + 

+ 
                                                                                                                             (25) 

( )
2 2

cx
z y

 


 

 −
=  + +

+ +
                                                                                                                   (26) 

The numbers   and   correspond to the BN layer's scale factor and bias factor, respectively. The 1z  mean and 

variance are represented by   and  . The output of the BN layer is represented by z . The denominator's value is 
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fixed at 1 5e−  since   prevents it from reaching 0 . The final combined convolutional layer's weight and bias can 

then be obtained.  

2
mergedx x




= 

+
                                                                                                                                        (27) 

( )
2

mergedc c


 


= −  +
+

                                                                                                                       (28)   

To improve the performance of the compression model, weight parameters  N , L , R from pruning, knowledge 

distillation, and quantization are optimized more efficiently using the hybrid Fox and Chimp optimization algorithm 

(Hyb-FCOA). The stepwise procedure of the Hybrid optimization algorithm is as follows, 

3.5. Stepwise Procedure of the Hybrid Fox and Chimp Optimization Algorithm 

In this section, the weight parameters N , L , R from pruning, knowledge distillation, and quantization are provided 

to the hybrid Fox and Chimp optimization algorithm (Hyb-FCOA) for the process of optimization. The proposed Fox 

Optimization Algorithm (FOA) [31] is a metaheuristic optimization algorithm. Fox distinguishes itself by 

incorporating the hunting and searching behaviors of red foxes in snowy environments. It mimics a red fox's elegant 

dive and spring into the snow to get its meal. In order to determine the best jumping method for a successful hunt, 

Fox measures the distance from the prey throughout the exploitation phase. Additionally, an artificial fox is employed 

to execute jumps in both northeast and opposite directions, determining the new position by considering factors such 

as prey distance, jump value, and direction range. On the other hand, the Fox Optimization Algorithm is improved 

by utilizing the Chimp Optimization Algorithm (COA) [32]. The chimpanzee hunting process is categorized into two 

primary phases: the "Exploration" phase involves activities such as driving, blocking, and chasing the prey, while the 

"Exploitation" phase encompasses the actual attack on the prey. The suggested Hyb-FCOA algorithm's step-by-step 

process is given below:   

Step 1: Initialization 

In this step, initialize the weight parameters N , L , R from pruning, knowledge distillation, and quantization for 

the process of optimization. 

Step 2: Random Generation 

Chooses at random the most appropriate answer from the initialized input parameter upon initialization. 

Step 3: Fitness Function 

Here, the objective function for the weight parameter optimization using Hyb-FCOA optimization is represented in 

equation (29), 

 , ,Fitness Function Optimization N L R=                                                                                     (29) 

Step 4: Exploitation Phase in Fox 

The variable has a probability distribution in the interval [0, 1] during the exploitation phase. Should the randomly 

generated number q  exceeds 0.18, It implies that the red fox needs to relocate. This new position is determined by a 

number of factors, encompassing the distance that sound travels _ _ itDist S T , the separation between the prey and 

the red fox _ _ Pr itDist Fox ey and the jumping value itJump  must be taken into account. Subsequently, the sound 

travel duration is represented by a randomly generated number, ranging from 0 to 1. By increasing its speed through 

the atmosphere, _ _ itTime S T  can determine the red fox's sound travel distance. _Sp S  in conjunction with the sound 

travel time _ _ itTime S T . Using equation (30), the following computation is made:  

_ _ _ _ _it itDist S T Sp S Time S T=                                                                                                        (30) 
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The medium's sound speed, represented as _Sp S , stays steady at 343 above the ground. Additionally, _ _ itTime S T  is 

a number that is created at random from [0, 1]. Iterations range from one to five hundred.  

Step 5: Updating COA for FOA 

At this point, equation (31) is used to calculate the update of the Chimp optimization method for the Fox optimization 

algorithm.  

 _ _ _ _ _it itDist S T Sp S Time S T d=                                                                                                        (31) 

Where, d is considered as the updation function of the Chimp optimization algorithm and is assessed using 

equations (32) and (33) as follows, 

)()(. taXtXkd chimpP −=                                                                                                                   (32) 

drtXtX Pchimp .)()1( −=+                                                                                                                                  (33) 

Where, the total number of iterations is denoted as )(t , rak and,, are represent coefficient vectors, The prey's 

location is shown as, )(tX P  and the chimp's position is indicated as )(tX chimp . 

Step 6: Exploration Phase in Fox 

At this point, the red fox controls the haphazard stroll by deliberately searching for the nicest site it has located so 

far. At this point, instead of employing a jumping strategy, the fox chooses to randomly explore the search area in 

order to carefully examine possible prey. The shortest duration variable MinT  and variable a  are two crucial 

elements that work together to ensure that the fox meanders aimlessly in the direction of the best location. Equations 

(34) and (35) show the results of the computations for variables MinT  and a . Finding variable tt  minimal value is 

necessary to determine variable MinT .   

( )( )
( )

,:
, in

Tit
Ssum Time i

tt M T Min tt
Dimesnion

= =                                                                                      (34) 

The average time tt is obtained by dividing the ( )( ),:
Tit

Ssum Time i by the dimension of the problem. 

1
2

it

a it
Max

  
=  −   

  
                                                                                                                                          (35) 

Where, itMax  indicates the maximum iterations. 

Step 7: Returning the Solution's Optimal Place 

Step 8: Termination 

Check the requirements for stopping. Stop the process if, after the allotted number of iterations, the halting criteria 

are satisfied; otherwise, go to step 3. At last, the proposed Hyb-FCOA algorithm tunes the weight parameters more 

efficiently.  

4. Result and Discussion 

This section presents the experimentation done on model compression strategies for object detection using Parallel 

Recurrent Convolutional Neural Networks (MCS-OD-PRCNN). The following performance metrics are measured 

while implementing the suggested method on a python environment: Accuracy, Recall, F-Measure, Precision, mean 

Average Precision (mAP), Matthew’s correlation coefficient, Intersection over Union (IoU), Positive Predictive Value 

(PPV). Here, the recommended MCS-OD-PRCNN methodology is evaluated against established techniques like 
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Using one-to-one instruction and guided hybrid quantization to recognize objects in remote sensing pictures 

(GHOST-GQSD) [21], Organized knowledge extraction for precise and effective item identification (Fast-RCNN) [22] 

and Pruning group channels and condensing spatial attention to discover objects (YOLOv4) [23] respectively.      

4.1. Performance Measures 

In this situation, the recommended technique's usefulness is assessed using performance metrics such as Accuracy, 

Recall, F-Measure, Precision, mean Average Precision (mAP), Matthew's correlation coefficient, Intersection over 

Union (IoU), and Positive Predictive Value (PPV). Use the metrics of true positives ( )TP , true negatives ( )TN , false 

positives ( )FP , and false negatives ( )FN to better comprehend the proposed approach.      

4.1.1. Accuracy 

Accuracy is defined as the ratio of accurately anticipated instances to total instances. It is calculated as using equation 

(36), 

T P T N
Accuracy

T P T N F P F N

 +
=  

+ + + 
                                                                                            (36) 

4.1.2. Precision 

Precision is defined as the ratio of accurately predicted positive observations to expected positives. It is computed 

using equation (37),  

Pr
T P

ecision
T P F P

 
=  

+ 
                                                                                                                (37) 

4.1.3. Recall 

Recall is the ratio of correctly anticipated positive observations to all observations made in class. The calculation is 

performed using equation (38), 

Re
T P

call
TP F N

 
=  

+ 
                                                                                                                     (38) 

4.1.4. F1-Score 

The F-Measure balances precision and recall by taking the harmonic mean of both. The calculation is done with 

equation (39).    

Pr Re
2

Pr Re

ecision call
F Measure

ecision call

 
− =  

+ 
                                                                                              (39) 

4.1.5. Mean Average Precision (mAP)  

The mean average precision (mAP) is calculated by averaging the precision (AP) for all classes. The area under the 

Precision-Recall curve (AP) is calculated. It is computed using equation (40),   

1

1 n

ii
mAP AP

n =
=                                                                                                                                (40) 

4.1.6. Matthews Correlation Coefficient (MCC) 

Even when the classes have drastically different sizes, the MCC metric which accounts for true and false positives as 

well as negatives is widely recognized as a balanced measurement. It is computed using equation (41),   

( )( )( )( )
TP TN FP FN

MCC
TP FP TP FN TN FP TN FN

 − 
=

+ + + +
                                                                       (41) 
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4.1.7. Intersection over Union (IoU) 

IoU calculates the overlap between the ground truth and predicted bounding boxes. It is computed using equation 

(42),    

Areaof Overlap
IoU

Areaof Union
=                                                                                                                         (42) 

4.1.8. Positive Predictive Value (PPV) 

The Positive Predictive Value (PPV), also known as precision, calculates the proportion of true positive detections 

among all positive detections made by the model. It is computed using equation (43),     

TP
PPV

TP FP
=

+
                                                                                                                                   (43) 

4.2. Simulation Results Comparing the Suggested Method with Current Methods 

Figure 3(a)-(h) displays the outcomes of the recommended approach's simulation. Here, the effectiveness of the 

proposed strategy is contrasted with that of alternative techniques like GHOST-GQSD, Fast-RCNN, and YOLOv4 

respectively with compression (W Compression) and without compression model (W/O Compression).  
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Figure 3: Performance Analysis of (a)Accuracy (b)F-Measure (c)MCC (d)Recall (e)Precision                                  

(f)IoU (g)MAP (h)PPV 

Figure 3a) displays the Accuracy performance assessment. This assessment of the suggested approach offers 20.65%, 

22.45%, and 27.09% higher Accuracy with compression; 23.14%, 24.16%, and 28.15% higher Accuracy without 

compression compared to existing techniques like GHOST-GQSD, Fast-RCNN and YOLOv4 respectively. Figure 3b) 

displays the F-Measure performance evaluation. This assessment of the suggested approach offers 20.14%, 22.14%, 

and 31.61% higher F-Measure with compression; 21.77%, 24.71%, and 35.63% higher F-Measure without 

compression compared to existing techniques like GHOST-GQSD, Fast-RCNN and YOLOv4 respectively. Figure 3c) 
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displays the MCC performance evaluation. This assessment of the suggested approach offers 19.04%, 20.94%, and 

21.24% higher MCC with compression; 24.07%, 27.34%, and 30.71% higher MCC without compression compared to 

existing techniques like GHOST-GQSD, Fast-RCNN and YOLOv4 respectively. Figure 3d) displays the Recall 

performance evaluation. This assessment of the suggested approach offers 23.64%, 24.29%, and 29.34% higher 

Recall with compression; 24.12%, 26.78%, and 31.34% higher Recall without compression compared to existing 

techniques like GHOST-GQSD, Fast-RCNN and YOLOv4 respectively. Figure 3e) displays the Precision performance 

assessment. This assessment of the suggested approach offers 25.00%, 27.09%, and 31.74% higher Precision with 

compression; 20.12%, 22.08%, and 26.47% higher Precision without compression compared to existing techniques 

like GHOST-GQSD, Fast-RCNN, and YOLOv4 respectively. Figure 3f) displays the evaluation of IoU performance. 

This assessment of the suggested approach offers 20.64%, 22.45%, and 28.64% higher IoU with compression; 

22.05%, 26.25%, and 30.54% higher IoU without compression compared to existing techniques like GHOST-GQSD, 

Fast-RCNN and YOLOv4 respectively. Figure 3g) displays the evaluation of MAP performance. This assessment of 

the suggested approach offers 26.04%, 28.65%, and 32.74% higher MAP with compression; 20.54%, 21.31%, and 

24.04% higher MAP without compression compared to existing techniques like GHOST-GQSD, Fast-RCNN, and 

YOLOv4 respectively. Figure 3h) displays the evaluation of PPV performance. This assessment of the suggested 

approach offers 22.75%, 25.05%, and 30.35% higher PPV with compression; 24.14%, 27.95%, and 29.65% higher PPV 

without compression compared to existing techniques like GHOST-GQSD, Fast-RCNN and YOLOv4 respectively.          

Following figure 4 provide a comparison of the different compression rates for various compression techniques 

applied to the MCS-OD-PRCNN model. They include pruning, knowledge distillation, quantization, and a proposed 

compression approach known as the hybrid approach. Results show that the proposed hybrid approach provided the 

highest compression rate at 5.9. This is followed by Quantization with a rate of 5.3, then 4.8 for Knowledge 

Distillation, and lastly, 4.3 for Pruning. That is to say, the hybrid approach is most effective in reducing model size 

with minimal degradation of model performance, hence establishing its superiority over techniques of individual 

compression. 

 
Figure 4: Performance Analysis of Compression Rate 

Figure 5 shows a comparison of metrics parameters, FLOPS, and model size for the existing GHOST-GQSD, Fast-

RCNN, YOLOv4, and the proposed MCS-OD-PRCNN model. In all respects, the values are maximum for the GHOST-

GQSD model: about 1.8 x 105 parameters, 7.5 x 105 FLOPS, with a model size of 2000 kB. The Fast-RCNN & YOLOv4 

model has moderate values, with about 1.0 x 105, 0.9 x 105 parameters, 6 x 105, 4.5 x 105 FLOPS, and a size of 1500, 

1300 kB. The lowest values for the proposed MCS-OD-PRCNN model with ~0.6 x 10^5 parameters, ~2.5 x 10^5 

FLOPS, and a size of 800 kB. These numbers thus reflect that concerning existing models like GHOST-GQSD, Fast-

RCNN, and YOLOv4, the proposed model MCS-OD-PRCNN boasts enormous reductions in parameters, 

computational complexity, and model size using state-of-the-art compression techniques like Pruning, Knowledge 

Distillation, Quantization, and a Hybrid approach, making it highly efficient and very deployable in resource-

constrained environments. 
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Figure 5: Performance Analysis of Computational Cost and Model Size 

5. Conclusion 

In this paper, model compression strategies for object detection using Parallel Recurrent Convolutional Neural 

Networks (MCS-OD-PRCNN) demonstrate significant potential in enhancing the efficiency and practicality of deep 

learning models. By incorporating Improved Bilateral Texture Filtering (IBTF) for preprocessing and employing 

sophisticated techniques like as quantization, pruning, and knowledge distillation, the methodology reduces model 

size and compute needs significantly while maintaining excellent accuracy. Hybrid optimization strategies further 

ensure optimal performance of the compressed model. This complete method not only addresses the essential issues 

of deploying object detection models on resource-constrained devices, but it also lays the groundwork for scalable 

and efficient solutions in a variety of real-world applications. Python environment is used to implement the 

recommended strategy. Performance metrics like Accuracy, Recall, F-measure, Precision, mean Average Precision 

(mAP), Matthew’s Correlation Coefficient (MCC), Intersection over Union (IoU), and Positive Predictive Value (PPV) 

are examined here. The proposed method achieves 19.01%, 21.48%, and 22.36% higher precision compared with 

existing techniques like GHOST-GQSD, Fast-RCNN, and YOLOv4 respectively. To enhance the deployment of object 

detection models on edge devices like smartphones, drones, and Internet of Things devices, future research will 

concentrate on broadening the suggested model compression approaches.    
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