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The development of diseases in oilseed fields is influenced by meteorological conditions and the 

pathogen's predilection for susceptible hosts. This research examines forecasting models for two 

sunflower diseases: Alternaria leaf blight and powdery mildew. The disease percentage for the 

Alternaria leaf blight and powdery mildew is predicted for the Kharif and Rabi seasons, 

respectively. For prediction, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 

Bi-directional Long Short-Term Memory (BILSTM), and Simple Recurrent Neural Network 

(SimpleRNN) models are employed. These models incorporated six parameters: precipitation, 

maximum temperature, minimum temperature, maximum and minimum relative humidity, and 

disease percentage. Meteorological data and disease percentages were obtained from India 

(Marathwada region). After the experimental study, the results indicate that the SimpleRNN 

model demonstrated superior performance for Alternaria Leaf Blight with a Mean Squared Error 

(MSE) value of 0.11%, while for Powdery Mildew, LSTM exhibited the best performance with an 

MSE value of 0.32%. Each model exhibits unique performance characteristics, and all models 

are evaluated using the same dataset. A non-parametric Friedman test is employed to statistically 

validate the differences in performance, followed by a Nemenyi Test as a post-hoc analysis. This 

approach enables a side-by-side comparison of the average performance across all models. 

Keywords: Alternaria Leaf Blight, Powdery Mildew, Long Short-Term Memory, (LSTM) 

Gated Recurrent Unit (GRU), Bidirectional LSTM(BILSTM) 

 

1. Introduction 

Early-stage plant disease forecasting is crucial for agricultural management, enabling farmers to make informed 

decisions on sowing and prevention, enhancing their capacity to manage outbreaks. Disease forecasting helps 

growers to determine season-wise sowing, disease spread, and control measures and is beneficial for anticipating 

disease occurrence in a location. Sunflower, introduced to India as an oilseed crop in 1969, is significant in the nation. 

Sunflower seeds contain 48–53 percent high-quality vegetable oil (Agrovista Farming 2024) and have 40–52 percent 

edible oil content with low cholesterol (Josipovic J et.al 2006). Sunflower sowing can occur in Kharif (the First 

Fortnight of July), Rabi (the Second Fortnight of October), and Zaid (the First Fortnight of March). Diseases like 

Powdery Mildew, Alternaria leaf blight, and Downy Mildew have affected sunflower plants in various parts of India 

Shivani R(2023), including Kurnool, Hyderabad, Akola, Latur, Raichur, and Coimbatore. These diseases, caused by 

fungi, viruses, and bacteria, have reduced sunflower yield. Sunflowers are mainly cultivated in southern India, 

including Andhra Pradesh, Karnataka, Maharashtra, and Tamil Nadu. Key fungal diseases impacting sunflowers 

include Alternaria leaf spot (Alternaria helianthi), rust (Puccinia helianthi), and downy mildew (Plasmopara halstedii 

Farl.) These diseases reduce yield and affect oil quality. 

Review of Literature: 

  The author (A. Bheemaraya et.al 2028) provided valuable insights into the relationship between powdery mildew 

development in sunflowers and various meteorological conditions. The findings highlight the complex interplay of 

factors such as temperature, relative humidity, vapor pressure, and cloud cover influencing disease progression. 
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Morning relative humidity correlates negatively with powdery mildew disease, but maximum temperature, vapor 

pressure, minimum temperatures, and evening relative humidity are critical. Also, the presence of clouds is causing 

the disease to develop more. Rainfall does not influence the powdery mildew. The experimental results contribute to 

a better understanding of the environmental conditions that favor or inhibit powdery mildew in sunflower crops, 

potentially informing future disease management strategies and cultivation practices in agricultural settings.  

The researcher (Rakesh Kaundal et al. 2006) investigated the use of a Support Vector Machine (SVM) for creating 

weather-based prediction models for rice blast disease. The study used data gathered over a five-year period (2000-

2004) from five sites in Himachal Pradesh, India. Temperature, relative humidity, and rainfall were among the 

meteorological characteristics that were noted. Cross-location and cross-year models were created by the authors and 

compared SVM with other approaches like Backpropagation Neural Network, Multiple Regression, and Generalized 

Regression Neural Network. Performance evaluation metrics included Mean Absolute Error, correlation coefficient, 

and coefficient of determination. Results showed that SVM outperformed existing techniques, demonstrating lower 

error rates and higher correlation coefficients. A forewarning model proposed by the researcher (V. B. AKASHE et al. 

2016) for predicting sunflower thrips populations based on a 10-year field experiment conducted in Solapur, India. 

The research involved monitoring thrips incidence on sunflower crops from the 30th to 39th meteorological weeks. 

The thrips population was correlated with weekly mean weather parameters over eight years (2004-2011), and a 

regression equation was developed for forecasting. The model was evaluated using data from year 2012 and 2013. 

Results showed that thrips appeared in the 29th-30th weeks and persisted until the 38th-39th weeks. Peak thrips 

activity occurred during the 32nd-34th weeks, coinciding with specific temperature, humidity, and rainfall 

conditions. The population showed a positive correlation with maximum temperature and negative correlations with 

humidity and rainfall. Another study (Katti P et al. 2011) reported higher thrips populations in the first week of the 

Kharif season. The study (N.S. PANKAJA et al. 2011) examined the relationship between sunflower necrosis disease, 

thrip populations, and weather conditions for two sunflower varieties (i.e., KBSH-44 and Morden). Key findings 

include that maximum temperature was positively correlated with disease incidence in both varieties. 2. Thrips palmi 

populations increased with higher maximum temperatures and longer sunshine durations. 3. Relative humidity, 

minimum temperatures, and rainy days negatively correlated with thrip populations. 4. Precipitation had minimal 

impact on thrip occurrence. 5. Regression analysis showed disease incidence was 75% for KBSH-44 and 67% for 

Morden. 6. Thrip population was 72% for KBSH-44 and 62% for Morden. These results highlight the influence of 

weather parameters on sunflower necrosis disease and thrip populations. The analyst (Vijaykumar N Ghante et.al 

2020) examined the relationship between whitefly population dynamics and various weather parameters on 

sunflower hybrid DRSH-1 from 2011 to 2019. Key findings include: Non-significant positive correlations with rainfall 

and relative humidity.  Modest negative correlations with sunshine hours and maximum temperature. Bright 

Sunshine Hours, evening relative humidity, and temperature extremes significantly influence leafhopper population 

growth. Weather factors collectively account for 92% of whitefly population variations. These results highlight the 

importance of climate conditions in predicting and managing whitefly populations in sunflower crops. The 

investigator (Kittakorn Sriwanna 2022) proposed a method for forecasting rice blast disease using weather data. The 

top 10 features outperformed the five classification models—MLP, SVM, NB, DT, and KNN in classification. 

Ensemble methods ranked 15 weather features—K5 cross-validation addressed for an uneven class sample.  

Evaluation measures include geometric mean, balanced accuracy, ROC-AUC score, and F1 score.  The main 

meteorological factors included in the study are rainfall amount, sunshine hours, maximum wind speed, average 

visibility, and number of rainy days. This approach aims to improve rice blast disease prediction using weather data 

and machine learning techniques. In literature, variants of the Recurrent Neural Network (RNN) were used for rice 

crops to forecast the presence of disease. Also, many authors have worked to show how the occurrence of disease 

correlates with different weather parameters for sunflower oilseed. For Rainfall prediction (Manoj Chhetri et al. 

2020) and stock market predictions (Ya Gao et al. 2021), LSTM, BILSTM, and GRU were employed by many authors. 

According to this literature, RNN variants are not yet used to predict disease by incorporating weather parameters 

for any crop. 

2. Materials and Methods: 

Disease Outbreak Methodology: 

The methodological framework for forecasting disease is depicted in Figure 1. The study utilizes Latur Oilseed 

Research Center data, focusing on two sunflower diseases: Alternaria Leaf Blight and Powdery Mildew. This approach 
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encompasses five essential stages: 1) Data Gathering and Initial Processing, 2) Data Normalization and K-Fold 

Validation, 3) Model Construction, 4) Disease Prediction, and 5) Comparative Analysis of Models using performance 

metrics, including Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC). 

 

Figure 1: Methodological block diagram of Disease Forecasting 

2.1 Dataset Collection and Preprocessing: 

The research encompasses two categories of data collection: disease percentage and meteorological information. The 

Latur Oilseed Research Centre in the Marathwada region of India serves as the source for the dataset. This 

investigation aims to predict two sunflower diseases: Alternaria Leaf Blight and Powdery Mildew. In Latur, the Kharif 

season runs from July to October, while the Rabi season extends from December to January. Alternaria leaf blight 

data was gathered during the Kharif season, whereas powdery mildew information was collected in Rabi. To explore 

the correlation between weather conditions and disease incidence, five weather-related variables were recorded 

alongside the date and disease percentage. The compiled dataset spans a decade, covering the years 2014 to 2023. 

Table 1: Sample of collected weather data with 3 days gap for the Rabi period(Powdery    Mildew). 

Date (2022-

23) Powdery% Max temp Min temp Rainfall Max RH Min RH 

24 Dec - 27 Dec  6.3 32.3 19.3 0.0 90.3 54.0 

28 Dec - 31 Dec  7.1 36.2 23.2 0.0 97.0 63.0 

1 Jan- 4 Jan 9.5 35.1 22.4 0.0 94.3 58.5 

Observations of disease and weather parameters were conducted at the field scale with a three-day interval, as 

presented in Table 1. Subsequently, the data were pre-processed to impute missing weather parameters and disease 

percentage values. A linear interpolation imputation technique was employed to fill in the missing percentage values. 

Linear interpolation estimates values between two known points in one-dimensional data. This method estimates the 

data value using the two adjacent data points in a one-dimensional sequence to interpolate the desired value. The 

basic first-order linear interpolation (Guilin Huang 2021) is as follows: 

 

Figure 2: Schematic diagram of linear interpolation 
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Following the completion of the imputation process, the datasets about both diseases are exhibited in Tables 2 and 

3. 

Table 2 a) Sample of data received for Powdery Mildew (Rabi) from Latur 

Date(2022-23) 

Powdery

% Max temp  Min temp Rainfall  Max RH Min RH 

24 Dec - 27 Dec  6.3 32.3 19.3 0.0 90.3 54.0 

28 Dec - 31 Dec  7.1 36.2 23.2 0.0 97.0 63.0 

1 Jan- 4 Jan 9.5 35.1 22.4 0.0 94.3 58.5 

5 Jan- 9 Jan 9.8 31.8 20.0 0.0 86.0 45.0 

Table 2 b) Dataset for Powdery Mildew dataset after preprocessing for date field and with      Linear 

Interpolation. 

Table 3 a) Sample of data received for Alternaria Leaf Blight (Kharif) from Latur 

 

 

 

 

 

 

Date(2021) ALB% Max temp  Min temp Rainfall  

Max 

RH 

Min 

RH 

10 Sept- 13 Sept 28.88 24.17 25.01 0.95 92.74 57.31 

14 Sept- 17 Sept 33.33 24.04 25.14 0.96 92.9 57.89 

18 Sept- 21 Sept 42.22 23.9 25.27 0.98 93.06 58.47 

 

Table 3 b) Dataset for Alternaria Leaf Blight dataset after preprocessing for date field and with Linear 

Interpolation. 

Date(2021) ALB% Max temp  Min temp Rainfall  Max RH Min RH 

10-09-2021 28.88 24.17 25.01 0.95 92.74 57.31 

11-09-2021 29.99 24.14 25.04 0.95 92.78 57.46 

12-09-2021 31.1 24.1 25.08 0.96 92.82 57.6 

13-09-2021 32.22 24.07 25.11 0.96 92.86 57.74 

 

2.2 Data Normalization and K-fold Validation: 

The disease forecasting dataset is in CSV format. After data preprocessing, values are normalized using a standard 

scalar operation to establish a balanced scale ranging from 0 to 1. Subsequently, dataset train and test data frames 

are generated using Python panda’s library. After preprocessing, both disease datasets are further organized for k-

fold validation sets. The experimentation performance was evaluated using a k-fold cross-validation method, 

specifically by employing k values of 4 and 5. Figure 1 illustrates the division of the dataset into k-folds for model 

training and testing. K-1 folds are utilized for training, while one-fold is reserved for testing. All models are trained 

Date Powdery% Max temp Min temp Rainfall 

Max 

RH 

Min 

RH 

24-12-2022 6.3 32.3 19.3 0 90.3 54 

25-12-2022 6.5 33.28 20.27 0 91.98 56.25 

26-12-2022 6.7 34.25 21.25 0 93.65 58.5 

27-12-2022 6.9 35.22 22.22 0 95.32 60.75 
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and tested for experimental analysis with k-fold cross-validation, incorporating varying numbers of neurons, 

dropouts, and epochs. 

Table 4: Data preprocessing per fold for Powdery Mildew Alternaria Leaf Blight 

Disease 

name 

Instances Training 

 

Forecasting 

(in day) 

 

K4 K5 

Train Test Train Test 

Powdery 

Mildew 

3683 3639 30 2729 910 2911 728 

Alternaria 

Leaf Blight  

3591 3547 30 2660 887 2838 709 

 

2.3 Model Building: 

Disease forecasting is accomplished by utilizing four deep learning models: Simple Recurrent Neural Network 

(Simple RNN) (Tsantekidis, A et.al 2022) (Ibomoiye Domor Mienye et.al 2024) (Mienye, I.D et.al 2024) (Mienye, 

I.D. et.al 2023), Long Short-Term Memory (LSTM), Bidirectional LSTM (BILSTM) (Benjamin Lindemann et.al 

2021), and Gated Recurrent Unit (GRU) (Poluru Eswara et.al  2023) All models are trained and evaluated using K4 

and K5 cross-validation. Each fold comprised training and testing instances, as illustrated in Table 4. Before model 

input, the dataset is structured in the appropriate format of total instances X timesteps X number of features (e.g., 

3693 X 14 X 6). This study employs the preceding 14 values to predict the subsequent value, and the disease 

percentage for the ensuing 30 days is forecasted. The Alternaria Leaf Blight and Powdery Mildew datasets contain 

3591 and 3683 instances, respectively. Various hyperparameters, including batch size, neurons, epochs, learning rate, 

and dropout, are employed in this research to obtain precise results. Table 5 presents the details of the 

hyperparameters utilized. 

Table 5: Hyperparameters Used 

Hyperparameter Values 

Epochs 100,200,300 

Batch size 32 

Learning rate 0.0001 

Dropout  0.5 and 0.4 

Activation function ReLu 

Neurons used  64,128,256 

 

Upon completion of model training, the models predict disease outbreaks for the subsequent 30-day period. Before 

calculating model performance, dataset values undergo denormalization using the Inverse Scalar operation to restore 

the original values. Subsequently, utilizing the predicted values and actual values, model performance is evaluated 

using various performance metrics: Mean Square Error (MSE), Root Mean Square Error (RMSE), and Correlation 

Coefficient (CC). 

 

2.4 Model Performance Hypothesis: 

The statistical significance of unique mean performance across all four models is demonstrated through the Friedman 

test, followed by a post-hoc analysis using the Nemenyi Test (Lijie Chen  et.al  2025)(Hamza M 2024). This study 

incorporates multiple forecasting models utilizing the same dataset; consequently, the Friedman test is employed to 

test the hypothesis. The test posits that empirical evidence from Mean Squared Error (MSE) calculations suggests at 
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least one neural network architecture among LSTM, BILSTM, SimpleRNN, and GRU exhibits statistically significant 

performance compared to the other models. The hypothesis is mathematically expressed as: H0: The median ranks 

of the MSE for all models are equal, and Ha: The median ranks of the MSE for at least one model are different. The 

proposed hypothesis utilizes median ranks because the Friedman test is a non-parametric test that assigns ranks to 

MSE values and calculates the average of ranks. The test then computes a statistic based on these rankings to 

determine significant model differences. To establish the significance of the Friedman test, a post-hoc analysis 

(Nemenyi Test) is conducted to obtain pairwise comparison results, visualized using a heatmap. The post-hoc test 

evaluates the critical distance factor as follows:   

                                                         𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
            ……. (3) 

Where:𝑞𝛼: Critical value from the Studentized range distribution (depends on the confidence level and number of 

models), 𝑘: Number of model, 𝑛: Number of trials. 

For each pair of models, calculate the absolute difference in their average ranks, which is referred to as the p-value 

for post-hoc analysis (Nemenyi Test): 

 |𝑅𝑖 − 𝑅𝑗|                                   ……. (4) 

The aforementioned difference value is compared as |𝑅𝑖 − 𝑅𝑗| > 𝐶𝐷  which shows the difference is significant; 

otherwise, it is insignificant. The difference value is compared as significant or not significant. Statistical significance 

for each pairwise comparison is determined by analyzing rank difference magnitudes relative to the established 

critical distance. Figure 3 shows the flowchart for the Friedman test, followed by the post-hoc test. 

3 Results: 

The research aims to identify the optimal model for disease forecasting. All four models underwent training with 

varying epochs: 100, 200, and 300, with neuron counts of 64, 128, and 256, utilizing k-fold validation (k=4 and k=5). 

Table 6(a-d) presents all trials for forecasting Alternaria Leaf Blight using four models and their respective 

performance metrics. 

 

Figure 3: Flowchart for Friedman Test followed by post-hoc test 
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Table 6 a): Alternaria Leaf Blight forecasting using SimpleRNN 

Model Kfolds Neurons Epocs MSE RMSE CC 

SimpleRNN 

Batch size 

32 Dropout 

0.5 

4 64 100 7.93 2.82 1.00 

200 14.08 3.75 1.00 

300 13.39 3.66 1.00 

128 100 12.48 3.53 1.00 

200 0.11 0.34 1.00 

300 3.24 1.80 1.00 

256 100 0.29 0.54 1.00 

200 0.62 0.79 1.00 

300 2.79 1.67 1.00 

5 64 100 15.89 3.99 1.00 

200 17.71 4.21 1.00 

300 17.12 4.14 1.00 

128 100 8.53 2.92 1.00 

200 26.36 5.13 1.00 

300 8.03 2.83 1.00 

256 100 0.58 0.76 1.00 

200 0.98 0.99 1.00 

300 11.42 3.38 1.00 

 

Table 6 b): Alternaria Leaf Blight forecasting using LSTM 

Model Kfolds Neurons Epocs MSE RMSE CC 

LSTM 

Batch 

size 32 

Dropout 

0.5 

4 64 100 10.28 3.21 0.99 

200 14.91 3.86 0.99 

300 9.16 3.03 0.99 

128 100 22.27 4.72 0.99 

200 17.74 4.21 0.99 

300 26.34 5.13 0.99 

256 100 5.21 2.28 0.99 

200 1.86 1.36 0.99 

300 1.91 1.38 0.97 

5 64 100 16.82 4.10 1.00 

200 26.18 5.12 1.00 

300 24.34 4.93 1.00 
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128 100 18.98 4.36 1.00 

200 7.93 2.82 0.99 

300 8.39 2.90 0.98 

256 100 4.39 2.10 0.99 

200 8.52 2.92 0.96 

300 18.44 4.29 0.99 

 

Table 6 c): Alternaria Leaf Blight forecasting using BILSTM 

Model Kfolds Neurons Epocs MSE RMSE CC 

BILSTM 

Batch 

size 32 

Dropout 

0.4 

4 64 100 5.02 2.24 0.99 

200 7.00 2.65 0.99 

300 0.35 0.59 1.00 

128 100 2.12 1.46 0.99 

200 3.61 1.90 1.00 

300 0.89 0.94 0.99 

256 100 2.05 1.43 0.99 

200 0.52 0.72 0.99 

300 0.56 0.75 0.98 

5 64 100 6.06 2.46 0.99 

200 2.46 1.57 0.98 

300 0.33 0.57 0.99 

128 100 2.11 1.45 0.99 

200 4.26 2.06 0.98 

300 1.31 1.14 0.98 

256 100 1.32 1.15 0.98 

200 10.52 3.24 0.99 

300 5.02 2.24 0.99 

 

Table 6 d): Alternaria Leaf Blight forecasting using GRU 

Model Kfolds Neurons Epocs MSE RMSE CC 

GRU     

Batch size 

32 

Dropout 

0.5 

4 64 100 12.72 3.57 1.00 

200 21.57 4.64 1.00 

300 4.33 2.08 1.00 

128 100 8.16 2.86 1.00 

200 8.23 2.87 1.00 
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300 10.80 3.29 1.00 

256 100 0.21 0.46 0.99 

200 2.09 1.45 0.99 

300 1.19 1.09 0.99 

5 64 100 22.18 4.71 1.00 

200 13.11 3.62 1.00 

300 16.39 4.05 1.00 

128 100 4.21 2.05 1.00 

200 2.45 1.57 1.00 

300 0.96 0.98 0.99 

256 100 2.27 1.51 1.00 

200 1.06 1.03 1.00 

300 2.28 1.51 1.00 

 

Figure 8(a-h) shows the plots of the best models, with a smaller mean square error and a 30-day prediction of 

Alternaria Leaf Blight (Kharif Season). 

Model Forecasting plots at K4 Forecasting plots at K4 

Simple 

RNN 

 

 

     (a)128 neurons, 100 epochs 
 

(b 256 neurons,100 epochs 

LSTM 

   

(c) 256 neurons,200 epochs 

 

(d) 256 neurons,100 epochs 
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BILSTM 

 

(e) 64 neurons,300 epochs 

 

 

      (f)   64 neurons,300 epochs 

GRU 

 

(g) 256 neurons,100 epochs  

 

(h) 128 neurons,300 epochs 

 

 Figure 8(a-h): Forecasting for the subsequent 30-day period of October 2023 is presented on the x-axis, with the 

Alternaria Leaf Blight Disease value (in %) on the y-axis. The observed and predicted values are represented by blue 

and orange lines, respectively. Similarly, for Powdery Mildew, all four models were trained with varying epochs: 100, 

200, and 300, with neuron counts of 64, 128, and 256, and with k-fold cross-validation (k=4 and k=5). Table 7(a-d) 

presents all trials for forecasting Powdery Mildew (Rabi Season) utilizing four models and their corresponding 

performance metrics. 

Table 7 a): Powdery Mildew forecasting using SimpleRNN 

Model Kfolds Neurons Epocs MSE RMSE CC 

SimpleRNN 

Batch size 

32 Dropout 

0.5 

4 64 100 1.54 1.24 0.98 

200 3.61 1.90 0.94 

300 4.15 2.04 0.93 

128 100 0.77 0.88 0.99 

200 3.04 1.74 0.95 

300 5.34 2.31 0.91 

256 100 1.19 1.09 0.98 

200 4.26 2.06 0.92 

300 7.45 2.73 0.86 

5 64 100 1.15 1.07 0.98 

200 2.89 1.70 0.95 

300 4.12 2.03 0.95 
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128 100 1.40 1.18 0.97 

200 4.63 2.15 0.92 

300 6.07 2.46 0.90 

256 100 3.08 1.75 0.94 

200 5.97 2.44 0.89 

300 6.91 2.63 0.87 

            

Table 7 b) Powdery Mildew forecasting using LSTM 

Model Kfolds Neurons Epocs MSE RMSE CC 

LSTM 

Batch size 

32 

Dropout 

0.5 

4 64 100 2.97 1.72 0.97 

200 1.31 1.14 0.99 

300 0.32 0.56 0.99 

128 100 2.18 1.48 0.98 

200 0.64 0.80 0.99 

300 0.66 0.81 0.99 

256 100 2.36 1.54 0.97 

200 1.08 1.04 0.98 

300 1.09 1.04 0.98 

5 64 100 1.61 1.27 0.99 

200 0.79 0.89 0.99 

300 0.70 0.83 0.99 

128 100 2.24 1.50 0.98 

200 0.51 0.72 0.99 

300 0.91 0.95 0.98 

256 100 1.29 1.14 0.98 

200 1.12 1.06 0.99 

300 0.63 0.79 0.99 

     

Table 7 c) Powdery Mildew forecasting using BILSTM 

Model Kfolds Neurons Epocs MSE RMSE CC 

BILSTM 

Batch 

size 32 

Droput 

0.4 

4 64 100 3.44 1.86 0.96 

200 1.42 1.19 0.98 

300 2.15 1.46 0.97 

128 100 4.53 2.13 0.94 

200 2.64 1.63 0.96 
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300 3.73 1.93 0.95 

256 100 9.47 3.08 0.83 

200 4.66 2.16 0.93 

300 5.32 2.31 0.92 

5 64 100 4.03 2.01 0.96 

200 3.42 1.85 0.97 

300 1.92 1.39 0.98 

128 100 4.00 2.00 0.93 

200 2.32 1.52 0.96 

300 8.09 2.84 0.89 

256 100 6.28 2.51 0.93 

200 4.19 2.05 0.96 

300 3.99 1.99 0.94 

  

Table 7 d) Powdery Mildew forecasting using GRU 

Model Kfolds Neurons Epocs MSE RMSE CC 

GRU     

Batch 

size 32 

4 64 100 2.34 1.53 0.98 

200 0.99 0.99 0.99 

300 1.62 1.27 0.99 

128 100 0.67 0.82 0.99 

200 0.71 0.85 0.99 

300 1.68 1.30 0.98 

256 100 1.33 1.15 0.98 

200 1.42 1.19 0.97 

300 1.53 1.24 0.98 

5 64 100 0.44 0.66 0.99 

200 0.46 0.68 0.99 

300 1.02 1.01 0.99 

128 100 1.24 1.11 0.99 

200 0.58 0.76 0.99 

300 0.48 0.69 0.99 

256 100 0.63 0.80 0.99 

200 1.17 1.08 0.99 

300 0.40 0.64 0.99 
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Figure 9(a-h) shows the plots of best models having Means Square Error smaller and with 30 days prediction of 

Powdery Mildew (Rabi Season) 

Model 

name 
Forecasting plots at K4 Forecasting plots at K4 

Simple 

RNN 

 

 

        (a) 128 neurons,100 epochs 

 

       (b) 64 neurons,100 epochs 

LSTM 

 

      (c) 64 neurons, 300 epochs (d)128 neurons,200 epochs 

BILSTM 

 

(e) 64 neurons,200 epochs 

 

          (f) 64 neurons ,300 epochs 

GRU 

 

 

         (g) 128 neurons,100 epochs 

 

      (h) 256 neurons,300 epochs 

Figure 9(a-h): Forecasting of the next 30-day period of January 23 on the x-axis and the Powdery Mildew Disease 

value (in %) on the y-axis, respectively. The actual values and predicted values are depicted using a blue line and an 

orange line, respectively. 
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4. Discussions: 

After applying various models, the performance results for Alternaria Leaf Blight disease are presented in Table 6 (a-

d). The optimal model prediction results are highlighted in yellow, while the suboptimal performance of models is 

highlighted in green. Table 8 provides a summary of the most effective models. For Alternaria Leaf Blight, 

SimpleRNN at k=4 yielded a lower mean square error, whereas LSTM at k=4 produced a higher mean square error. 

Figure 10 illustrates a comprehensive plot of performance metrics in relation to the models. 

Table 8: Summary of performance metrics for Alternaria Leaf Blight 

Model MSE  RMSE CC 

SimpkeRNN K=4 0.11 0.34 1.00 

SimpleRNN K=5 0.58 0.76 1.00 

LSTM K=4 1.86 1.36 0.99 

LSTM K=5 4.39 2.10 0.99 

BiLSTM K=4 0.35 0.59 1.00 

BiLSTM K=5 0.33 0.57 0.99 

GRU K=4 0.21 0.46 0.99 

GRU K=5 0.96 0.98 0.99 

 

For Powdery Mildew, the model performance is presented in Table 7 (a-d). The optimal prediction results are 

highlighted in yellow, while suboptimal results are highlighted in green. Table 9 provides a summary of the most 

effective models. In the case of Powdery Mildew, LSTM at k=4 yielded a lower mean square error, whereas BILSTM 

at k=5 produced a higher mean square error. Figure 11 illustrates a comprehensive plot of performance metrics in 

relation to the various models. 

 

Figure 10: MSE, RMSE, and CC values of models for Alternaria Leaf Blight 

Table 9: Summary of performance metrics for Powdery Mildew 

Model MSE  RMSE CC 

SimpkeRNN K=4 0.77 0.88 0.99 

SimpleRNN K=5 1.15 1.07 0.98 

LSTM K=4 0.32 0.56 0.99 

LSTM K=5 0.51 0.72 0.99 
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BiLSTM K=4 1.42 1.19 0.98 

BiLSTM K=5 1.92 1.39 0.98 

GRU K=4 0.67 0.82 0.99 

GRU K=5 0.40 0.64 0.99 

 

The performance of the four models shows statistically significant differences, demonstrated by the Friedman test 

followed by the Nemenyi post-hoc test. Results are visualized using a  

 

 

Figure 11: MSE, RMSE, and CC values of  models for Powdery Mildew 

heatmap illustrating pairwise comparison of models' mean performance. This study uses a critical value of α=0.05 

with the two-tailed test. If p-value < 0.05, the proposed alternate hypothesis (in Figure 3) is accepted, and the 

Nemenyi Post-Hoc Test elucidates significant differences between each model's performance. For Alternaria Leaf 

Blight, regarding mean square error values at K=4, a significant difference is observed between the mean 

performance of SimpleRNN, LSTM, BILSTM, and GRU models, with a Friedman test statistic value of 12.5999 and 

p-value of 0.00558 (p-value < 0.05). For Powdery Mildew, the mean performance of these models yields a Friedman 

test statistic value of 11.8000 and p-value of 0.0081 (p-value < 0.05). The heatmap of p-values illustrates pairwise 

comparison of models with p-value < 0.05, indicated by green color, demonstrating acceptance of the proposed 

hypothesis shown in Table 10,11,12,13.                   

Table 10: Alternaria Leaf Blight heatmap for K=4 MSE values 

Model LSTM BILSTM GRU SimpleRNN 

LSTM 1 0.0029 0.0069 0.03543 

BILSTM 0.0029 1 0.0082 0.02611 

GRU 0.0069 0.0082 1 0.0095 

SimpleRNN 0.0035 0.02611 0.0095 1 

                            

Table 11: Alternaria Leaf Blight heatmap for K=5 MSE values 

Model LSTM BILSTM GRU SimpleRNN 

LSTM 1 0.0103 0.0313 0.0262 

BILSTM 0.0103 1 0.0098 0.0057 
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GRU 0.0313 0.0098 1 0.0197 

SimpleRNN 0.0262 0.0057 0.0197 1 

                          

Table 12: Powdery Mildew heatmap for K=5 MSE values 

Model LSTM BILSTM GRU SimpleRNN 

LSTM 1 0.0314 1 0.0182 

BILSTM 0.0314 1 0.0313 0.0884 

GRU 1.00 0.0313 1 0.0182 

SimpleRNN 0.0184 0.0884 0.0184 1 

 

Table 13: Powdery Mildew heatmap for K=5 MSE values 

Model LSTM BILSTM GRU SimpleRNN 

LSTM 1 0.0314 0.0079 0.0125 

BILSTM 0.0314 1 0.0015 0.0094 

GRU 0.0079 0.0015 1 0.0103 

SimpleRNN 0.0125 0.0094 0.0103 1 

 

5. Conclusion: 

This study proposes sunflower disease forecasting using Recurrent Neural Network variants. To forecast disease 

prevalence, five features were used to elucidate the relationship between disease percentage and weather parameters. 

The dataset for Alternaria Leaf Blight and Powdery Mildew was obtained from the Latur Oilseed Research Center. 

Alternaria Leaf Blight values were collected for the Kharif period (July to October), and Powdery Mildew values for 

the Rabi Period (October to January). The dataset underwent preprocessing and normalization. Four models (Simple 

RNN, LSTM, BILSTM, and GRU) were trained and evaluated using K-fold cross-validation. Results demonstrated 

disease forecasting for the subsequent 30 days in both periods. For Alternaria Leaf Blight, SimpleRNN performed 

optimally with a lower MSE value of 0.11, while LSTM showed superior performance for Powdery Mildew with a 

lower MSE value of 0.32. The significant mean performance of paired models differed for both diseases, with p-values 

illustrated in the heatmap. This outcome supports the proposed hypothesis using the Friedman Test, followed by a 

post-hoc test. Future research may enable disease forecasting for extended periods by acquiring datasets from 

additional historical years. Forecasting model accuracy can be enhanced by incorporating factors such as soil 

temperature, soil moisture, unexpected weather fluctuations, and the diverse effects of global warming on climate. 
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