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Designed to address today’s dynamic business envi- ronments, hybrid artificial 

intelligence–machine learning frame- works for real-time disruption forecasting are 

presented and examined. Their architecture comprises four key components: a data layer 

integrated with cloud infrastructure provisioning the real-time ingestion, preparation and 

storage of vast volumes of internal and external signal data; a modeling layer providing 

hybrid and ensembling combination of available signal sources and methods; a set of 

applications designed for retail and manu- facturing ecosystems; and the supporting 

operational principles and practices of cloud-scale AI service landscapes. Real-time data 

from a variety of internal and external signal sources is ingested, prepared and stored to 

support these applications. Two specific case studies assess how dynamic global 

macroeconomic conditions and extremes in the local weather pattern shape immediate 

consumer purchasing behaviour of certain electronic products, and how a significant 

disruption in physical shipments impacts the performance of the internal product-

replenishment forecasting engine. One case study investigates modelling and forecasting 

shallow patterns in the return of finished goods from customers to the supplier, and its 

subsequent operational implications. The cloud-scale AI enablement model proposes the 

use of AI capabilities from the suppliers’ cloud environments, run as software-as-a-service 

AI endpoints and consumed as AI client-territory cloud services via a strong service 

partnership with these suppliers. 

Keywords: Cloud-integrated cognitive supply chains; hy- brid artificial intelligence–

machine learning framework; retail and manufacturing ecosystems; real-time disruption 

forecasting; cloud service models; Azure; Google; AWS; compliant envi- ronments; data-

driven cognitive supply chains; evidence-based supply chain signal processing; supply 

chain prediction and forecasting; models. 

Introduction 

Business environments are becoming widely recognized as non-linear and discontinuous—indeed 
chaotic—as uncertainty and risk appear to increase exponentially. Affected strongly by technological 
convergence, new markets, and unusual events, such as the COVID-19 pandemic and the Russian invasion 
of Ukraine, these environments are disrupting various industries. Yet, some organizations manage to 
react in a timely manner and even benefit from these disruptions. Empirical evidence suggests that they 
possess differentiated capabilities or traits that can be categorized as cognitive capabilities. Cognitive 
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supply chains are defined as ecosystems of organizations that actively develop their cognitive 
capabilities. These capabilities relate to the ability to learn and use data, experience, and 
cognition to foresee and respond in a timely manner to changing and uncertain environments. 
Such supply chains operate in environments in which uncertainty and risk are continuously 
evolving. Therefore, cognitive supply chains must possess advanced capabilities for preparing 
for future changes in the business environment. Cloud-integrated cog- nitive supply chains 
(CICSCs) are cognitive supply chains where the required operations are continuously 
supported by cloud services. CICSCs involve the application of cloud services and a data 
governance setup based on the digital trust concept to provide a foundation on which cloud 
resources can be optimally leveraged. Three scenarios of CICSCs have been developed: (1) 
disruption risk assessment; (2) forecasting changes in business environment variables; and (3) 
forecast- ing business disruptions. The following sections discuss the architecture and systems 
that support forecasting business disruptions and include results from two public case studies.  

 

Fig. 1. A Hybrid AI–ML Framework for Real-Time Disruption Forecasting 

A. Background and Significance 

The ongoing COVID-19 pandemic has evoked major dis- ruptions across retail and manufacturing 
supply chains. Early warning systems capable of forecasting emerging disruptions in consumer demand 
and upstream supply capacity and re- silience are critical for lowering supply chain risk and in- creasing 
agility. Previous research provides a broad range of heterogeneous signals with predictive power for 
demand and supply disruptions but lacks comprehensive modelling of these high-dimensional signal 
spaces and proper evaluation of the complexity of different forecasting techniques. The emergence of 
cloud computing creates new opportunities for improving the scalability and flexibility of these systems. 
Cloud-Integrated cognitive supply chains require an objec- tive, evidence-based, formal discussion with 
clear terminology and disciplined structure. Addressing the ongoing pandemic, one of the most pressing 
research challenges is developing a scalable architecture for real-time forecasting of demand and supply 
capacity disruptions, using remote cloud services for collecting, processing, modelling, validating and 
securely hosting the data for end-users. This section extends previous research on disruption-forecasting 
signal sources by analyzing the cloud architecture and modelling layer necessary to deploy the functions, 
exploring the required scaling considerations, and evaluating the multi-cloud service-model options for 
im- plementing the proposed architecture. 
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Conceptual Foundations 

The term ”cognitive supply chains” denotes that the underlying information ecosystem collects diverse 
knowledge sources, prepares data by cleaning, anonymizing, aggregating, and engineering features, 
consumes a range of machine learning methods, enables distributed and private prediction, and uses 
observed signals for back-testing and updating the knowledge stock. Evidence-based, cloud-integrated, 
cognitive supply chains would therefore be capable of real-time disruption forecasting. The proposed 
architecture combines two emerging ICT paradigms: cognitive computing, which registers, correlates, and 
integrates information flows from supply chain partners and associates, and cloud-integrated supply 
chains, which receive signals from thus-formed structured data lakes or knowledge stocks and disclose 
predictions through available channels. Real-time disruption forecasting applies hybrid signal processing 
in this context, whereby knowledge- and data-driven methods are orchestrated to capture early warning 
signals of potential events disrupting normal operational behavior. 

Equation 01: Seasonal ARIMA (p, d, q)(P, D, Q)s 

We start from 

Non-seasonal ARIMA(p, d, q) 

Seasonal ARIMA(p, d, q)(P, D, Q)s with season length s 

Lag operator L: Lyt = yt−1 

Non-seasonal differencing of order d: 

∇dyt = (1 − L)dyt (1) 

For d = 1, D = 1: ∇∇syt = yt − yt−1 − yt−s + yt−s−1 

Apply both: 

wt = ∇d∇sDyt = (1 − L)d(1 − Ls)Dyt 

So wt is the fully differenced series. 

 

Fig. 2. Model comparison by RMSE 
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t Actual ES 
Forecast 

AR1 
Forecast 

0 21.76405 21.76405 21.76405 

1 23.0001
6 

21.76405 17.9107 

2 25.50887 22.13488 18.92795 

3 27.54089 23.14708 20.99249 

4 26.59769 24.46522 22.66475 

5 22.02272 25.10496 21.88853 

6 21.55009 24.18029 18.12357 

7 18.04864 23.39123 17.73462 

8 16.36665 21.78845 14.85311 

 

TABLE I 

SYNTHETIC DISRUPTION FORECASTING EXAMPLE (FIRST 15 ROWS) 

Define non-seasonal AR and MA: 

ϕ(L) = 1 − ϕ1L − · · · − ϕpLp θ(L) = 1 + θ1L + · · · + θqLq Seasonal AR and MA: 

Φ(Ls) = 1 − Φ1Ls − · · · − ΦP LP s Θ(Ls) = 1 + Θ1Ls + · · · + ΘQLQs 

 

A. Cognitive Supply Chains 

Cognitive supply chains take advantage of intelligent ana- lytics embedded in their architecture to 
monitor the conditions affecting their ecosystems. Cloud-based cognitive capabilities can ingest real-time 
data streams and derive actionable signals for business constituents. Resilience is therefore augmented by 
real-time disruption forecasting, based on dedicated hybrid ML-AI models supported by research in 
behavioral economics and neuropsychology. Behavioral economics identifies rec- ognized irrational biases 
affecting consumers and suppliers during uncertain times. A more granular analysis of con- sumers’ 
decision-making is found in neuropsychology, which describes specific nerves, anatomies and brain 
locations with a neurophysiologic significance. Signal sources can therefore be selected as a function of the 
cognitive focus required: supplier price behavior can be monitored through price evolution APIs, detecting 
anomalies using neurophysiologic trend analysis; COVID sentiment can be captured using news 
sentiment anal- ysis involving natural language processing; viral transmission risk forecast can be sourced 
from epidemiological sites; and so forth. Over these multi-source feature sets, hybrid ML-AI models 
combine the benefits of AI small-data requirements with ML capacity for learning from large 
behavioral volumes. 

B. Cloud-Integration Paradigms 

Cloud-integrated cognitive supply chains are essential for large-scale operational management, 
covering industry sec- tors such as retail, manufacturing, transportation, finance and healthcare. These 
supply chains combine cognitive AI models that analyze and interpret complex behavioral patterns with 
adaptive cloud infrastructures as expansive service platforms. Adaptation to signals is offered through 
cloud resourcing, which exploits the long-established practice of economies of scale and expanding service 
delivery without corresponding capital expenditure and risk. Cloudbased cloudsourcing and/ or 
partnership brokering support short-term signals, balanc- ing possible under- and over-provisioning by 
cost-sensitive or sharing-economy partners. The combination of cognitive supply chains and cloud 
integrationdirectly links cloud com- puting to the supply chain paradigm, connecting the three 
participating segments of a supply chain with the long-term planning horizon of stakeholders. Capabilities 
to detect and adapt to planned and random disruption signals have been incorporated for retail and 
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manufacturing ecosystems. Retail ecosystems combine on-line data and store signals for open- ness, 
integrosity, real-time sales prediction and loss detection along with qualification for correct delivery of 
orders to corporate customers. Manufacturing ecosystems offer a multi- actor, multi-dimensional 
architecture capable of on-time and capex-positive delivery of safe, clean, pro-social and easy- to-use 
products, while expanding or concentrating dyed and knitted textiles. 

I. ARCHITECTURE AND SYSTEM DESIGN 

The architecture comprises three layers. The data layer includes a cloud-native elastic infrastructure that 
hosts the system, stores external data sources, and maintains historical disruption events. The modeling 
layer encompasses machine learning and natural language processing models that monitor several signals 
and reply to queries related to upcoming disruptions. The applications layer is use-case specific, im- 
plementing signal monitoring, feature engineering, and model evaluation tasks, and incorporates 
standard cloud services for easy and cost-effective deployment. 3.1 Data Layer and Cloud Infrastructure 
Disruptions can take place in multiple locations around the globe. Consequently, the solution architecture 
is deployed on a cloud platform that minimizes latency risks while providing elasticity to accommodate 
additional process- ing whenever large-scale disruptions are identified. An elastic cloud-native 
infrastructure is essential for the efficient support of any cloud-integrated cognitive supply chain. Such an 
infras- tructure comprises a data lake that accommodates unstructured data sources, a database for 
structured external datasets and maintaining historical disruption events, and a cloud service that 
integrates the external sources into one coherent dataset. Any cloud service enables hosting the 
application services and deploying the machine learning models. The responses to the small number of 
configuration queries, which require limited resources, can be typically processed within micro services. 
Such a deployment ensures that most of the signal monitoring, feature engineering, and model evaluation 
tasks associated with the numerous signals are accommodated within separate cloud services, thus 
leveraging the benefits of massive parallel processing. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cloud Infrastructure and Services 

 

A. Data Layer and Cloud Infrastructure 

Physical and digital supply chain data lakes and the un- derlying cloud infrastructure are critical pillars 
of any cloud- based cognitive supply chain. These capabilities must meet the requirements of both the AI-
based models and the ap- plication use cases as defined in various forms by MIT CISR. Such 
requirements include the right data sources, in sufficient quality and quantity, to offer grounding and 
coverage across geographical areas and business communities. National collaboration-based initiatives 
such as the English National Data Strategy, Data Infrastructure Strategy Development Fund, Strategic 
Digital Infrastructure Fund, Data Trust Partnerships, and European Gas Data Pool must be continuously 
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monitored for relevant national-level data contributions. Investment in cloud technology decisions across 
organizations and the public sector creates an increasingly relational multi-cloud environ- ment. 
Increasing collaboration and connection between diverse elements make data governance and compliance 
paramount. However, unlike data in a traditional application-centric data warehouse confined to a 
particular enterprise, data in a cloud- enabled cognitive supply chain can be shared, collaborated on, and 
governed by community-based established norms and practices while also considering cross-
organizational data use for shock detection. Cloud providers such as Google and AWS are developing 
federated learning capabilities and overcoming the challenges associated with federated data governance. 
Additionally, along with the hyperscalers, cloud compliance check automation services are emerging, 
paving the way for a more efficient approach to ensure businesses are meeting acceptable regulation 
across geographies and industries while allowing greater use, sharing, and connecting of data across 
environments. 

B. Modeling Layer 

Each of the Data Layer’s signal-processing cloud clusters feeds into a Modeling Layer fusion node, 
where a Hybrid Artificial Intelligence–Machine Learning (AI–ML) process provides prediction-support 
services via two Operation Zones: Disruption-Signal Honk and Disruption-Effect Alerts. Similar in nature 
to the Sensor fusion process developed by the European Space Agency, this ML-centered approach 
produces a source-signal (“horn”) pattern, simulating echo-location in nature—where dolphins and bats 
emit signals and listen for returns—to provide a high-confidence disruption forecast in a 
diagrammatically presented honk style. Following this, a full-spectrum (HAZMAT) AI forecast (“Google 
translation”) identifies potentially affected business entities, operations and services and major-impact 
areas needing alert management. A combination of established operational decision support and trigger-
modeling pathways addresses disruptions that warrant the deployment of operational mitigation and 
control services and the introduction of short- and long-term prevention mea- sures. The modalities and 
sources of such HAZMAT forecasts are not limited to the current investigation, but encompass a broad 
range of recognized business and environmental fac- tors that impact business-as-usual continuity in any 
economy. Case-study modelling focuses on the interconnected retail and manufacturing sectors in an 
economy. 

Real-Time Disruption Forecasting 

Disruption forecasting for cognitive supply chains is a compelling use case. A continuous stream 
of signals generated by geopolitical, economic, social, technological, environmental, and legal systems can 
influence the shape and scale of a crisis, while cascading effects can propagate via supply chain networks. 
For example, COVID-19 led to rising demand for bicycles and hiking equipment while causing shortages 
of semiconductors. The business impact varies widely, depending on location, level of exposure in the 
value chain, and risk mitigation strategy. Consequently, a proper understanding as well as timely 
detection and assessment of multi-layered disruptions—geopolitical, economic, or epidemiological in 
nature—enables key decision-makers to identify factors affecting the organization and its partner 
ecosystem, prepare a proper response or recovery strategy, and allocate operational resources 
accordingly. Sound detection is only part of the problem, however. Real-time forecasting capabilities 
must be integrated into the detection process. Model selection and performance evaluation therefore 
require separate and complete attention. A combination of econometric and machine learning (ML) 
methods is often the most promising solution—two different types of approaches will yield greater 
robustness and allow a more rigorous assessment of the forecast horizon and optimal forecasting window. 
These considerations apply in principle to every actor in the retail and manufacturing ecosystems, as 
well as to market authorities and risk management organizations in the broader supply chain 
environment. 
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Fig. 4. Synthetic disruption forecasting: Actual vs Model Forecasts 

 

Model RMSE MAPE (%) 

Exponential 

Smoothing 

4.222332 16.48477 

AR(1)-like 4.81394 17.16718 

Hybrid 4.23096

6 

16.05808 

TABLE II 

MODEL PERFORMANCE METRICS 

 

Equation 02: Full SARIMA model White-noise errors 

εt ∼ i.i.d.(0, σ2). 

The defining equation is: 

 

Φ(Ls)ϕ(L)wt = Θ(Ls)θ(L)εt (2) (3) 

Substitute wt from (5) 

Φ(Ls)ϕ(L)(1 − L)d(1 − Ls)Dyt = Θ(Ls)θ(L)εt 

That is exactly the Seasonal ARIMA 

(p,d,q)(P,D,Q)s equation used in the framework 

In scalar form (for a simple ARIMA(1,0,0)(1,0,0)s) 

yt − ϕ1yt−1 − Φ1yt−s + ϕ1Φ1yt−s−1 = εt 

which you can see by multiplying out 

(1 − ϕ1L)(1 − Φ1Ls)yt 
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A. Signal Sources and Feature Engineering 

Several classes of signals have are closely monitored by the aforementioned stakeholders but remain 
largely unstruc- tured, in part due to their heterogeneity, unpredictability, and irregularity of occurrence. 
Signal processing, natural language processing, computer vision, and audio processing algorithms can 
distil relevant features from significant sources, which include social media, news articles, video feeds, 
satellite im- agery, and recordings of over-the-air communication channels. The detection of events that 
are likely to develop into supply chain disruptions is an important part of the system design; during this 
stage, those events classified as being sufficiently predictable might be assigned dedicated forecasting 
models for their potential repercussions on the supply chain. The historical impact of scored events on the 
cognitive supply chain is the foundation for damage assessment and disruption prognosis. However, 
neither of these operations can return reliable results without careful feature engineering. For damage 
assessment, a highly granular mapping between the severity of specific physical hazard classes at 
different locations, and the resultant disruption to individual companies or trade lanes is needed; for 
disruption prognosis, the precise event features that most correlate with how a given supply chain 
ecosystem reacts must be identified. In practice, a systematic approach to feature engineering is 
mandatory. Large supply chain ecosystems are formed principally by intercompany trade flows, so 
mapping the trade volume and directionality of flows at the highest possible granularity is essential. This 
real-world information constitutes the relationships among ecosystem entities. For damage assessment, 
the information is combined with an adapted version of the HAZUS damage model, known here as the 
adjoint HAZUS damage model, whereby the standard physical hazard classes are disaggregated and 
expressed as a percentage loss of control between pairwise connected entities in the ecosystem. This 
mapping quantifies the propagation of any physical hazard into the supply chain ecosystem through the 
hazard’s effect on trading companies or trade lanes. For disruption prognosis, the entire set of detected 
events and the operation narratives of the relevant-mode service providers is the basis for identifying 
the core ingredient features. The event narratives are vectorized and subsequently aggregated, attracting 
the initially separate keyword–event counts into a single factor by applying distributed representations of 
words which preserve syntactic and semantic properties. Keyword groups that are collectively used with a 
potential causal effect are subjected to causality checks, thereby resulting in the reduced keyword sets that 
serve as the key ingredients for modelling supply chain disruption prognosis. 

B. Forecasting Methods and Evaluation 

The conceptual foundation of Cloud-Integrated Cognitive Supply Chains extends to the design of a 
hybrid Artificial Intelligence–Machine Learning framework in support of real- time disruption 
forecasting. Specification of such a frame- work entails the selection of appropriate forecasting methods, 
evaluation of performance, and discussion of operational con- siderations. Given the complexity and 
ambiguity that char- acterize the phenomena under investigation, hybrid systems have been adopted to 
capitalize on the strengths of distinct paradigms and minimize their respective weaknesses. At the 
modeling layer, automated models are augmented with expert- derived models to support operational 
interpretation in retail ecosystems. Three forecasting methods have been developed for a retail setting: 
Exponential Smoothing, Seasonal ARIMA and, for modeling of disruptions in manufacturing ecosystems, 
a Hybrid ARIMA–LSTM approach. Exponential smoothing features additive seasonality and allows 
customized choice of the period to forecast based on business requirements. Seasonal ARIMA adds the 
modeling of autoregression and moving-average components and enables selection of the forecast horizon 
based on business requirements. The Hybrid 
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Fig. 5. The Manufacturing Service Ecosystem 

 

ARIMA–LSTM approach combines the statistical learning capability of ARIMA and the machine 
learning capacity of LSTM to realize predictions across different urban ge- ographical scope evolution 
horizons with superior accuracy. Forecasting performance of each method is assessed using the Root 
Mean Squared Error and the Mean Absolute Percentage Error. 

Applications in Retail and Manufacturing 

ECOSYSTEMS 

Cognitive supply chains supported by cloud platform ser- vices offer transformational opportunities 
across diverse indus- tries. Incorporating event-specific disruption forecasting into retail and 
manufacturing ecosystems strengthens day-to-day operations. Forecasting applications are exemplified 
through a retail case study involving a Thai supermarket chain, and two deployment scenarios are 
outlined for a manufacturing ecosystem—a smart factory producing fashion clothing and a made-to-order 
electric vehicle producer. The diverse nature of signal sources, with varying counts and lead times, makes 
it impractical to provide a single disruption forecasting algorithm for all user contexts. A superstore 
example, involving multiple competing stores in neighbouring provinces, illustrates the concept. The 
seven-day-ahead forecast uses pre-event data—in this case, uncertainty cloud cover days preceding 
important religious days—as predictors, with the number of actual car accidents and the temperature of 
the festival day employed as signals for disruption modelling. The approach can be extended to challenge 
event days, Faithful Service Days in Buddhist culture, Chinese New Year and Twin Holy Days in Islam, 
among others. Local accidents possibly influencing con- sumer consumption behaviour in retail or practice 
behaviour in production serve as additional event drivers. 

A. Case Studies and Use Cases 

Two recent projects at The Hong Kong Polytechnic Uni- versity illustrate how cloud-integrated 
cognitive supply chains can benefit different industry sectors. The first investigates real-time, machine-
learning-enabled forecasting of customer returns in online retail operations. The second focuses on 
predicting real-time machine failure requirements in additive manufacturing operations that deploy 3D 
printer equipment via a work-sharing model. The first project’s objective is to enable online retailers to 
forecast minute-by-minute customer returns within tabular data. The immediate e-tail operator does not 
control these. Timely, accurate forecasts minimize the opera- tional costs yet maximize brand loyalty. 
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Research is required to identify practical signal sources and modelling structures suitable for online, real-
time machine-learning forecasting of minutely customer returns. Candidate signal sources include social 
media postings, Google Trends, site reviews, outdoor government alerts, and operational support alerts. 
Feature-rich modelling is established based upon Binary Bag-of-Words and N-grams, significantly 
improving real-time forecast accuracy.Deployment Scenarios 

Recent technological developments and the COVID-19 pandemic have revealed vulnerabilities in global 
supply chains. With increasing connectivity and collaboration, selec- tive cloud-integration may 
strengthen supply chain resilience. Leakage levels characterize the qualified level of data security required 
for collaboration among supply chain partners. Oper- ations, retailing, and manufacturing ecosystems 
typically have a low leakage level. Integrating cloud-based machine learning services, which require data 
aggregation, enhances the supply chain’s learning capability. In a semitrusted cloud model for very low 
and low leakage levels, an aggregator aggregate information for supply chain disruption signals into a 
central server. Cloud-based machine learning services can then be used for disruption forecasting with a 
very low relational leakage level. A third-party cloud service also offers advanced forecasting capabilities 
for regionally and globally critical supply chain partners operating in leakage levels above the very low 
level. Reliance on a third-party service can reduce the burden of maintaining a highly reliable support 
service that is needed for a much larger competition network. 

II. OPERATIONAL CONSIDERATIONS 

The proposed framework is designed to leverage Cloud Computing capabilities to operate at scale, 
and offer services to Digital Supply Networks (DSNs) and other third parties without requiring 
substantial investment in infrastructure, human resources or technology development. 

 

 

 

Fig. 6. Model comparison by MAPE 

as a Service (PaaS) models to external suppliers and DSNs wishing to use the framework to develop native 
algorithms. The Generic Component service provides ready-to-use components, with forecasted variables 
sourced and placed in a common storage area Expert Components are built using historical data from a 
single vendor, supplier or DSN by a third party with special privileges. The Decision-support 
Component forecasts the TSSS at a specific node using a model built by the Cognitive Supply 
Chain team using data from multiple components of the Digital Supply Network. 

 

Equation 03: Evaluation Metrics: RMSE and MAPE 

Given actuals yt and predictions yˆt, for t = 1, . . . , N 

Start with the squared error at each time 
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SEt = (yt − yt)2 (4) (5) 

Average them 

MSE = N1 t = 1 
Σ

(yt − yt)2 

N 

To bring units back to those of yt, take square root 

RMSE = MSE = N1 t = 1 
Σ

(yt − yt)2 

N 

Absolute percentage error at time t 

APEt =  yt   × 100% 

Consequently, various layers of Data Governance are in place, centred around the concepts of privacy, 
security, quality and regulatory compliance. Scalability is an essential characteristic for any cognitive 
service. This requirement Average 

 yt−yt 

MAPE = N 100 t = 1 
Σ 

Nytyt − yt 

becomes particularly pronounced when a full-featured Digital Supply Network adopts the Real-Time 
Disruption Forecasting platform as an optional service, with global operation across multiple supply 
chains, vendors and service providers. The Discussion proposes four levels of cloud service models for 
different user categories. The Platform can act as an Infrastructure as a Service (IaaS) and provide various 
Platform compute the metric bar charts you see 

A. Scalability and Cloud Service Models 

Cloud-integrated cognitive supply chains are inherently scalable, as they can accommodate 
heterogeneous data vol- umes generated by widely deployed Internet of Things (IoT) devices for physical 
sensing. From a cloud service model per- spective, the modelling layer can leverage either infrastructure- 
as-a-service (IaaS) or platform-as-a-service (PaaS) configura- tions. Nevertheless, the modelling layer 
usually depends on software as a service (SaaS), since it must rely on an exter- nal environment or on-
premises configuration. The support- ing cloud infrastructure introduces additional capabilities for cloud-
integrated cognitive supply chains, enabling computing and data ingestion and making the sources of 
diverse data more transparent, particularly in the flood of data generated by news wires, RSS feeds, and 
social media sources. Security and regulatory compliance are key considerations for cloud- integrated 
cognitive supply chains that leverage public cloud services for storage, computing, and IaaS-related 
facilities. Data governance policies focus on the declaration of data purposes, specify who can access the 
data, define protocols for data minimization and retention, and ensure that any collected data is safe from 
breaches, leaks, or theft. Special data treatment for sensitive data (e.g., personally identifiable or health-
related data) ensures proper protection and shields the organizations involved from any data processing 
misconduct. 
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B. Data Governance and Compliance Practices 

Despite the privacy and safety dangers caused by the recent rise in cloud!=computing, organizations are 
eager to adopt this technology as it provides various benefits. Store re- tailers, experiment-driven firms, 
financial services, healthcare providers, etc., do not usually disclose the nature of sensitive data. However, 
the large quantity and variety of sensitive cloud data with a limited definition also show that it is 
unsafe. The logical scenario is that large cloud service providers are vulnerable to external and internal 
attacks. Furthermore, due to changes in the economic and regulatory environment, companies must 
leverage the cloud for compliance support. The cloud service provider must adhere to internal rules and 
audit logs, retain private records for specific case support, use security procedures to protect 
confidential documents, and guarantee full cryptographic capabilities. Fraud creditors require the use of 
a cloud directory that reduces the exposure of credit records. The cloud SLO (Service-Level Objectives) 
has become a sensitive issue as cloud service providers must ensure privacy, security, and compliance 
with the law. All cloud service providers receive security and compliance code tests before they can 
operate in the commercial version, and many code tests are also updated for beta services. Azure is 
certified for multiple compliance codes and frameworks, and PlayStation now has similar standards and 
controls. Although the credit card and VPN providers are not using the cloud for compliance yet, they 
are already highly monitored by PCI. So, a cloud SLO that does not communicate compliance can provide 
some guarantee of security and privacy, but it cannot offer a full guarantee, as no such full guarantee 
exists for the Internet. 

 

Conclusion 

Cognitive supply chain models are being increasingly de- veloped, which enable institutions and 
companies to conduct business within related environments without long-term con- tracts. Processes for 
integrated cloud-based operation using the Software as a Service (SaaS), Platform as a Service (PaaS), 
and Infrastructure as a Service (IaaS) cloud computing service models open new avenues for retail and 
manufacturing supply chains. Case studies based on real-world interviews indicate considerable interest 
in cloud-integration cognitive supply chain models. The hybrid Hybrid Artificial Intelli- gence–Machine 
Learning–Modeling technology can process historical data and integrate human knowledge to provide 
accurate prediction of disruptions based on selected signal sources. Several configuration templates are 
being prepared for governance and operational control before launch. The supply chain is now integrating 
with cloud and other services. The new cloud-integration paradigm and Supply Chain as a Service (SCaaS) 
model support these developments. Integration of cloud supply chains and the cognitive supply chain 
concept is natural, and several cloud-integration cognitive supply chain models are being developed with 
the Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service IaaS) 
cloud service models. A Hybrid Artificial Intelligence-Machine Learning-Modeling technology uses his- 
torical data and integrated human knowledge to predict possi- ble disruptions based on specified signal 
sources. 

A. Emerging Trends 

Digital disruption continues to reshape the global economy. Cloud computing, big data, and AI are 
concurrently evolving and fostering increased interconnectedness. Intelligent cog- nitive supply chains 
that integrate AI technologies can help organizations remain competitive by proactively managing risk and 
responding rapidly to changes. Cloud-integrated cogni- tive supply chains enable real-time disruption 
forecasting for customized hinterland ecosystems across industry domains. A real-world implementation 
in retail is multidisciplinary, multi- organizational, and cross-border in nature and uses online 
communications platforms to capture and leverage expert knowledge. A hybrid AI–ML modeling 
approach supports the analysis and categorization of structured and unstructured signal data, and the 
periodic ML prediction models incorporate a new demand prediction component. Application in manu- 
facturing ecosystems remains conceptual, with IoT data from production and shipment activities. 
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