

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 496

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Microservices vs. Monolithic Architectures in Real-

Time Distributed Systems: A Comparative Analysis

Mayur Bhandari

Microsoft, USA

ARTICLE INFO ABSTRACT

Received: 03 Oct 2025

Revised: 06 Nov 2025

Accepted: 15 Nov 2025

This article will discuss the differences between microservice and monolithic

architecture in real-time distributed architecture. Comparison cuts across theoretical

underpinnings, performance attributes, development life cycles, operational issues,

and implementation issues. Monolithic architectures are known to be beneficial in

terms of simplicity, reduced baseline latency, and reduced communication overheads,

and are applicable in applications with predictable workloads and intricate

transactional requirements. Microservices, on the other hand, are much more scalable,

fault-isolated, and focused on the allocation of resources, especially helpful in systems

whose demands are variable and whose functionality evolves. The article discusses the

issue of data consistency, overhead in inter-service communication, and state

management complexities of distributed architectures, and notes pragmatic hybrid

solutions and evolutionary trends that leverage the merits of each paradigm. The

choice of architecture is actually determined by a set of constraints of particular

projects, the structure of the organization, and the needs of real-time processing,

instead of a particular architectural philosophy.

Keywords: P Distributed Systems Architecture, Real-Time Processing, Service

Orchestration, Fault Tolerance Patterns, State Management Strategies

1. Introduction

Software architecture of distributed systems has experienced exceptional change in the past few

decades, whereby centralized monolithic structures have been moving towards more decentralized

and specialized architectural structures. This has changed over time depending on the business

demand, technology, and the increasing need for a system capable of handling and reacting to

information in real time. Real-time capabilities have become a staple of digital transformation efforts

in organizations in any industry, and architectural decisions related to such capabilities are growing

more and more consequential [1].

The choice of proper architectural patterns of real-time applications is not a simple matter of technical

specifications. Real-time systems have hard time constraints, in which processing delays have a direct

business value and user experience implications. Monolithic architectures offer ease of integration

and lower communication costs, both of which are important in some forms of real-time processing.

On the other hand, microservices architectures provide better fault isolation and scalability, a system

that has fluctuating processing requirements across functional areas. These architectural choices have

long-term effects on future development of the system, the organization of teams, and the practice [2].

The literature review reveals an evident gap in the literature about comparative analyses of the real-

time processing constraints between architectural paradigms, in particular. Although there are

numerous general architectural comparisons, there are few studies that systematically assess

performance characteristics in the real-time environment. The literature available does not often

provide contextual sensitivity when it comes to the interplay between building patterns and individual

requirements of an actual moment. This gap in knowledge leaves an air of uncertainty to those

practitioners charged with the responsibility of making architectural choices in time-sensitive

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 497

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

systems, and in most cases, these choices are made on general principles instead of informed

evaluation [1].

This discussion gives a detailed comparison of microservices and monolithic architectures in real-time

distributed systems. The research analyses architectural models in terms of real-time processing

needs and thus grows to a more advanced conceptualization of the inherent trade-offs. The analysis is

based on the theoretical background and the implementation factor to achieve the comprehensive

perspective of the architectural performance within the context of tight real-time constraints in

various contexts of implementation [2].

The practical usefulness of this comparative analysis is for organizations with difficult architectural

decisions. The choice of architecture is a cornerstone decision that has massive consequences on the

complexity of implementation, nature of operations, and capability to evolve. This analysis helps to

make informed decisions by providing a systematic structure by which architectural alternatives are

evaluated against particular real-time demands [1].

It has some important dimensions, including predictable response time with different loads, efficiency

of resource utilization, sustainability of throughput, scalability trends, scalable resource allocation

capabilities, efficiency of development workflows, complexity of testing, deployment reliability,

monitoring visibility, troubleshooting capabilities, and resiliency mechanisms. This complex

assessment sheds light on the effect of architectural decisions on the real-time system features

throughout the lifetime of the application [2].

2. Theoretical Foundations and Architecture Overview

The historical background of the development of software architecture is part of a gradual cycle in

different levels of technological paradigms. Starting with the earliest mainframe computing models,

architectural thinking developed to structured programming, client-server models, and service-

oriented architecture, and then to microservices models today. The process of this development has

been through innovation, standardization, and refinement cycles courtesy of shifting business needs

and technological capacities. This shift in architectural paradigms has also been defined by certain

technological enablers, whether networking advances or more virtualization technologies and

containerization platforms, which have enabled more distributed approaches to be more viable [3].

Monolithic architecture is the most common view of the application development of the past, where

all the functional units are built in a single deployment unit, and they share code. This architecture is

used to implement business functionality using closely coupled modules that share memory space,

development environment, and runtime resources. The structural breakdown usually has presentation

layers where user interface issues are addressed, business logic layers where core domain rules are

applied and data access layers where persistence operations are implemented. These components can

interact directly, without network-based protocols, instead of direct method invocations. Deployment

is done as a unit, and all elements are rolled out at the same time, so any change implementation

requires the entire system to be rolled out [4].

The microservices architecture represents a radically different design in which business capabilities

are structured into distinct, independently deployable services. A service is an encapsulated

functionality that has its own data storage, and it interacts with other services via well-defined

network interfaces. Service boundaries are generally in line with domain-driven design theory; each

service has a bounded context, which is a functional area. Patterns of communication between the

microservices are heavily based on a lightweight protocol, and both synchronous request-response

and asynchronous event-based patterns are typical implementation methods. This type of architecture

focuses on the independence of services, giving them the opportunity to choose the technology, select

the time and scale of deployments independently [3].

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 498

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The architectural discrepancies that matter the most are not limited to technical implementation but

also to basic philosophies of design. Monolithic architecture focuses on simplicity, cohesion, and

centralized control, whereas microservices focus on autonomy, specialization, and distributed

governance. The strategies of data management are radically different: whereas monolithic

applications tend to use common databases with a normalized schema, data replication in database-

per-service designs of microservices allows services independence. These differences have their

reflection in the development practices: monolithic architectures allow single workflows, and

microservices allow parallel streams of implementation [4].

Aspect Monolithic Architecture Microservices Architecture

Structure
Unified codebase, single deployment

unit

Distinct, independently deployable

services

Component

Integration

Tightly connected modules, shared

memory

Loosely coupled services with network

interfaces

Communication Direct method invocations
Lightweight protocols, REST/event-

driven

Data Management Shared databases, normalized schemas Database-per-service, data replication

Design Philosophy
Simplicity, cohesion, centralized

control

Autonomy, specialization, distributed

governance

Deployment
Cohesive unit, all components released

together

Independent service deployment and

scaling

Table 1: Theoretical Foundations and Architecture Overview [3, 4]

The change towards microservices has been motivated by various factors such as scalability, velocity

of development due to team autonomy, technology heterogeneity, and resilience to operational

failures by isolating faults. The transition pathway usually goes through the archetypal intermediate

architectural forms until the full-scale microservices implementation is achieved, where major

adjustments within the organization are necessary, other than technical execution [3].

An evaluation conceptual framework of real-time systems needs to consider time-sensitive processing

needs. In real-time systems, it is under very strict time constraints where predictability of processing

and performance uniformity are of utmost importance. The framework should take into account

system-specific considerations such as workload distribution patterns, consistency requirements, and

particular latency thresholds as important factors to architectural appropriateness in real-time

situations [4].

3. Performance and Scalability Analysis

Comparing the latency of processing in a real-time situation shows the underlying differences between

the architectural methods, which can influence the responsiveness of the system. Monolithic

architectures enjoy the advantages of locality of reference and direct method invocations, which have

no network overhead of distributed communication. This architectural strength is reflected in the

performance profiles with a reduced base latency of operations with numerous related data

manipulations within a transaction boundary. Microservices architectures, on the other hand,

introduce crossings of service boundaries, making use of network communication, which introduces a

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 499

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

potential latency. In the long term, though, microservices will be able to handle higher load without

showing the same slowdown as monolithic architectures due to contention of resources in the shared

runtime environment, whereas microservices offer better isolation of performance under different

load conditions [5].

The patterns of resource use represent unique consumption patterns of both methods. Monolithic

architecture reflects a relatively consistent usage of resources across computational dimensions, with

consumption increasing proportionately in a shared resource pool. This integrated model makes the

process of capacity planning easy, but the optimization opportunities are reduced. Microservices, on

the other hand, have a heterogeneous usage pattern, with each service generating a particular resource

demand profile depending on particular requirements. This granular allocation helps in fine-tuning

the resources to the needs of the service instead of the coarse-grained provisioning that is based on the

aggregate system needs. Although microservices generally increase overall resource usage because of

isolation overhead, a tradeoff is a specific provisioning that minimizes wastage caused by excessive

allocation to components that are not in peak demand [6].

Horizontal scaling and vertical scaling have different benefits that determine architectural

appropriateness. Monolithic architectures are usually based on vertical scaling, which adds resources

to individual nodes. This model exhibits almost linear performance with hardware limits, but has

upper limits and a high provisioning time. Microservices are also good at horizontal scaling by adding

service instances that handle similar requests at once to achieve theoretically unlimited capacity

through the addition of new processing nodes. This differential in the speed of provisioning is critical

in real-time systems with high load change rates, and scaling responsiveness has a direct effect on

stability [5].

Dynamic resource allocation capabilities and elasticity are essential to systems whose demand

patterns are variable. Microservices are more responsive as they can be used to add capacity to some

components that are under more load. This is a scaling that is highly efficient in contrast to monolithic

designs that demand wholesale system replication with or without the components that are the

bottlenecks. The auto-scaling systems can be implemented more accurately by following the indicators

of the services instead of the aggregate indicators, and the newly emerged bottlenecks are spotted in a

faster way [6].

Performance bottlenecks occur in characteristic patterns that cause behavior in times of stress.

Monolithic architectures normally have bottlenecks in terms of the contention around a shared

resource, and this can happen to the whole application. On the other hand, microservices exhibit more

local bottlenecks, and the effects of them are often localized to particular transaction layers as

opposed to the system itself. Bottleneck conditions also have different recovery times, and

microservices have shorter recovery times since they can be isolated and restarted without affecting

the whole system [5].

Industrial implementations of monolithic architecture continue to show that monolithic architecture

is beneficial in situations where workloads are stable, predictable, and demanding of high latency due

to complex transactions, whereas microservices display desirable traits in situations where workloads

are highly variable and require specific scaling.

Characteristic Monolithic Architecture Microservices Architecture

Baseline Latency Lower for complex transactions Higher due to network overhead

Behavior Under Load More pronounced degradation Better performance isolation

Resource Utilization Uniform across dimensions Heterogeneous patterns by service

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 500

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Scaling Approach Vertical (larger nodes) Horizontal (more service instances)

Elasticity Whole system replication Targeted component scaling

Bottleneck Pattern
Shared resource contention, system-

wide
Localized to specific services

Recovery System-wide restart needed Isolated component restart

Ideal Workload Stable, predictable, complex transactions Variable, independent scaling needs

Table 2: Performance and Scalability Analysis [5, 6]

4. Development and Operational Considerations

A comparison of workflow development in monolithic and microservices architectures demonstrates

that the two differ in the most basic aspects of team organization and teamwork. Monolithic

development uses a centralized model whereby teams are working on a common codebase in one

repository. Teams usually form around technical areas of specialisation where there is much cross-

team work to implement features. It has long integration cycles in which the change needs to be

integrated and then deployed. Contrastingly, microservices development is decentralized in that

autonomous teams own certain services based on business capabilities. The teams have their own

codebases and release cycles, allowing them to run multiple development streams in parallel, which

can reduce the overhead of coordination on features that are not related, at the cost of making

coordination between services and features more difficult [7].

There is a significant difference between deployment complexity and continuous integration/delivery

practices between the approaches. Monolithic applications have simple deployment mechanisms that

are focused on a single artifact that is deployed as a unit and usually needs the entire application to be

offline to update. The concept of continuous integration presupposes full build and test cycles to test

the whole application before it is deployed. Microservice, on the other hand, allows individual services

to be deployed with independence of other unrelated aspects. This decoupling places more

complicated infrastructure demands, which require coordination systems, service location, and

resource balancing. Microservices continuous integration is aimed at service validation on an

individual basis under stable interface contracts, and this facilitates a quicker feedback mechanism on

particular components [8].

Operation challenges with monitoring, debugging, and troubleshooting are different. Monolithic

applications have the advantage of having logging and error reporting in one application boundary,

which makes correlation of related events easier when investigating an incident. There is the use of

shared memory spaces and unified logging, which are used in debugging to trace the execution path in

the entire application in a single context. Conversely, microservices spread functionality into several

independent services with different logging and error management solutions. Special distributed

tracing solutions are needed to trace requests across service boundaries. Production problems are

resolved through the aggregation of information between a number of services in order to rebuild a

sequence of events that cause failures [7].

There are large variations in infrastructure needs and operational overhead between the architectural

patterns. Monolithic architectures are used in comparably simple infrastructure designs, and they are

usually deployed using application servers, load balancers, and database systems that are configured

to scale vertically. The allocation of resources is done at the level of application, and scaling decisions

made by the application affect the whole system. Contrary to that, microservices demand more

advanced infrastructure with container platforms, orchestration systems, service nets, and API

gateways. The allocation of resources is on a fine scale, which allows individual components to be

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 501

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

scaled to the exact level of demand patterns. Microservices require infrastructure automation and are

not optional [8].

Organizational implications prove the way in which system design mirrors and has an impact on the

communication structures. Monolithic architectures are used in conjunction with a centralized

decision-making process and team structures based on technical specialization. By contrast,

microservices are associated with decentralized organizational forms that spread the power of

decision-making to teams in charge of particular business capabilities that organize around business

domains but not technical expertise [7].

Consideration Monolithic Architecture Microservices Architecture

Team Structure Centralized, technical specializations Autonomous, business-aligned teams

Coordination High cross-team coordination Reduced for unrelated features

Deployment

Process
Simple, whole application Complex service orchestration

CI/CD Comprehensive validation cycles Individual service validation

Debugging Consolidated logging, single context Distributed tracing required

Infrastructure
Simple servers, databases, and load

balancers

Containers, orchestration, service

mesh

Decision Making Centralized governance Distributed authority

Tech Stack Standardized, homogeneous Diverse, service-appropriate

Table 3: Development and Operational Considerations [7, 8]

Diversity on the technology stack depends on approaches. Monolithic architectures impose

homogeneity of technology by using a set of standard frameworks that are used throughout the

application. By contrast, microservices support technology diversity, which means different teams can

use different tools depending on the service needs of their particular service, and can specialize in a

specific functionality, creating difficulties in ensuring that there is adequate expertise within the

organization as a whole [8].

5. Real-Time System Challenges and Mitigation Strategies

Issues of data consistency in distributed environments are some of the major stumbling blocks to real-

time systems based on microservice architectures. The data consistency and system availability

conflict reaches its peak when processing has to be performed within a limited time. The traditional

forms of transaction management, which are effective in monolithic systems, are problematic when

there is data distribution among two or more services. The pattern of eventual consistency has become

a popular pattern, which embraces temporary inconsistencies in data to ensure that the system is

responsive. Event sourcing patterns give the ability to audit, and they support eventual consistency

models, representing changes in state as immutable events. Command Query Responsibility

Segregation (CQRS) is used alongside event sourcing to split the read and write operations, and thus

optimization of query paths can be done to support performance, and some consistency guarantees

can be provided to provide modification support. These trends present practical ways of balancing

consistency needs and the performance needs of real-time processing in distributed structures [9].

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 502

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Communication latency between services is a significant issue in real-time systems whose processing

time budget is very tight. The crossing of every service boundary needs to serialise, transmit data

across the network, and deserialise data, which introduces cumulative delays, eating up large shares of

the available processing time. This is especially troublesome in transaction flows that have to be

orchestrated by several services and where processing dependencies cause sequential processing.

Mitigation measures involve properly designing service boundaries to reduce time-sensitive operation

communication, introducing a pattern of asynchronous communication to reduce blocking delays, and

protocol optimization using efficient serialization formats to reduce the time to transmit payloads. To

implement it effectively, there is a need to balance the architectural issues with the performance

needs, which may result in pragmatic compromises in the system design [10].

Service coordination and orchestration strategies have to strike a balance between process-latency

demands and process consistency. Centralized orchestration assigns individual components to

orchestrate process flows that give easy visibility to the transaction states at the expense of

introducing bottlenecks. The approaches based on choreography share the coordination load across

the event-driven communication, removing central bottlenecks, but complicating the comprehension

of end-to-end processes. Hybrid techniques are methods that integrate complex transactions through

orchestration with loosely-coupled operations through choreography. Saga patterns give structures by

which distributed transactions can be handled by sequences of local transactions with compensating

actions and ensure consistency without distributed locking mechanisms [9].

Patterns of fault tolerance and system resilience are required to ensure the system is available in case

of component failures. Patterns of circuit breakers are used to protect against failures through

monitoring their failure rates, and temporarily block calls to degraded services. The time-out

management will help to make sure the service calls will not be blocked forever when dependencies

fail to respond. Strategies of exponential backoff and Retry strategies minimize the effects of transient

failures. Bulkhead patterns separate critical and non-critical operations so that the consumption of

resources by low-priority components does not affect critical functionality [10].

Challenges that can impact the reliability and performance of state management are unique. Stateless

service design eases the scaling process, but transfers complexity to the storage systems. Time-critical

operations can be achieved quickly via in-memory data stores. Distributed caching not only decreases

load on the database but also requires close management of invalidation. Event sourcing keeps audit

trails, but supports optimized read models. Time-series databases are specialized databases that offer

efficient storage and retrieval of temporal data typical of systems in real-time [9].

The hybrid and evolutionary architecture patterns provide practical solutions to the implementation

of real-time systems. Incremental migration is also possible with the use of the strangler pattern,

whereby functionality is replaced in stages without stopping. Domain-driven design helps in

identifying the service boundaries well. The API gateways offer a single point of entry without showing

the details of the implementation. These methodologies make it possible to use proper patterns with

various components depending on the particular needs, instead of strictly following one architecture

[10].

Challenge
Monolithic
Approach

Microservices Approach

Data Consistency ACID transactions Eventual consistency, event sourcing, CQRS

Communication Latency Direct method calls Service boundary optimization, async patterns

Fault Tolerance System-level recovery Circuit breakers, timeouts, bulkheads

State Management In-process memory Stateless services, distributed caching

API Management Internal interfaces API gateways, service mesh

Table 4: Real-Time System Challenges and Mitigation Strategies [9, 10]

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 503

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Conclusion

Comparative evaluation of the microservices and monolithic architecture shows that neither is always

better than the other in real-time distributed systems. Each architecture has unique merits and flaws

that should be discussed concerning the particular application and the organizational background.

Monolithic architectures are simple, cohesive, and deliver reduced latency to complex transactions

and are therefore suitable in applications with predictable workloads and where timing is of great

essence. Microservices offer enhanced scalability, resiliency, and development agility at the cost of

greater complexity of infrastructure and overhead of communications. The best solutions tend to be

hybrid, using monolithic components to provide tightly-coupled, performance-sensitive functionality

and microservices to provide places with independent scaling and frequent change. With the ongoing

development of distributed systems, architectural patterns that are more pragmatic than dogmatic,

and that are not chosen because of a theoretical ideal but according to the real requirements, are now

of interest. The presented decision framework allows an architect to make knowledgeable decisions in

accordance with the size of the project, grouping structure, time limitations, and expected

developmental trends to maximize the performance of the system and its sustainability.

References

[1] Abhishek Dey et al., "Real-Time Performance Benchmarking of TinyML Models in Embedded

Systems (PICO: Performance of Inference, CPU, and Operations)," arXiv:2509.04721, 2025.

https://www.arxiv.org/abs/2509.04721

[2] Sushant Sood, "Serverless Architectures In Distributed Computing: A Technical Analysis," IJCET,

2025. https://scholar9.com/publication/b347a73e8a8ec5cbb6ae216019a5f592.pdf

[3] Chitrak Vimalbhai Dave et al., "Microservices Software Architecture: A Review," IJRASET, 2021.

https://www.ijraset.com/best-journal/microservices-software-architecture-a-review

[4] Philipp Gnoyke et al., "Evolution patterns of software-architecture smells: An empirical study of

intra- and inter-version smells," ScienceDirect, 2024.

https://www.sciencedirect.com/science/article/pii/S0164121224002152

[5] Paolo Di Francesco et al., "Architecting with microservices: A systematic mapping study,"

ScienceDirect, 2019. https://www.sciencedirect.com/science/article/abs/pii/S0164121219300019

[6] Vivek Basavegowda Ramu, "Performance Impact of Microservices Architecture," The Review of

Contemporary Scientific and Academic Studies, 2023. https://thercsas.com/wp-

content/uploads/2023/06/rcsas3062023010.pdf

[7] Amey Arun Padvekar and Vikaskumar Badriprasad Gupta, "Comparative Analysis of Monolithic

vs.Distributed Architecture," IJARSCT, 2024. https://ijarsct.co.in/Paper18946.pdf

[8] Vishesh Narendra Pamadi, "Effective Strategies for Building Parallel and Distributed Systems,"

IJNRD, 2020. https://www.ijnrd.org/papers/IJNRD2001005.pdf

[9] Ravi Chandra Thota, "Cost optimization strategies for micro services in AWS: Managing resource

consumption and scaling efficiently," International Journal of Science and Research Archive, 2023.

https://ijsra.net/sites/default/files/IJSRA-2023-0921.pdf

[10] Brian Mwengi Mweu, "The Impact of Microservices on Cloud-Native Application Development: A

Review," IJNRD, 2023. https://www.ijnrd.org/papers/IJNRD2309075.pdf

https://www.arxiv.org/abs/2509.04721
https://scholar9.com/publication/b347a73e8a8ec5cbb6ae216019a5f592.pdf
https://www.ijraset.com/best-journal/microservices-software-architecture-a-review
https://www.sciencedirect.com/science/article/pii/S0164121224002152
https://www.sciencedirect.com/science/article/abs/pii/S0164121219300019
https://thercsas.com/wp-content/uploads/2023/06/rcsas3062023010.pdf
https://thercsas.com/wp-content/uploads/2023/06/rcsas3062023010.pdf
https://ijarsct.co.in/Paper18946.pdf
https://www.ijnrd.org/papers/IJNRD2001005.pdf
https://ijsra.net/sites/default/files/IJSRA-2023-0921.pdf
https://www.ijnrd.org/papers/IJNRD2309075.pdf

