2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

AI-Assisted Decision Support for Field Service Operations: A Technical Review

Sathishkumar Periyasamy Eastman Kodak Company, USA

ARTICLE INFO

ABSTRACT

Received: 01 Oct 2025

Revised: 08 Nov 2025

Accepted: 14 Nov 2025

Field service organizations face increasing challenges in managing operational complexities spanning scheduling optimization, workforce allocation, equipment maintenance, and cost containment. The integration of artificial intelligence-driven decision support systems within field service management platforms offers transformative potential to address these challenges through predictive analytics, intelligent automation, and real-time optimization capabilities. This article examines how AI-powered technologies enable service organizations to transition from reactive, crisis-driven operations toward proactive, insight-driven service delivery models that anticipate customer needs and prevent equipment failures before they occur. The human-AI collaboration framework represents a fundamental operational paradigm shift, where AI systems handle data-intensive pattern recognition and routine optimization while human operators provide contextual interpretation, empathetic customer engagement, and strategic decision-making. Current implementations demonstrate human-in-the-loop architectures that preserve human judgment and accountability while leveraging AI capabilities for enhanced efficiency and productivity. However, organizations must navigate significant challenges, including algorithmic bias, transparency concerns, workforce resistance, and ethical governance requirements. The future trajectory points toward increasingly sophisticated human-AI partnerships characterized by generative AI copilots, augmented reality integration, and autonomous scheduling capabilities, all underpinned by robust ethical frameworks ensuring fairness, accountability, and transparency in automated decision-making processes.

Keywords: Artificial Intelligence Decision Support, Field Service Management, Human-AI Collaboration, Predictive Maintenance, Service Operations Optimization

1. Introduction

1.1 Contextual Background

Field service management has become increasingly complex in today's hyper-connected, customer-first economy. Customers expect faster resolutions, real-time updates, and proactive service rather than reactive support. At the same time, organizations face pressures from rising operational costs, workforce shortages, and sustainability goals. Traditional field service models—relying on manual scheduling, static planning, and reactive maintenance—can no longer keep pace with these evolving demands. Modern field service operations require sophisticated technological solutions that can process vast amounts of data, identify patterns, and provide actionable insights in real-time. This paradigm shift has positioned AI-assisted decision support as a strategic differentiator, empowering service organizations to predict issues before they occur, optimize resource allocation dynamically, and enhance customer satisfaction through proactive engagement. The convergence of artificial intelligence, Internet of Things sensors, cloud computing, and mobile technologies has created an unprecedented opportunity to transform field service from a cost center into a value-generating operation that drives competitive advantage and customer loyalty.

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1.2 Problem Statement and Research Gap

Despite advances in digital transformation, many field service organizations continue to struggle with fundamental operational challenges that limit their effectiveness and profitability. Inefficient scheduling and dispatching practices often fail to consider technician skills, certifications, and realtime availability, leading to suboptimal resource utilization, increased travel costs, and extended service windows. Low first-time fix rates persist across the industry, with technicians frequently arriving unprepared due to inadequate diagnostic information, missing specialized tools, or insufficient parts inventory. The predominance of reactive maintenance strategies rather than predictive approaches results in unexpected equipment failures, extended customer downtime, and erosion of service level agreements. Furthermore, fragmented data silos prevent organizations from leveraging comprehensive customer histories, asset performance metrics, and contextual insights for informed decision-making. While modern field service management platforms provide robust foundational capabilities for work order management, scheduling, and mobile workforce enablement, a significant gap exists in fully leveraging AI-driven decision support to transcend basic automation and achieve truly proactive, predictive, and optimized operations. The challenge lies not merely in implementing AI technologies but in achieving meaningful human-AI collaboration where automated systems augment rather than replace human expertise, enabling faster decisions while preserving human validation for critical outcomes and reducing routine cognitive burden to free technicians for complex problem-solving tasks that require creativity and contextual understanding.

1.3 Purpose and Scope

This article explores how AI-assisted decision support within modern field service management platforms addresses these operational challenges by enabling intelligent scheduling and dispatching through machine learning algorithms, predictive and preventive maintenance powered by IoT sensor networks and unified data platforms, real-time AI-driven recommendations for technicians operating in field environments, and strategic decision support for service leaders through advanced analytics and interactive dashboards. The examination investigates the implementation of effective human-AI collaboration models that balance automation efficiency with human judgment and accountability. The scope encompasses an evaluation of current interaction paradigms between artificial intelligence systems and human operators, an assessment of tangible benefits realized through AI collaboration in service delivery, an analysis of risks and limitations inherent in AI-powered decision-making, a survey of technology platforms and industry standards supporting AI-enabled field service, and a forwardlooking vision for future collaboration models that maximize the synergistic potential of human expertise and machine intelligence. This comprehensive examination aims to provide service leaders, technology architects, and operational managers with actionable insights for implementing AIassisted decision support systems that enhance operational performance while maintaining ethical standards and preserving the essential human elements of customer service.

1.4 Industry Context and Market Dynamics

The field service management sector is experiencing rapid transformation driven by technological innovation and changing customer expectations. By 2026, the global field service management market is projected to reach USD 8.06 billion, demonstrating substantial growth at a compound annual growth rate of 19.7 percent, reflecting strong industry investment in digital transformation initiatives [1]. Research indicates that 52 percent of service organizations identify predictive maintenance as a top strategic priority for reducing equipment downtime and improving customer experience, highlighting the sector's recognition of proactive service models as competitive differentiators [2]. Organizations implementing AI-driven scheduling optimization report quantifiable operational improvements, including up to 30 percent reduction in travel time through intelligent route planning and 25 percent increase in technician productivity through optimized work assignment [3]. Customer expectations have evolved dramatically, with 70 percent now expecting companies to provide

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

proactive service notifications and preventive interventions rather than merely reactive support, fundamentally reshaping service delivery models and value propositions [2]. These statistics underscore the urgency for field service organizations to embrace AI-assisted decision support systems not as optional enhancements but as essential capabilities for maintaining competitiveness, meeting customer expectations, and achieving operational excellence in an increasingly demanding market environment.

2. Current State of Human-AI Collaboration in Field Service Operations

2.1 Current Human-AI Interaction Models: What's Happening Now

Contemporary field service operations increasingly employ AI systems in an assistive capacity rather than as autonomous replacement technologies, reflecting a pragmatic approach to automation that preserves human judgment and accountability. Current implementation models demonstrate several distinct interaction paradigms that balance machine efficiency with human oversight. Decisionsupport AI systems recommend optimal schedules, efficient routes, and next best actions based on historical data and real-time conditions, while human dispatchers and service managers retain authority to approve, modify, or override these recommendations based on contextual factors not captured in algorithmic models. Copilot experiences, implemented through conversational AI interfaces, provide natural language guidance to service managers and field technicians, enabling them to query systems, retrieve information, and execute complex workflows through intuitive dialogue rather than navigating multiple application interfaces. Guided workflow systems leverage AI to suggest diagnostic procedures and troubleshooting sequences based on symptom patterns and equipment histories, while technicians adapt these recommendations dynamically based on actual field conditions, equipment variations, and accumulated practical experience. Predictive maintenance alert systems utilize IoT sensors to continuously monitor equipment health parameters, triggering AIpowered predictions of potential failures, while service leaders exercise judgment regarding intervention timing, resource allocation, and customer communication strategies. This prevailing model operates as a human-in-the-loop architecture where AI systems propose courses of action and humans make final decisions, ensuring that automated recommendations undergo validation by experienced professionals who can assess broader organizational, customer, and contextual factors beyond the scope of algorithmic analysis. The collaborative framework acknowledges that while AI excels at pattern recognition, data processing, and probabilistic forecasting, human operators provide irreplaceable capabilities in contextual interpretation, empathetic customer interaction, creative problem-solving, and ethical decision-making, creating a complementary partnership that leverages the strengths of both human and machine intelligence.

INTERACTION MODEL	PRIMARY FUNCTION	HUMAN ROLE
Decision-Support Systems	Schedule and route recommendations based on historical patterns and real-time conditions	Approve, modify, or override Al suggestions using contextual knowledge
Copilot Experiences	Natural language guidance through conversational interfaces for complex workflows	Query systems and retrieve information through intuitive dialogue
Guided Workflow Systems	Diagnostic procedure and troubleshooting sequence suggestions based on symptom patterns	Adapt recommendations dynamically based on actual field conditions
Predictive Maintenance Alerts	Equipment health monitoring through IoT sensors with failure predictions	Exercise judgment on intervention timing and resource allocation strategies
Feedback Loop Integration	Continuous learning from human corrections and operational outcomes	Train AI models through corrections to align with organizational objectives

Table 1: Human-AI Interaction Models in Contemporary Field Service Operations [4]

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

2.2 Advantages of AI Collaboration: How It Maximizes Human Effort

The integration of AI-assisted decision support in field service operations delivers measurable enhancements to human performance across multiple operational dimensions. Efficiency gains materialize through substantial reduction in routine manual tasks, including schedule optimization, progress reporting, data entry, and administrative documentation, allowing service personnel to redirect cognitive effort toward value-added activities requiring human judgment. Decision-making quality improves significantly as AI systems analyze complex patterns across vast datasets that exceed human cognitive capacity, identifying subtle correlations between equipment failures, environmental conditions, maintenance histories, and operational parameters that enable more informed prioritization and resource allocation decisions. Technician productivity increases through AI-driven troubleshooting assistants that provide contextual guidance, recommend probable solutions based on similar historical cases, suggest required parts and tools before site arrival, and offer step-by-step procedures tailored to specific equipment configurations and failure modes. Proactive customer engagement becomes feasible at scale as AI systems predict service needs through analysis of usage patterns, performance degradation trends, and historical maintenance cycles, while human service representatives provide empathetic communication, personalized recommendations, and relationship management that builds customer trust and loyalty. Operational scalability improves dramatically as AI systems manage large volumes of appointment scheduling, work order prioritization, and routine data analysis without proportional increases in administrative staff, while human operators focus attention on exceptional cases, complex problem resolution, customer escalations, and strategic planning activities that benefit from experience and intuition. The collaborative model also supports continuous learning through feedback loops where human corrections and overrides train AI models to improve future recommendations, creating a self-improving system that becomes progressively more aligned with organizational objectives and operational realities over time.

3. Challenges and Technology Landscape

3.1 Risks and Limitations: What Are the Pitfalls?

Despite significant benefits, AI-assisted decision support systems in field service operations present notable risks and limitations that organizations must acknowledge and actively manage. Over-reliance on automated recommendations poses substantial operational risk when users develop blind trust in AI outputs without exercising appropriate skepticism or validation, particularly problematic when training data is incomplete, outdated, or unrepresentative of current operational conditions, potentially leading to systematically flawed decisions that compound over time. Algorithmic bias represents a persistent challenge as AI models can unintentionally favor certain customers, geographic regions, technician profiles, or equipment types based on historical patterns embedded in training data, potentially perpetuating or amplifying existing inequities in service delivery, resource allocation, and customer experience. Transparency and explainability issues emerge from the inherent complexity of modern machine learning models, particularly deep neural networks, which often function as black boxes that provide recommendations without a clear rationale, making it difficult for human operators to understand decision logic, validate reasoning, or identify potential errors in AIgenerated outputs. Workforce resistance manifests when technicians, dispatchers, and service managers perceive AI systems as threats to job security or challenges to professional expertise, leading to distrust of recommendations, reluctance to provide feedback for model improvement, or active circumvention of AI-assisted workflows. Ethical concerns encompass multiple dimensions, including privacy considerations regarding customer data collection and usage, fairness questions about equitable service distribution across customer segments, accountability challenges when AI recommendations lead to negative outcomes, and transparency requirements for automated decisionmaking processes that significantly impact customer experience or business operations. Additional

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

technical limitations include data quality dependencies where AI performance degrades significantly with incomplete or inaccurate input data, model drift phenomena where prediction accuracy declines over time as operational conditions diverge from training scenarios, and integration challenges when implementing AI capabilities across legacy systems and fragmented technology ecosystems.

RISK CATEGORY	MANIFESTATION	ORGANIZATIONAL IMPACT
Over-Reliance on Automation	Blind trust in Al outputs without appropriate validation protocols	Systematically flawed decisions when training data becomes outdated
Algorithmic Bias	Unintentional favoritism toward certain customers, regions, or technician profiles	Perpetuation or amplification of existing service delivery inequities
Transparency Deficiency	Black-box algorithms providing recommendations without clear rationale	Difficulty validating reasoning or identifying potential Al-generated errors
Workforce Resistance	Perception of AI as threat to job security or professional expertise	Distrust of recommendations and active circumvention of Al-assisted workflows
Ethical Governance Gaps	Privacy, fairness, and accountability concerns in automated decision-making	Customer trust erosion and regulatory compliance vulnerabilities

Table 2: Risk Categories and Mitigation Considerations in AI-Assisted Field Service [6,7]

3.2 Tools and Platforms in Use: Industry Standards and Current Technologies

The field service management sector has witnessed a rapid proliferation of AI-enabled platforms that provide varying degrees of intelligent decision support capabilities. Enterprise field service platforms have integrated sophisticated AI functionalities across multiple operational domains. These include intelligent scheduling engines that optimize technician assignments based on skills, location, availability, and predicted service duration. Predictive maintenance modules analyze IoT sensor data to forecast equipment failures before they occur. Next-best-action recommendation engines guide technicians through optimal service procedures [4]. Customer relationship management integrated field service solutions offer several AI-powered capabilities. AI-powered work order analysis automatically categorizes and prioritizes service requests. Parts recommendation algorithms predict required components based on equipment type and failure symptoms. Conversational AI assistants respond to natural language queries from service personnel. Enterprise service management platforms provide AI-based dispatching algorithms that balance workload across technician teams. Knowledge management systems enhanced with natural language processing enable rapid information retrieval. Machine learning models predict service request volumes for capacity planning purposes. Specialized field service applications employ time-based self-learning AI engines. These continuously optimize scheduling algorithms through analysis of historical appointment outcomes, travel patterns, and completion times [5].

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

4. Future Collaboration Vision: A Synergistic Model

The trajectory of field service operations points toward evolution from current human-in-the-loop architectures to more sophisticated human-AI partnership models characterized by increased autonomy balanced with human oversight. Future systems will exhibit greater proactive capabilities, including autonomous detection of anomalous equipment behavior patterns, predictive identification of potential service needs before customer awareness, and automatic work order generation and technician assignment for routine maintenance activities, while human operators focus strategic attention on exception handling, complex problem resolution, customer relationship management, and continuous process improvement. Generative AI copilots will provide increasingly sophisticated real-time coaching and training support to field technicians, offering contextualized procedural guidance, answering technical questions through natural language interaction, suggesting diagnostic approaches for unfamiliar equipment or symptoms, and even simulating experienced mentor feedback to accelerate skill development among junior technicians. Augmented reality integration combined with AI-powered computer vision will enable hands-free field repairs where technicians wear smart glasses that overlay step-by-step visual instructions onto equipment, highlight relevant components through object recognition, connect to remote experts for collaborative problem-solving, and document service activities automatically through ambient intelligence. Ethical AI frameworks will mature to ensure transparency in algorithmic decision-making through explainable AI techniques that articulate recommendation rationale, fairness through regular audits of model outputs for bias across customer segments and service regions, and accountability through clear delineation of human versus machine responsibility in service outcomes [6][7]. The envisioned synergistic model does not pursue complete automation but rather optimal collaboration where AI amplifies human judgment, creativity, and empathy while handling data-intensive analysis, pattern recognition, and routine optimization, creating a service ecosystem where operational excellence and customer trust reinforce each other through complementary human-machine capabilities.

CAPABILITY DOMAIN	TECHNOLOGICAL FOUNDATION	EXPECTED OUTCOME
Proactive Detection	Autonomous identification of anomalous equipment behavior patterns	Automatic work order generation before customer awareness of issues
Generative Al Coaching	Real-time procedural guidance through natural language interaction	Accelerated skill development and contextualized support for technicians
Augmented Reality Integration	Al-powered computer vision overlaying visual instructions on equipment	Hands-free repairs with step-by-step guidance and remote expert connectivity
Ethical Al Frameworks	Explainable AI techniques with regular bias audits across service regions	Transparent decision rationale with clear human-machine responsibility delineation
Voice-Enabled Copilots	Hands-free access to documentation and troubleshooting assistance	Reduced cognitive load enabling concurrent task execution without mental strain

Table 3: Future Capabilities in Human-AI Partnership Models [8, 9]

2025, 10(62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

5. Broader Implications

5.1 Environmental, Economic, and Social Effects

The adoption of AI-assisted decision support in field service operations generates significant impacts across environmental sustainability, economic performance, and social dimensions that extend beyond immediate operational metrics. Environmental benefits materialize through AI-powered route optimization algorithms that reduce unnecessary vehicle travel, lowering fuel consumption and associated carbon emissions while simultaneously decreasing traffic congestion and air pollution in service territories. Predictive maintenance capabilities prevent catastrophic equipment failures that might release hazardous materials, reduce waste generation through timely interventions that extend asset lifecycles, and optimize spare parts inventory to minimize obsolescence and disposal requirements. Economic advantages accrue through multiple mechanisms, including reduced operational costs from improved technician utilization and decreased travel expenses, enhanced revenue capture through higher first-time fix rates that reduce repeat visits and improve customer satisfaction, better resource forecasting that optimizes workforce sizing and training investments, and competitive differentiation that enables premium pricing for proactive service offerings. Data-driven visibility provided by integrated AI analytics platforms enables executive leadership to make evidencebased strategic decisions regarding service model evolution, market expansion priorities, and technology investment allocation. Social implications encompass both workforce and customer dimensions, as AI tools empower technicians with intelligent mobile assistants that reduce job stress through better preparation and guidance, provide opportunities for continuous skill development through AI-powered training systems, and enable safer working conditions through predictive identification of hazardous situations. Customers experience faster service resolution, greater transparency through real-time status updates and proactive communication, and more personalized interactions as AI systems provide service representatives with comprehensive customer histories and preferences. Ethical AI governance mechanisms ensure fairness in service distribution across demographic groups, transparency in automated decision processes that affect customer experience, and privacy protection for sensitive customer and operational data, establishing trust foundations essential for sustained AI adoption at an organizational scale.

IMPACT DIMENSION	PRIMARY BENEFITS	STAKEHOLDER VALUE
Environmental Sustainability	Route optimization reducing fuel consumption and carbon emissions	Extended asset lifecycles through predictive maintenance interventions
Economic Performance	Operational cost reduction through improved technician utilization	Enhanced revenue capture via higher first- time fix rates and customer satisfaction
Workforce Empowerment	Intelligent mobile assistants reducing job stress through better preparation	Continuous skill development opportunities through Al-powered training systems
Customer Experience Enhancement	Faster service resolution with proactive communication and transparency	Personalized interactions leveraging comprehensive customer histories and preferences
Strategic Decision Support	Data-driven visibility enabling evidence-based leadership decisions	Informed strategic investments in service model evolution and market expansion

Table 4: Multi-Dimensional Impacts of AI-Assisted Field Service Adoption [10]

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

5.2 Strategic Imperatives over the Next Decade

Looking toward the next decade of field service evolution, AI-driven ecosystems will become increasingly autonomous, adaptive, and intelligent through continuous learning and improvement. Future platforms will seamlessly integrate generative AI with predictive intelligence, enabling systems that not only recommend optimal decisions but also simulate potential outcomes across multiple scenarios, allowing service leaders to evaluate strategic options through data-driven experimentation before committing resources. Voice-enabled AI copilots will become standard equipment for field technicians, providing hands-free access to technical documentation, real-time troubleshooting assistance, parts ordering capabilities, and customer communication tools, substantially reducing cognitive load and enabling concurrent task execution that improves productivity without increasing mental strain. Ethical and explainable AI frameworks will grow in strategic importance as automation expands into customer-facing and business-critical domains, necessitating rigorous governance processes that ensure algorithmic accountability, regular bias audits, transparent decision rationale, and mechanisms for human appeal of automated decisions [8][9]. Workforce composition will shift significantly as demand surges for data-skilled field engineers capable of interpreting AI recommendations within operational contexts, AI governance specialists responsible for model monitoring and ethical compliance, and hybrid roles that bridge technical service expertise with data science competencies. Organizations must proactively invest in comprehensive AI literacy programs, reskilling initiatives that prepare current employees for evolving responsibilities, and change management strategies that address workforce concerns about automation impacts. The future of field service will be defined by self-optimizing operations that continuously learn from outcomes, predict emerging patterns, and adapt strategies autonomously while maintaining human oversight of ethical boundaries, strategic direction, and customer relationship quality [10].

5.3 Call to Action and Reflective Summary

As organizations move toward AI-assisted operations, success will depend not just on technology adoption but on how responsibly it is deployed. Leaders should invest in ethical AI frameworks to maintain transparency and fairness in automated decisions, ensuring that algorithmic outputs remain accountable to human values and organizational principles. Empowering employees with AI literacy and reskilling programs that strengthen human-AI collaboration represents a critical investment in organizational resilience and adaptability. Service organizations must leverage available AI capabilities to turn reactive service models into proactive, intelligent systems that anticipate needs, optimize resources, and deliver exceptional customer experiences. Ultimately, stakeholders should view AI not as a replacement for human expertise but as a strategic partner that amplifies it. The fusion of data-driven intelligence and human intuition will define the next generation of customer experience, operational excellence, and sustainable service delivery. Organizations that successfully navigate this transformation will establish lasting competitive advantages through superior operational efficiency, enhanced customer loyalty, and workforce empowerment that positions them as industry leaders in the evolving digital economy.

Conclusion

The integration of AI-assisted decision support systems within modern field service management platforms represents a fundamental transformation in how organizations plan, execute, and optimize service delivery operations. By combining the analytical capabilities of machine learning algorithms, the comprehensive data visibility enabled by unified cloud platforms, and intelligent automation tools that handle routine decisions, businesses can transition from reactive service models characterized by firefighting and crisis management to proactive, insight-driven operations that anticipate customer needs and prevent problems before they materialize. The ability of AI systems to learn continuously

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

from historical data, optimize technician scheduling through consideration of multiple constraints simultaneously, and predict maintenance requirements through analysis of equipment telemetry transforms field service from a necessary cost center into a strategic capability that drives competitive advantage, customer loyalty, and sustainable profitability. Field technicians benefit from real-time decision support through mobile applications and natural language processing interfaces that provide contextual guidance without requiring navigation through complex systems. Dispatchers leverage predictive scheduling algorithms to meet service level agreements consistently while balancing workload equity, and customers experience faster resolution times coupled with greater transparency through proactive communication and real-time status visibility. This convergence of human expertise and AI automation generates synergistic outcomes, including higher operational efficiency through optimal resource utilization, reduced costs from decreased travel time and improved first-time fix rates, and strengthened customer relationships built on reliability and proactive engagement.

However, realizing the full potential of AI-assisted field service requires more than technology deployment-success depends critically on responsible adoption practices that preserve human judgment while leveraging machine capabilities. Ethical governance frameworks must establish clear accountability for AI-generated recommendations, implement regular audits to detect and mitigate algorithmic bias, ensure transparency in decision logic through explainable AI techniques, and protect customer privacy through rigorous data governance. Continuous employee training programs must develop AI literacy across the service organization, enabling personnel at all levels to understand system capabilities and limitations, interpret recommendations critically, provide meaningful feedback for model improvement, and recognize situations requiring human intervention. Organizations must foster a culture that views AI as a collaborative partner, augmenting human expertise rather than a replacement, threatening job security, encouraging open dialogue about automation concerns, and actively involving service personnel in AI system design and implementation. The path forward requires balanced investment in technology infrastructure, data quality improvement, process redesign, workforce development, and change management, recognizing that sustainable transformation emerges from coordinated attention to technical, organizational, and human dimensions. Ultimately, AI-driven field service ecosystems empower organizations to achieve a new operational equilibrium where excellence in efficiency, commitment to environmental sustainability, and dedication to customer satisfaction converge into a coherent value proposition. As artificial intelligence technologies continue advancing in capability and sophistication, their role in field service will expand beyond accelerating decisions to enabling smarter, fairer, and more human-centered service experiences that balance automation efficiency with the empathy, creativity, and contextual judgment that define exceptional customer service.

References

- 1. Markets and Markets, "Field Service Management Market," 2024. [Online]. Available: https://www.marketsandmarkets.com/Market-Reports/field-service-management-market-209977425.html
- 2. Kishan Chetan, "State of Service Report, 7th Edition," Salesforce. [Online]. Available: https://www.salesforce.com/en-eu/wp-content/uploads/sites/11/documents/PDF/state-of-service-7th-edition.pdf
- 3. Salesforce, "Achieve Operational Excellence with Salesforce Field Service Scheduling and Optimization," White Paper. [Online]. Available: https://www.salesforce.com/en-us/wp-content/uploads/sites/4/documents/resources/field service scheduling and optimization.pdf

2025, 10 (62s) e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

- 4. Michael Maoz, "What's Next for the Future of Field Service? Here's What You Need to Know to Thrive," Salesforce, 2025. [Online]. Available: https://www.salesforce.com/blog/future-of-field-service/
- 5. PRNewswire, "Field Service Management Market worth \$7.3 billion by 2028," 2024. [Online]. Available: https://www.prnewswire.com/news-releases/field-service-management-market-worth-7-3-billion-by-2028---exclusive-report-by-marketsandmarkets-302090319.html
- 6. Tianwen Zhu, et al., "A Survey of Predictive Maintenance: Systems, Purposes and Approaches," arXiv, 2019. [Online]. Available: https://arxiv.org/abs/1912.07383
- 7. Haining Zheng, et al., "Advancing from Predictive Maintenance to Intelligent Maintenance with AI and IIoT," arXiv, 2020. [Online]. Available: https://arxiv.org/abs/2009.00351
- 8. Amber Armstrong, "Inside the Seventh Edition of the State of Service Report," Salesforce, 2025. [Online]. Available: https://www.salesforce.com/blog/state-of-service/
- 9. GlobeNewswire, "\$11.5 Bn Field Service Management Market Outlook, 2025-2030 Adoption of Augmented Reality for On-site Service Enhancement Reshaping the Landscape," 2025. [Online]. Available: https://www.globenewswire.com/news-release/2025/02/07/3022637/28124/en/11-5-Bn-Field-Service-Management-Market-Outlook-2025-2030-Adoption-of-Augmented-Reality-for-On-site-Service-Enhancement-Reshaping-the-Landscape.html
- 10. Manale, "Best Practices for Improving Your Field Service Operations," Visual Planning. [Online]. Available: https://www.visual-planning.com/en/blog/improving-field-service-operations