
Journal of Information Systems Engineering and Management 
2025, 10(10s) 
e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Automated Classification of Alcoholism Using Discrete Cosine 

Harmonic Wavelet-Packet Transform 

 

Aradhana Manekar1, Lochan Jolly2 
1* Research Scholar and Assistant Professor, E&TC department, Thakur College of Engineering and Technology. University of Mumbai, 

Maharashtra, India.  

aradhana.manekar@gmail.com 

Orchid ID: https://orcid.org/0009-0004-2156-4646 
2 Professor, E&TC department, Thakur College of Engineering and Technology. University of Mumbai, Maharashtra, India.  

lochan.jolly@thakureducation.org 

Orchid ID: https://orcid.org/0000-0003-3038-7958 
 

ARTICLE INFO ABSTRACT 

Received: 01 Nov 2024 

Revised: 25 Dec 2024 

Accepted: 08 Jan 2025 

Alcoholism, characterized by excessive alcohol consumption, leads to addiction and life-

threatening health complications. This not only affects an individual's physical health but also 

their mental and social well-being. While traditional self-reported survey-based methods often 

lack reliability, neuroimaging studies provide more objective and accurate data. This study 

introduces the Discrete Cosine Harmonic Wavelet-Packet Transform (DCHW-PT) as an 

innovative method for automated alcoholism detection using EEG data. To the best of our 

knowledge, this is the first implementation of DCHW-PT in this domain. The framework 

leverages DCT’s computational simplicity, producing precise real coefficients, unlike the DFT. It 

retains HWT’s benefits, such as built-in decimation and interpolation, whereas DWT requires 

anti-aliasing and anti-imaging filters. WPT enhances multi-resolution analysis, and the shift-

invariant nature of DCHW-PT provides an effective solution for detecting transient EEG signals 

associated with alcoholism. Extracted features—including Hjorth parameters (Activity, Mobility, 

Complexity), kurtosis, standard deviation, mean, energy, and skewness—offer a comprehensive 

statistical EEG description. Dimensionality reduction is achieved via a t-test, and model 

performance is assessed using accuracy, sensitivity, specificity, and F1-score, with 10-fold cross-

validation. The Ensemble-Subspace classifier achieves 98.3% accuracy, with sensitivity (98.59%) 

and specificity (98.01%), surpassing traditional methods and aligning with leading EEG-based 

alcoholism detection algorithms. Ultimately, this study demonstrates the effectiveness of 

DCHW-PT in alcoholism detection, setting a foundation for future research in advanced 

alcoholism diagnostic applications. 

Keywords: EEG, Alcoholism prediction, Machine learning, Hjorth Parameters, Discrete Cosine 

Harmonic Wavelet-Packet Transform DCHWPT 

 

INTRODUCTION 

Alcoholism, marked by chronic and excessive alcohol consumption, can cause severe physical and psychological 

dependence. Addiction of alcohol often results in serious health consequences, including liver damage, neurological 

disorders, and various other chronic diseases. As reported by the World Health Organization, Alcohol abuse is a major 

global health issue which contributes to approximately 2.6 million deaths annually and accounting for 4.7% of the 

global disease burden. Men particularly get affected, bearing a larger share of this burden (6.9%) compared to women 

(2.0%) (World Health Organization, 2025). Chronic alcohol consumption not only affects physical health but also 

impairs cognitive function. Alcohol use Disorder (AUD) lead to memory loss, decreased visuospatial abilities, and 

other cognitive deficits. (National Institute on Alcohol Abuse and Alcoholism, 2025). 

Traditional methods for studying alcoholism, such as surveys and questionnaires, may not always provide reliable 

data due to their subjective nature. Neuroimaging techniques, particularly EEG, offer a more objective approach by 

directly measuring brain activity (Sunkara & Rajakumari, 2023; Anuragi & Sisodia, 2020). EEG is a valuable tool for 
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monitoring brain function, but its complex, multi-channel data is often noisy, making manual analysis challenging 

even for experts (Manekar & Jolly, 2022; Sadiq et al., 2023). Figure 1 illustrates samples of EEG data for both 

alcoholic and control subjects across 1024 samples or 4 seconds. Based on the figure, it is difficult to distinguish 

between alcoholic and control signals only through visual observation. Here again, some automated framework is 

desired for accurate processing and characterization of the EEG to detect alcoholism. The proposed research 

addresses these above-mentioned issues by applying advanced techniques of signal processing to have better and 

more automated detection. For validation of our proposed method, we have made use of publicly available EEG 

database available in Irvine Knowledge Discovery in Database (UCI KDD) Archive. 

EARLIER WORK 

Various studies have employed wavelet-based approaches to extract EEG features for detecting alcoholism, with most 

utilizing the UCI alcoholic EEG dataset for validation. Shen et al. (2023) explored deep learning models to classify 

alcoholic EEG signals. Their approach utilized mutual information for connectivity analysis and Continuous Wavelet 

Transform (CWT).A different approach was proposed by Salankar et al. (2023), who combined Empirical Mode 

Decomposition (EMD), for feature extraction. Their model, tested on the UCI-KDD dataset, demonstrated high 

accuracy, particularly for EMD and VMD. Similarly, Bavkar et al. (2021) focused on optimizing EEG channels for 

alcoholism screening. Their method utilized EMD to extract features from Intrinsic Mode Functions (IMFs), followed 

by classification using an ensemble subspace K-NN model. The study employed the Harmony Search algorithm to 

identify optimal EEG channels based on accuracy and sensitivity, highlighting their biological relevance in alcoholic 

subjects. In a more recent study, Khandelwal et al. (2023) proposed an alternative methodology by applying 

oscillatory mode decomposition to EEG signal processing. The study tested multiple time window lengths to 

determine the optimal segment size for EEG analysis and evaluated classification performance using various machine 

learning models. Their results underscore the significance of signal decomposition techniques in enhancing 

classification accuracy. Further advancing this field, Sadiq et al. (2024) introduced a Fast Fractional Fourier 

Transform-Aided Graphical Approach for EEG-based alcoholism detection. Their framework incorporated multiscale 

principal component analysis to eliminate artifacts, followed by graphical visualization using Fast Fractional Fourier 

Transform coefficients. The study extracted 34 graphical features and refined them through ensembled feature 

selection. Among the classifiers tested, Recurrent Neural Networks (RNNs) demonstrated the potential of graph-

based feature extraction and deep learning for EEG-based alcoholism detection. Application of decomposition 

techniques with machine learning classifiers have shown promising results so far.   

 

                                                                                      (a) 

 

                                                                        (b) 

Figure 1. EEG signal samples for alcoholic and control subjects over 4 seconds (1024 samples).                                           

(a) EEG signal for an alcoholic subject. (b) EEG signal for a control subject. 
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All these foregoing examples underscore the changing scenario of EEG-based alcoholism detection with powerful 

signal processing interface. Application of decomposition techniques with machine learning classifiers have shown 

promising results so far. Further advancements in signal processing and statistical feature selection will refine 

classification accuracy and robustness. 

OBJECTIVES 

Many methods have investigated wavelet-based and Fourier-based techniques for alcoholism detection. Though 

extensively used in EEG signal analysis, these methodologies pose numerous limitations, especially while dealing 

with sensitive applications such as alcoholism detection. The traditional schemes include Discrete Wavelet Transform 

(DWT) that requires decimation followed by interpolation in the sub-band decomposition; this involves band-

limiting and image-rejection filters. Also, DWT suffers from a problem of shift variance, where small change in the 

input signal can cause significant changes in the wavelet coefficients. This has been seen as a limitation to the 

detection of fast-transient features in EEG signals. In addition, Fourier-based transform have leakage problems 

originating from abrupt data discontinuities in the Discrete Fourier Transform (DFT), that introduce additional 

complexity due to their coefficients being complex numbers. Additionally, many studies (Das et al., 2019; Sri, Rizal, 

& Fauzi, 2024; Cohen, Katz, Presil, Arbili, & Rokach, 2023; Kumari, Anwar, & Bhattacharjee, 2023).rely on complex 

attribute extraction and classification techniques, predominantly employing hand-crafted features and Machine 

Learning (ML) models, chosen based on researchers' expertise.  

As a part of our contribution, we address the challenges in automated alcoholism detection by proposing a novel 

framework based on the Discrete Cosine Harmonic Wavelet-Packet Transform (DCHW-PT). Our approach 

eliminates the need for decimation and interpolation, effectively avoiding aliasing effects, while shift-invariance make 

it ideal for detecting fast, non-periodic EEG features. By utilizing the Discrete Cosine Transform (DCT) instead of the 

traditional Discrete Fourier Transform (DFT), we simplify and resolve complexity issues due to the real domain of 

DCT. This computational simplicity makes the DCHW-PT highly suitable for real-time EEG signal analysis. 

Furthermore, we introduce a straightforward and comprehensive framework that extracts seven statistical features, 

providing an efficient and accurate solution for Alcohol Use Disorder (AUD) detection 

METHODS 

The proposed DCHW-PT methodology for detecting alcoholism using EEG signals involves several well-defined steps 

as seen in Figure 2. Initially, EEG signals are acquired from sensors placed on the scalp of subjects, capturing the 

brain's electrical activity described in EEG dataset details. These signals are stored in a database containing 45 

Alcoholic and 45 Control subjects, each with 5 trials, totaling 225 signals per group and 450 EEG signals overall. The 

EEG signals then undergo decomposition using the DCHW-PT. This implementation involves decomposition of both 

 

Figure 2. Methodology for DCHW-PT based automated alcoholism detection. 
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approximation and detail coefficients at each level. This results in a full binary tree of wavelet packet coefficients, 

which allows for more detailed analysis and synthesis of the signal. Post-decomposition, feature extraction is 

performed. The specific features extracted include the 3-Hjorth parameters, kurtosis, standard deviation, mean, 

energy, and skewness. These features provide a comprehensive statistical description of the EEG signals. To reduce 

the dimensionality of the feature space and retain only the most relevant features, the Student T test, a non-

parametric statistical test, is applied. Classification was performed using the Classification Learner Application in 

MATLAB. For validation, 10-fold cross-validation was used to ensure the robustness and generalizability of the 

results. The classification stage employs various machine learning classifiers, including SVM, Neural Networks, and 

Ensemble methods, to classify the EEG signals into Alcoholic (AL) and controlled (CN) categories. The classifiers are 

trained to assess their performance in accurately distinguishing between the two categories. The comprehensive 

approach ensures that both the statistical properties of the signals and advanced machine learning techniques are 

leveraged to achieve high classification accuracy. 

EEG dataset details 

The publicly available EEG datasets of alcoholic and normal controlled subjects used in the present study have been 

taken from KDD UCI, University of California) archives (UCI Machine Learning Repository, 2017). All EEG signals 

are recorded according to a 10-20 electrode placement system from a total of 122 (77-alcoholic and 45-nonalcoholic) 

subjects with 120 trials, each with 64 channels (electrodes) forming the EEG full database. Each subject were shown 

standardized set of pictures from the 1980s Vanderwart and Snodgrass set. For each EEG signal measured sample 

length is one second and has a sampling rate of 256Hz.  The artifacts, such as eye blinking muscle movements, are 

rejected. More details of this dataset are available at (https://kdd.ics.uci.edu/databases/eeg/eeg.data.html 

University of California). After data preprocessing, 225 data files from alcoholic subjects and 225 data files from 

control subjects were available.  

Discrete Cosine Harmonic Wavelet Transform 

The Harmonic Wavelet Transform (HWT), introduced by Newland (Newland, 1998).is a frequency domain signal 

decomposition technique. Use of rectangular window in the Discrete Fourier Transform (DFT) leads to leakage, 

which disperses energy across scales in the HWT, indirectly impacting neighboring scales. To address this issue, 

Narasimhan S.V and Shreyamsha Kumar et al. proposed the Discrete Cosine Transform (DCT) as a superior 

alternative to the DFT for spectral estimation within the HWT framework (Shivamurti & Narasimhan, 2011).Use of 

DCT (Ulicny, Krylov, & Dahyot, 2022).  resolves the issue of DFT leakage. Thus, for efficient detection of alcoholism 

in non-stationary applications like EEG, the Discrete Cosine Harmonic Wavelet Transform (DCHWT) has been 

utilized (Narasimhan, Harish, Haripriya, et al., 2009). 

For any signal x(t) the wavelet transform is defined as: 

𝑊𝑥(𝑎, 𝑏) =
1

√|𝑎|
∫−∞

∞
 𝑥(𝑡)𝛹𝑠

∗ (
𝑡−𝑏

𝑎
) 𝑑𝑡                                                         (1) 

where b and a are translation and scaling factors and ∗ indicates the complex conjugate of ψ. These wavelets are 

compactly supported in time. However, there are various applications in signal analysis like EEG, where band-limited 

wavelet or scaling functions are more appropriate. The Mayer and Shannon wavelets are band limited wavelets and 

are supported compactly in frequency domain. The Shannon scaling function, i.e., the Sinc function, is given by 

                                                                                𝜙(𝑡) =  
𝑠𝑖𝑛(𝜋𝑥)

𝜋𝑥
 =

𝑒𝑗𝜋𝑥−𝑒−𝑗𝜋𝑥

2𝑗𝜋𝑥
                               (2) 

According to Parcells Theorem the frequency domain representation of equation one can be given by 

                                                            𝑊𝑥(𝑎, 𝑏) =
√|𝑎|

2𝜋
∫−∞

∞
 𝑋(𝜔)Ψ∗(𝑎𝜔)𝑒𝑗𝜔𝑏 d𝜔                                                   (3) 

However, these functions are complex functions with limited bands. The practical computational edge of being real 

rather than complex in DCT renders it suitable for signal processing tasks and is thus preferred over FT. According 

to Parseval’s theorem, the frequency domain representation of equation (3), for a real signal 𝑥𝑆(𝑡)  and wavelet 

function 𝜓𝑠(𝑡), can thus be given by, 

https://kdd.ics.uci.edu/databases/eeg/eeg.data.html


129  

 

J INFORM SYSTEMS ENG, 10(10s) 

𝑊𝑐(𝑎, 𝑏) =
√|𝑎|

2𝜋
  ∫ 𝑋𝑠(𝜔)𝛹𝑠(𝑎𝜔) 𝑐𝑜𝑠 (𝑏𝜔) 𝑑𝜔

∞

−∞
                                    (4) 

The 𝑊𝑐(𝑎, 𝑏) is estimated from the (4) for given Xs(ω) and 𝛹𝑠(𝜔) representing cosine transform of 𝑥𝑆(𝑡) and 𝜓𝑠(𝑡). 

𝑊𝑐(𝑎, 𝑏) is thus the wavelet transform in the cosine domain rather than the Fourier domain. The cosine harmonic 

function exists only for a small set of frequencies, and it will have a null value for the rest of the frequency bands. It 

is given by, 

𝛹𝑠(𝑎𝜔) = {
1,   𝜔𝑐 − 𝜔𝑜 < 𝜔 <  𝜔𝑐 + 𝜔𝑜

     0,   −𝜔𝑐 − 𝜔𝑜 < 𝜔 <  −𝜔𝑐 + 𝜔𝑜 
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                               (5) 

Where 𝜔𝑐  𝑖𝑠 the translation parameters and 𝜔0 is the scaling parameter. The DCHWT decomposes the signal by 

grouping the coefficients of DCT [21] as depicted in Figure 3a. The Inverse Discrete Cosine Transform (IDCT) applied 

to the concatenated coefficients reconstructs the original signal, effectively reversing the transformation process. This 

ensures that the signal retains its original characteristics after transformation and processing. As depicted in Figure 

3b, the IDCT successfully restores the time-domain representation of the signal, demonstrating the effectiveness of 

the transformation in preserving essential signal features. 

Discrete Cosine Harmonic Wavelet Packet Transform 

Wavelet-Packet Transform (WPT) extends the traditional Wavelet Transform (WT) by decomposing both 

approximation and detail coefficients at each level. This results in a finer frequency resolution of the signal's 

components, making WPT particularly effective for analyzing complex, non-stationary signals like EEG. 

The Discrete Cosine Harmonic Wavelet-Packet Transform further enhances WPT by incorporating the Discrete 

Cosine Transform (DCT) and Harmonic Wavelet Transform (HWT). Leveraging DCT's computational efficiency and 

real-coefficient nature, DCHW-PT facilitates precise and efficient signal decomposition. Its hierarchical structure 

represents multi-level signal decomposition, with each node corresponding to a specific frequency band, allowing for 

detailed feature extraction and analysis. 

Computation and Selection of Features 

Features play a crucial role in pattern recognition. In the current work, various features were obtained for sixteen 

different sub-bands. The extracted features include the 3-Hjorth parameters: Activity, Mobility, and Complexity; 

kurtosis, which is indicative of the level of tailedness of the probability distribution; standard deviation, which gives 

 

(a) DCHW-PT Signal Decomposition 

 

(b)Reconstruction 

Figure 3(a) DCHW-PT sub-band decomposition for level 4 and (b) DCHW-PT reconstruction of the signal by 

concatenation method. 
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the variation or dispersion in the signals; mean energy, which represents the total energy of the signals; and skewness, 

which gives an indication of the level of asymmetry in the probability distribution. 

Hjorth parameters is a specific set of features, which delivers useful insight into the characteristics of time-series 

data, primarily EEG signals. They are particularly advantageous when used in the analysis of EEG since they help 

quantify the signal's temporal and frequency characteristics more accurately, making it useful for observing 

significant physiological or pathological conditions. Each of these features provides unique insights into the 

characteristics of the EEG signals. On the extracted features, the student’s t-test method was performed in Microsoft 

Excel to select significant features and reduce complexity. 

Classification  

Various models have been applied to classify the EEG signals of alcoholics and non-alcoholics. The Ensemble 

Subspace Discriminant classifier combines multiple subspace discriminant classifiers operating on random feature 

subsets. This enhances the robustness and accuracy by leveraging the diversity among these classifiers for better 

generalization in high-dimensional and complex classification tasks. Quadratic SVM employs a polynomial kernel of 

degree two, which enables it to represent quadratic relationships and separate classes that are not separable in 

the feature space. By the number of neurons in its hidden layers, a Wide Neural Network is able to captures complex 

patterns. 

RESULTS 

The results of this study are discussed in three distinct parts: Signal Processing, where the EEG signals were 

decomposed using DCHWPT; Statistical Inferences, which validate the extracted features using significance tests; 

and the Machine Learning Component, where classifiers were applied to differentiate between alcoholic and 

control subjects based on the extracted features. 

Signal Processing: Signal Decomposition using Discrete Cosine Harmonic Wavelet Transform 

The EEG signal is decomposed using the Discrete Cosine Harmonic Wavelet Transform (DCHWT) to obtain 16 sub-

bands across 4 levels, as shown in Figure 3. Decomposition of sub-bands for both alcoholic (left, in red) and control 

 

(a)                                                                        (b) 

Figure 4: EEG Signal Sub-band Decomposition Using DCHWPT Across 4 Levels. (a) Shows the decomposition 

results for an alcoholic subject, while (b) represents the decomposition for a control subject. The approximation 

coefficients displayed are CL0 (Level 1), CL1 (Level 2), CL3 (Level 3), and CL7 or C1 (Level 4). 
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(right, in blue) subjects is depicted in figure 4. Zero padding is done to make the scale size same.  It is nearly 

impossible to differentiate visually between alcoholic and control signals based on these sub-bands, highlighting the 

need to rely on statistical methods like the t-test and machine learning algorithms for accurate classification 

Statistical Inference: Significance of the extracted features 

Before performing a t-test to compare means, an F-test was conducted to determine the equality of variances between 

the two samples. The F-test assesses whether the variances are statistically equal, with the null hypothesis (H0) 

assuming no difference in variances. If the F-test indicates equal variances (p>0.05) a Two-Sample Assuming Equal 

Variances T-test (pooled t-test) is appropriate. Conversely, if the F-test suggests unequal variances (p≤0.05), Welch's 

t-test is employed, as it does not assume equal variances and provides a more accurate analysis in such cases. 

Statistical parameters for performance analysis (F-test and T-test)  

After decomposing the EEG data into DCHWPT coefficients, a F-test was conducted to evaluate whether there is a 

statistically significant difference in the variance between the Alcoholic and Control groups. On sample basis, an F-

test for the Hjorth Mobility feature performed prior to the t-test is shown in Table 1, to check whether the variances 

of the Alcoholic and Control groups are equal for the Hjorth Mobility feature. The Alcoholic group showed a variance 

of 0.0049, while the Control group had a variance of 0.0025. The test yielded an F-statistic of 1.9711 and a p-value of 

2.52E-07. This extremely low p-value, well below the significance level of 0.05, indicates a statistically significant 

difference in the variances between the two groups. Additionally, the F-statistic exceeded the critical value of 1.2414, 

further supporting the rejection of the null hypothesis that the variances are equal. Therefore, the assumption of 

Table 1:  F-Test: A Preliminary Step to Assess Variance Equality Before a T-Test 

 
Statistic Group 1 Group 2 

Average (Mean) 1.3788 1.3999 

Variance 0.00486 0.00247 

Sample Size 225 225 

Degrees of Freedom (df) 224 224 

F-Value 1.9711  

One-Tailed p-value (P(F≤f)) 2.52E-07  

Critical F-Value (One-Tail) 1.2414  

 

Table2. T-test (Two-Sample Assuming Unequal Variances) in Microsoft Excel, performed on the Hjorth 
Mobility feature for two different groups of Alcoholic and Control 

 
Statistic Group 1 Group 2 

Average (Mean) 1.3788 1.3999 

Variance 0.00486 0.00247 

Sample Size 225 225 

Hypothesized Mean 
Difference 

0  

Degrees of Freedom (df) 405  

t-Value -3.6969  

One-Tailed p-value 0.000124  

Critical t-Value (One-Tail) 1.6486  

Two-Tailed p-value 0.000248  

Critical t-Value (Two-Tail) 1.9658  
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unequal variances was confirmed, and the subsequent t-test was conducted under the unequal variances assumption 

to ensure the validity of the analysis. Group Variable 1 being alcoholic and 2 being control. 

Table 2 presents the results of a t-test (Two-Sample Assuming Unequal Variances) conducted using Excel, aimed at 

comparing the Hjorth Mobility feature between two distinct groups—Alcoholic and Control. The analysis reveals a 

statistically significant difference in the means of Hjorth Mobility between these groups. The Alcoholic group shows 

a mean value of 1.3788 with a variance of 0.0049, while the Control group has a slightly higher mean of 1.3999 and 

a smaller variance of 0.0025. Both groups have 225 observations. The two-tailed p-value is 0.000248, which is far 

below the conventional significance threshold of 0.05, indicating that the difference between the two groups is 

statistically significant. Therefore, the null hypothesis, that there is no difference between the Hjorth Mobility of 

Alcoholic and Control groups can be rejected. This finding underscores the distinct difference in Hjorth Mobility 

between the two categories, suggesting that this feature could play a crucial role in distinguishing Alcoholic from 

Control subjects based on EEG analysis. 

Feature Analysis and Selection for EEG-Based Alcoholism Detection 

As noted from table 3a and table 3b, Hjorth parameters demonstrated strong discriminative capability between the 

alcoholic and normal EEG signals. Other features also showed very low p-values, suggesting their effectiveness in 

distinguishing the two classes. These metrics, such as Hjorth parameters, standard deviation, and mean energy, 

consistently exhibit significant differences and play a crucial role in classification, making them valuable for 

identifying alcoholism through EEG signal analysis. Features with p-values below 0.05 were selected for further 

classification. 

Table 3b: P-values for all extracted features on scales D9 to D16 using DCHW-PT method for Alcoholic   and 

Normal EEG signals using Student T Test 

 

Kurtosis Std dev 
Mean 

Energy 
Skewness 

Hjorth Hjorth Hjorth 

Activity 
Complex 

-ity 
Mobility 

C9 0.211718 0.007027 0.026189 0.109066 0.000412 1.27E-16 9.44E-20 

C10 0.080441 6.57E-10 0.002702 0.115619 0.000597 7.51E-26 2.57E-28 

C11 0.115418 0.005027 0.005067 0.393124 0.006202 1.08E-24 3.43E-23 

C12 0.299625 0.001060  0.001633 0.143234 0.001873 7.70E-26 1.94E-24 

C13 0.068366 0.009664 0.000179 0.403124 0.000179 2.07E-24 4.50E-23 

C14 0.591533 0.028566 0.000538 0.113124 0.000552 8.69E-25 2.67E-23 

C15 0.392571 0.006872 6.90E-05 0.868979 6.97E-05 2.78E-25 1.79E-24 

C16 0.348287 0.015693 0.000164 0.423124 0.000164 1.41E-24 3.33E-23 

 

Table 3a: P-values for all extracted features on scales D1 to D8 using DCHW-PT method for Alcoholic and 

Normal EEG signals using Student T Test 
 

Kurtosis Std dev 
Mean 

Energy 
Skewness 

Hjorth Hjorth Hjorth 

Activity 
Complex 

-ity 
Mobility 

C1 0.160916 1.81E-05 0.001768 0.152425 0.001767 6.52E-07 0.00016 

C2 0.194448 7.22E-05 0.000798 0.114822 0.000658 9.83E-13 1.07E-13 

C3 0.444728 0.029438 0.002471 0.423115 0.001751 9.29E-10 5.38E-12 

C4 0.058625 0.009027 0.004702 0.580411 0.002412 0.002599 0.000364 

C5 0.274415 9.03E-10 3.91E-10 0.407548 7.29E-10 5.49E-08 8.98E-08 

C6 0.080961 7.57E-10 9.73E-11 0.219139 1.02E-10 5.26E-10 8.78E-16 

C7 0.284415 3.20E-08 1.75E-08 0.680646 1.75E-08 9.63E-09 8.56E-16 

C8 0.294415 0.008027 0.003702 0.902501 0.001412 1.06E-15 1.70E-18 
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Machine Learning: Performance Metrics and Hyperparameter Optimization of Classifiers 

An overview of the performance metrics across different classifiers is offered by Figure 5. The Ensemble-subspace 

discriminant classifier stands out as the most effective model with an accuracy of 98.3%, surpassing all other 

classifiers in overall performance. Notably, it exhibits the highest sensitivity (True Positive Rate) at 98.59% and 

specificity (True Negative Rate) at 98.01%, indicating its proficiency in accurately identifying both positive and 

negative cases. On the other hand, the Wide Neural Network (ANN-. Wide) also performs admirably, achieving an 

accuracy of 97.2%. It strikes a good balance between sensitivity (98.07%) and specificity (96.37%), showcasing its 

robustness in handling a wide range of cases. 

Table 4 Various classifiers Parameters set for the experiment 

Classifier Parameters Values Settings 

Medium Gaussian SVM Kernel Function Gaussian Box Constraint: 1 

Kernel Scale 
Mode 

Auto Multiclass Method: OVO 

Wide Neural Network Network Type Medium Activation: ReLU 

Layer Size First Layer: 100 Subsequent Layers: 10 

Quadratic SVM Kernel Function Quadratic Box Constraint: 1 

Kernel Scale 
Mode 

Auto Multiclass Method: OVO 

Ensemble -subspace 
discriminant 

Ensemble Method Subspace Learner Type: Discriminant 

Max Splits 20 Learners: 30 

Narrow neural network Network Type Advanced Activation: ReLU 

Layer Size First Layer: 10 Subsequent Layers: 10 

 

 

 

Figure 5 Performance Metrics of DCHW-PT-Based Classification Using Various Classifiers 

Accuracy Sensitivity Specificity Precision F1 Score

Ensemble -subspace 0.983 0.9859 0.9801 0.98 0.9722

ANN-Wide 0.972 0.9807 0.9637 0.963 0.9717

SVM -quadratic 0.963 0.9584 0.9667 0.967 0.9627

Ensemble- Bagged 0.958 0.9584 0.958 0.958 0.9582

ANN-Narrow 0.954 0.948 0.9495 0.949 0.9485

SVM-medieum 0.947 0.9408 0.9524 0.953 0.9469

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Performance Metrics

Ensemble -subspace ANN-Wide
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Hyperparameter settings for various machine learning models, including SVM and neural networks are illustrated in 

Table 4. Key parameters include kernel functions (Gaussian and quadratic for SVM), box constraint levels, activation 

functions (ReLU), layer sizes, and multiclass classification methods (One-vs-On and Second-and-Third-layer size for 

neural networks), as well as learner types and the number of learners for ensemble methods 

Comparative Analysis of State-of-the-Art EEG-Based Alcoholism Detection Techniques 

Comparative analysis of the latest state-of-the-art techniques for EEG-based alcoholism detection is offered 

by Table 5. It highlights various advanced methodologies that have been developed, utilizing a wide range of 

approaches including Empirical Mode Decomposition, nonlinear dynamics theory, graph-based neural networks, 

and multiscale principal component analysis. Each of these methods focuses on feature extraction, optimization, and 

classification, achieving high classification accuracy in distinguishing between alcoholic and non-alcoholic EEG 

signals. Our proposed Discrete Cosine Harmonic Wavelet Packet Transform methodology stands out in the 

comparison table, demonstrating superior performance with an accuracy of 98.3%. 

 

Table 5. Comparison table with the latest state of the art Implementation 

 Contributors State of the art technology used Accuracy  

   
1 

Subrata Pain, 
Saurav Roy, 
Monalisa Sarma, 
Debasis Samanta 
(2023) 

Combined EEG features and brain connectivity in a 
graph and classified using a Graph Neural Network 
(GNN) and Phase Lag Index (PLI). 

93.28% 

2 Koliqi, R., Fathima, 
A., Tripathi, A.K., et 
al. (2024) 

Nonlinear dynamics theory to EEG signals with 
CEHOC optimization and various entropy features 
for SVM classification. 

95.89% 

3 Rajaguru, H., 
Vigneshkumar, A., & 
Gowri Shankar 
(2023) 

Heuristic Classifiers with Stochastic Gradient 
Descent Technique for Tuning the Hyperparameters 

96.31% 

4 M. T. Sadiq, A. 
Yousaf, S. Siuly, and 
A. Almogren (2024) 

Multiscale principal component analysis and 
ensembled feature selection with n0eural network 
for EEG Alcoholism Detection 

97.50% 

5 Proposed Method: 
Aradhana Maneker 
& Lochan Jolly 
(2025) 

 Discrete Cosine Harmonic Wavelet-Packet 
Transform with kurtosis, standard deviation, mean 
energy, skewness, Hjorth activity, complexity, and 
mobility features and Student T test with Ensemble 
subspace classifier   

98.3% 

 

 

Figure 5 Confusion metrics for Ensemble subspace classifier giving accuracy of 98.3%.  
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CONCLUSION AND FUTURE WORK 

Alcoholism is a serious societal issue, affecting individuals and communities by straining healthcare systems, 

disrupting families, and reducing economic productivity. Our method aims for high accuracy and unbiased 

classification, using neuroimaging techniques that offer significant advantages over traditional survey methods. The 

Discrete Cosine Harmonic Wavelet Packet Transform method stands out by effectively capturing transient features 

in EEG signals. This application marks the first instance, to our knowledge, of utilizing DCHW-PT for EEG based 

Alcoholism detection. The proposed framework yields outstanding classification accuracy with Ensemble subspace 

classifier. Extraction of features such as kurtosis, standard deviation, mean energy, skewness, and Hjorth activity, 

complexity, and mobility parameters and feature selection by Student's T-test improves and cross-validation (10-

fold) strengthens the approach. Moreover, the DCHWPT framework provides computational advantages in terms of 

shift invariance and lower complexity due to which it is more computationally efficient for real-time applications 

than traditional wavelet- or Fourier-based methods. This study introduces a promising EEG-based framework to 

detect alcoholism and the approach can be of use in future for many other neurological disorders like Epilepsy and 

Alzheimer's disease. In improving outcomes for individuals suffering from neurological and psychological conditions 

with particular emphasis on addressing the global challenge of alcoholism, our research advances the available EEG 

analysis techniques 
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