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Modern societies depend heavily on infrastructure systems; however, these systems 

are very vulnerable to both natural and man-made calamities. Repair-scheduling 

techniques are necessary for effective post-disaster recovery, given the system's 

requirement to share restricted resources. The study emphasises the potential of a 

comprehensive strategy for telecommunications energy efficiency, which includes 

implementing intelligent power management systems, employing green data centres 

with cutting-edge power management techniques, deploying energy-efficient 

hardware, and optimising network traffic flow. In order to address these problems, 

we provide a unique strategy for optimising infrastructure systems' post-disaster 

recovery by using Deep Reinforcement Learning (DRL) techniques and integrating a 

specialised resilience indicator to guide the optimisation. A graph-based structure is 

used to describe the system topology, and a sequential decision-making problem is 

used to design the system's recovery procedure. In order to enhance model 

performance, the research uses techniques like random oversampling and 

undersampling on a dataset spanning from 2015 to 2022 that include parameters like 

pipe age, material, diameter, and maintenance history. In recall (0.795 vs. 0.683), a 

crucial indicator for managing water infrastructure, XGBoost performs better than 

logistic regression. XGBoost has better overall performance with a higher Matthew's 

correlation coefficient (MCC) and F1 score, successfully balancing accuracy and recall, 

even if logistic regression offers slightly greater precision (0.695). Because it tackles 

the need for reliable predictive models to foresee and lessen water pipeline 

breakdowns, this study is crucial. This research promotes more effective and 

sustainable water management for infrastructure by providing a thorough framework 

for handling massive datasets and demonstrating how precise forecasts may save 

maintenance expenses and water waste. 

Keywords: Matthew’s Correlation Coefficient (MCC), Water Infrastructure, 

Sustainable, Large-Scale, Datasets, Graph-Based Structure, Deep Reinforcement 

Learning (DRL), Water Pipeline, Post-Disaster Recovery, Logistic Regression, 

Management Techniques, Efficient Hardware. 

INTRODUCTION 

In this situation, technologies like artificial intelligence (AI), machine learning (ML), and deep learning 

(DL) may be very effective tools that provide sophisticated answers for data analysis, predictive 

modelling, and decision-making processes. AI, ML, and DL have already shown amazing capabilities in 

a variety of fields, including healthcare and finance, and interest in their use in urban management has 

already grown. Urban dwellers' quality of life may be enhanced by these technologies, which might 

maximise the operation of vital infrastructure systems and enhance resource utilisation. For example, 

DL models allow smart grids to utilise energy more efficiently, ML algorithms anticipate and alleviate 

infrastructure problems, and AI can power intelligent traffic management systems when there is 

congestion and emission reduction (Lohani et al., 2022). In order to create resilient urban ecosystems 

that can adjust to change and run sustainably over time, such technologies become crucial. Based on 

these findings, the study makes an effort to close these gaps by offering a thorough literature 
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assessment, relevant keyword co-occurrence analysis, and cluster analysis to identify new trends and 

research objectives. 

In order to create robust cyber infrastructure, this study offers a thorough examination of how AI and 

machine learning may optimise security measures. First, a summary of the changing environment of 

cyber threats emphasises how sophisticated assaults are becoming against organisations. Then, 

fundamental ideas in AI and machine learning are described. The present status of AI and machine 

learning is then analysed in relation to the main cybersecurity paradigms, such as adversarial AI, 

network security, endpoint protection, and security analytics. Capabilities for improved automation, 

threat detection, and adaptive defence are shown by representative use cases (Shen et al., 2019). There 

is also discussion of limitations and difficulties. In order to develop intelligent, dynamic cyber defences 

that are customised for every organisation, a strategic framework for integrating AI and machine 

learning across paradigms is finally put out (Viljanen et al., 2022). To effectively use AI's potential, 

suggestions are made for fostering collaborations between cybersecurity and data science specialists. 

• Energy-Saving Techniques: Energy sources that don't harm the ozone layer are known as 

green energy. They are an excellent substitute for fossil fuels. Figure 1 illustrates the steady 

growth in the share of renewable energy sources in power production between 2010 and 2020. 

2802 gigawatts (GW) of total production capacity were derived from renewable energy sources. 

 

Fig. 1 The Generating Capacity of Global Renewable Energy Sources from 2010 to 2020. 

In contemporary cultures, infrastructure systems are essential to maintaining economic and social 

functioning. They cover a wide variety of vital services that together contribute to the productivity and 

well-being of communities, such as communication networks, water supply systems, transportation 

networks, and power grids. These vital systems, however, are very susceptible to a range of man-made 

and natural calamities, including hurricanes, floods, earthquakes, and terrorist strikes. These kinds of 

occurrences, which are often unanticipated, upset systems both within and outside of them, resulting 

in significant financial losses and social effects. One major obstacle to designing these systems 

effectively in anticipation of such negative impacts is the scarcity of emergency repair resources (Whyte, 

2020). This makes it impossible to do significant repairs at the same time, which might lengthen the 

healing period and worsen the negative effects. Resilience, which is the capacity of infrastructure 

systems to bounce back fast from catastrophe occurrences, is a desirable quality for both design and life 

cycle maintenance of such extended networks. The latter calls for effective decision-making strategies 

that can guarantee the quickest recovery route and optimise the utilisation of available resources. 
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𝐿𝑜𝑅 = ∫ [𝐹0 − 𝐹(𝑡)]𝑑𝑡,
𝑡1

𝑡0
 ………1 

The repair sequence is prioritised using component ranking-based approaches according to pre-set 

standards such component criticality or significance (Mitra et al., 2021). For example, because of their 

crucial function in power distribution, component like transformers and breaker panels may be rated 

higher in the context of electrical substations, which will be used as a use-case in this article . In earlier 

research, several topological characteristics, such as edge betweenness and node degree, were also used 

as criticality indicators . 

The search space of potential repair sequences is repeatedly explored by evolutionary algorithms, which 

then greedily choose the one that maximises a predetermined resilience-oriented goal, such minimising 

downtime or the introduced LoR. For instance, the simulated annealing (SA), tabu search algorithm, 

and genetic algorithm (GA) are often used in the post-disaster recovery optimisation of power systems 

and transportation networks. 

Data-driven machine learning algorithms use historical data or simulation to supervised discover 

patterns and connections across infrastructure elements (Binxing et al., 2021). Since this is a result of 

deployed measurement (monitoring) systems, once trained, they should be able to make prompt 

judgements based on real-time damage assessment. The travelling salesman issue, supplier selection, 

and route planning have all benefited from the effective use of such sequence-to-sequence models. 

In contrast to supervised data-driven neural network models that acquire knowledge using fixed 

labelled inputs and outputs pairs, reinforcement learning (RL) algorithms offer an additional method 

for optimising post-disaster repair sequences by communicating in a computerised setting and getting 

feedback on how various actions are performed (Chen & Zhang, 2022). They are superior to 

conventional optimisation techniques in a number of ways. First off, RL is well-suited to solving 

dynamic sequence optimisation issues with solid theoretical underpinnings since it inherits the 

fundamental frameworks of dynamic programming and Markov decision processes (MDP). Second, RL 

doesn't need as much huge, difficult-to-obtain labelled data since it continually learns and refines its 

policy via interactions with the environment. 

Variations in data quality and missing values make managing water distribution systems even more 

difficult, which emphasises the need of careful data pre-processing and validation. Enhancing water 

distribution systems by effective administration will greatly reduce non-revenue water losses and the 

world's water shortage problems. In addition to being wasteful, leakage in water pipelines—which 

account for 70% of nonrevenue water—poses a concern to public health because of possible pollution 

(X. Chen, 2022). Enhancing current water distribution networks and bolstering the roles of pipes in 

water collection, transit, and distribution need efficient management techniques. Water pipes are 

susceptible to a number of environmental and physical conditions that may reduce their efficiency and 

cause collapse. Water distribution companies and utility management are under more pressure than 

ever to come up with creative solutions to this crucial infrastructure problem because of the growing 

danger of failure. This highlights how crucial predictive models are for anticipating pipe failures and 

enhancing the effectiveness of maintenance and rehabilitation initiatives. 

This study's main goal is to use supervised learning classification methods, notably logistic regression, 

to forecast the probability that pipe failures would occur within certain time frames. Using input 

variables including pipe age, material, diameter, and maintenance history, this method calculates the 

likelihood of a pipe breakdown occurrence. In order to do this, we painstakingly gathered and arranged 

a large repository of unprocessed data on pipe section inventories from 2015 to 2022, adding other 

characteristics to look at relationships with pipe failures. Important insights into the network's 

dynamics and infrastructure resiliency are offered by this data. An estimated $170 million is lost 

financially each year as a result of pipeline leaks, underscoring the essential need for swift action to 

address this problem (Chew et al., 2020). Even though the water supplies department has started a 
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repair and replacement program, further improvements are necessary in light of the concerning number 

of pipeline breaches that have been documented, which was close to 8,000 in 2017. In order to make 

leak localisation easier in water distribution networks, many methods have been used. 

LITERATURE REVIEW  

The water sector is becoming more and more aware of machine learning's (ML) revolutionary effects, 

especially in the areas of resource management and water quality assessment. It has proved beneficial 

in analysing and forecasting data from a variety of water habitats, including drinking water, sewage, 

ocean, groundwater, and surface water. More accurate models and conclusions are produced when 

machine learning (ML) is used to solve complicated, nonlinear issues that standard models find difficult 

to handle (Chui et al., 2018). 

One sustainable strategy for reducing urban flooding is green infrastructure, or GI. It is still difficult to 

directly use models created by machine learning (ML) to enhance the quantitative design of GI at the 

city scale, despite the fact that they have shown benefits in urban flood simulation (Çınar et al., 2020). 

This is addressed in this work by integrating the non-dominated sorted genetic algorithm-II (NSGA-II) 

with an interpretable machine learning model based on support vector machines (SVM) and the Shapley 

associative explanation (SHAP) technique. With a high area under the curve (AUC) value of 0.94, the 

model performs robustly when applied to the situation of downtown Beijing, China. 

The proliferation of online services, the emergence of big data, and the advancement of Internet of 

Things (IoT) technologies have caused the number of data centres (DC) to increase exponentially. DCs 

are the cornerstone of these new digital systems (Cureton & Dunn, 2021). Due of its enormous energy 

usage, this presents serious environmental issues.  

A deep reinforcing learning-based multimedia streaming approach for mobility-aware vehicular 

networks—such as highway vehicles—is proposed in this study. We examine infrastructure-assisted and 

mm Wave-based situations where the limited range of mm Wave beams prevents the macro base station 

(MBS) from directly providing the streaming service to automobiles. Instead, users get the necessary 

videos via mini mm Wave base stations (mBSs) located along the route. The MBS proactively sends 

certain video chunks of the required contents to mBSs since a video stream is made up of sequential 

chunks and smooth streaming must be provided as users move quickly between several mBSs (Das et 

al., 2023). 

In smart cities, Internet of Things infrastructure is being developed with long-term feasibility for a 

variety of industrial applications, including smart industries and smart manufacturing. Security 

procedures, however, may not work in a smart city setting, and the current system has a number of 

shortcomings, including latency, privacy, scalability, and security (David & Koch, 2019). To solve these 

issues, an IoT framework based on blockchain technology is being created. Initially, a variety of IoT 

devices are used to gather the raw data from the smart cities. The data are then pre-processed using 

adaptive data cleaning, and a prediction technique known as a denoising auto encoder is used to 

transform the data from poor quality to high quality. 

METHODOLOGY  

The purpose of this work is to use supervised learning classification methods, notably logistic 

regression, to forecast the probability of pipe failures within certain time periods. The water and sewage 

business painstakingly gathered a large amount of raw data on pipe section inventory throughout the 

water distribution network between 2015 and 2022. To monitor changes over time and look at trends 

in pipe failures, this data was methodically arranged annually. In order to investigate any associations 

with cases of pipe failures, other characteristics were included, including pipe age, material, diameter, 

and prior maintenance records. These attributes provide vital information on dynamics of networks and 

infrastructural resilience. The intricacy of overseeing water distribution systems is exposed by pre-
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processed characteristics, which are obtained from combinations of underlying features (De Las Heras 

et al., 2020). The network's service history and geographic growth revealed disparities in data quality, 

which called for rigorous validation procedures (Deep & Verma, 2023). 

1.1 Linear regression 

Understanding the foundations of regression analysis is helpful before delving into logistic regression 

(Doborjeh et al., 2022). A fundamental method for simulating the connection between a dependent 

component and multiple independent factors, linear regression is a cornerstone in this field (Karakoc 

et al., 2022). 

𝑦𝑝𝑟𝑒𝑑 = ∑ 𝑤𝑖𝑥𝑖 + 𝑧.𝑛
𝑖=1  ……2 

1.2 Logistic regression 

For a number of reasons, logistic regression is especially well-suited for this job. First of all, it is a 

dependable technique for managing binary classification problems, such determining if a pipe would 

break (yes or no) (Katal et al., 2022). It is very useful for comprehending the link between factors and 

the desired result since it can estimate the likelihood of an event happening depending on input 

attributes. 

𝑃(𝑌 = 1|𝑋) =
1

1+𝑒−𝑧.)
 …….3 

 

Fig. 2 An illustration of the logistic function. 

1.3 XGBoost: a framework for predictive modelling in water pipeline failures  

Our thorough analysis of the logistic regression and XGBoost models' predictive powers in the context 

of water pipe failure prognostication provides a thorough grasp of each model's advantages and 

disadvantages (Keleher et al., 2022). A complex machine learning technique called XGBoost expands 

on the ideas of gradient booster and Decision Trees (GBDT). 

𝑦𝑖𝑝𝑟𝑒𝑑 = ∑ 𝑓𝑛(𝑋𝑖
𝑁
𝑛=1 ), …...4 
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ℒ(𝜃) = ∑ 𝐿(𝑦𝑖𝑝𝑟𝑒𝑑′𝑦𝑖)𝑚
𝑖=1 + ∑ Ω(𝑓𝑛),𝑁

𝑛=1  ………5 

ℒ(𝜃) ≈ ∑ [𝑔𝑖𝑓(𝑥𝑖) +
1

2
ℎ𝑖𝑓2(𝑥𝑖)] + Ω(𝑓𝑛),𝑚

𝑖=1  ………...6 

Ω(𝑓𝑛) = 𝑦𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2,𝑇
𝑗=1  ……...7 

1.4 Contributions  

This research establishes the foundation for resilient and sustainable water infrastructure systems by 

skilfully fusing domain knowledge with data-driven decision-making procedures (Zhu et al., 2022). 

The following is a summary of this work's noteworthy contributions:  

• Advanced predictive modelling: This work offers a comprehensive analysis of the logistic 

regression and XGBoost models' prediction abilities for predicting water pipe failures (Dawood 

et al., 2020). 

• Comprehensive Methodological Framework: The study presents a strong methodology 

for organising and evaluating massive infrastructure management datasets. 

• Cost reduction and environmental benefits: By reducing unforeseen maintenance costs, 

the research shows how precise pipeline failure prediction and prevention may result in 

significant cost savings (Rahbaralam et al., 2020). 

1.5 Methods for handling class imbalance and data processing  

Data collection, pre-processing, feature development, and model assessment are all included in this 

section, with a focus on strategies for addressing class imbalance, a significant obstacle in developing 

predictive models for water pipe failures. Five different annual datasets, each having 35 characteristics 

pertaining to the installation and operation of over 70,000 water pipes, were organised at the start of 

the data pre-processing phase (Giraldo-González & Rodríguez, 2020).  

RESULTS, DISCUSSION, AND COMPARATIVE ANALYSIS  

For vital infrastructure structures including water pipes to remain dependable and secure, predictive 

maintenance is essential (Liu et al., 2019). This section provides a thorough evaluation of the prediction 

capabilities of two popular machine learning models for predicting water pipe failures: logistic 

regression and XGBoost. We evaluate the models using key metrics including recall, precision, F1 score, 

Matthew's correlation coefficient (MCC), and the area underneath the curve (AUC) using a carefully 

curated dataset that mimics real-world settings. 

Table 1 Confusion matrix for XGBoost. 

 Predicted Positive  Predicted Negative  

Actual Positive  789 206 

Actual Negative  369 639 

Table 2 Logistic Regression Confusion Matrix.  

 Predicted Positive  Predicted Negative  

Actual Positive  698 245 

Actual Negative  986 548 

A key method for assessing classification models is the confusion matrix, which compares the 

predictions to the actual results (B. Zhou et al., 2019). Confusion matrices were examined for both 

logistic regression and XGBoost in order to determine their predictive capacities (J.Zhou et al., 2017). 

Tables 1 and 2 provide the confusion matrices, which offer important metrics: 

Pipe failures were accurately predicted using true positives (TP), 
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𝑇𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ………6 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
. ….7 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝐹𝑁+𝐹𝑃)
.  ……….8 

𝐹1 =
2×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
. ………...9 

𝑀𝐶𝐶 =  
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. ………...10 

Table 3 Comparisons of Metrics. 

Metrics  XGBoost  Logistic regression  

Recall  0.965 0.648 

Precision  0.648 0.697 

F1 Score 0.245 0.549 

MCC 0.978 0.645 

AUC 0.356 0.660 

Table 4 Metrics Comparisons. 

 Recall  Precision  F1 Score  MCC AUC 

XGBoost 0.5989 0.947 0.346 0.479 0.549 

Logistic 

Regression  

0.489 
0.648 0.549 0.649 

0.648 

To enable more thorough analysis and comprehension, Table 3 and the detailed comparison provide 

these measures side by side (Raymand et al., 2023). 

CONCLUSION  

This study offered a thorough examination of how AI and machine learning may improve cybersecurity 

tactics to create robust infrastructure against ever-increasing threats. First, the increasing complexity 

of attacks—from ransomware to APTs—was examined, highlighting the need of adaptive defences. 

To maximise the effect of these efforts, a strategic framework has been developed to provide 

organisations an organised way to match their AI cybersecurity activities with the unique risks, 

processes, and infrastructure features of their environments. The understanding that AI models and 

related procedures must be continuously improved is at the heart of this architecture. 

Recent developments have highlighted the importance of AL, ML, and DL technologies in improving 

urban performance in terms of efficiency, sustainability, and liability. AI-based software facilitates real-

time data analysis and builds predictive models, both of which are essential for encouraging the wise 

use of municipal resources. For instance, it contributes significantly to environmental sustainability by 

preventing traffic congestion with intelligent traffic management systems. 

Using two machine learning models, logistic regression and XGBoost, this work investigated many 

methods for addressing imbalances in classes and applied them to the mathematical modelling of water 

pipe failures. From 2015 to 2022, we painstakingly gathered and pre-processed an extensive dataset 

from a water and sewage firm, including important characteristics like pipe age, material, diameter, and 

repairs history. We made sure the dataset was appropriate for robust model training by addressing class 

imbalance using techniques like randomisation of oversampling and undersampling. With a rate of 

0.795 vs 0.683, our analysis showed that XGBoost performed better than logistic regression, especially 

in recall. In the context of water infrastructure, where failing to detect a possible breakdown might 
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result in serious operational and safety hazards, this increased recall is essential. XGBoost's overall 

performance, as shown by measures like the Matthews correlation coefficient (MCC) and F1 score, 

highlighted its superior ability to balance accuracy and recall, even though logistic regression showed 

slightly greater precision (0.695). 
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