

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 121

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The Future of Software Development: Programmers and AI

Pair Programming

Pranati Sahu

Arizona State University, USA

ARTICLE INFO ABSTRACT

Received: 28 Sept 2025

Revised: 03 Nov 2025

Accepted: 11 Nov 2025

The integration of AI programming assistants represents a paradigm shift in

software development, transforming traditional workflows into collaborative human-

machine partnerships. This article traces the evolution from basic code completion

tools to advanced AI pair programming systems, examining their impact on

productivity, code quality, and developer well-being. The transformation extends

beyond technical aspects to reshape educational approaches, career development

paths, and organizational structures. While delivering clear productivity benefits, AI

assistants also introduce challenges related to code quality, security, and risks of

developer deskilling. Ethical considerations emerge around safety-critical

applications, intellectual property, and the long-term effects of automation on

developer skills. The workforce landscape is evolving with new specialized roles,

restructured teams, and altered global development patterns. Looking forward,

advancing AI-human collaboration in programming requires overcoming these

limitations. Progress will depend on explainability, multimodal interaction, domain-

specialized systems, and collaborative learning models that complement—rather

than replace—human expertise.

Keywords: AI pair programming, developer productivity, software engineering

education, prompt engineering, human-AI collaboration

1. Introduction: The Emergence of AI-Assisted Programming

Software development has evolved dramatically, from early line editors to today’s AI-powered

programming assistants. The rise of AI as a collaborative coding partner marks a paradigm shift that

is transforming how software is created, maintained, and evolved.

The journey toward AI-assisted programming began with rudimentary tools designed to streamline

coding workflows. Early integrated development environments (IDEs) in the 1990s introduced basic

code completion, syntax highlighting, and debugging tools that reduced cognitive load and accelerated

development. These early tools focused on reducing syntax errors and improving readability rather

than generating substantive code. Interactions on platforms like StackOverflow show how developers

relied on collective knowledge to overcome technical challenges. Modern AI tools now attempt to

emulate these collaborative patterns programmatically. Research indicates that the quality of answers,

response time, and community reputation systems significantly influence how developers adopt

solutions, providing crucial insights into effective AI assistant design [1].

The transition from simple completion tools to sophisticated AI-powered systems occurred gradually

over two decades. Traditional code completion relied on limited pattern matching and predefined

templates, offering suggestions based on local context and library definitions. This approach evolved

into statistical models that could predict likely code completions by analyzing vast repositories of

existing code. The breakthrough came with large language models (LLMs), which infer programming

intent and generate contextually appropriate code. Recent studies show AI coding assistants

significantly improve task completion times, especially for routine coding. These systems accelerate

boilerplate code generation, allowing developers to focus on higher-level architectural decisions and

creative problem-solving. This shift transforms the developer experience across expertise levels [2, 3].

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 122

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Today's landscape features a diverse ecosystem of AI programming assistants that serve as

collaborative partners in the development process. These tools range from open-source plugins that

enhance existing IDEs to comprehensive commercial platforms offering end-to-end assistance.

Modern AI programming assistants can generate entire functions from natural language descriptions,

suggest optimizations for existing code, explain complex algorithms, and identify potential security

vulnerabilities. This evolution has led to “AI pair programming,” where the machine acts as a

collaborator, contributing expertise across languages, frameworks, and design patterns [4].

As AI assistants become integrated into workflows, key research questions emerge: How do they affect

productivity across experience levels? What is their impact on code quality, maintenance, and

security? How might they reshape education and professional development? This paper uses a mixed-

methods approach, combining quantitative productivity metrics with qualitative analysis of developer

experiences. Through surveys, experiments, and case studies, it explores the implications of this shift

for individual developers, organizations, and the future of the profession.

2. Transforming Development Workflows

The integration of AI assistants into software development represents a fundamental shift in how code

is conceived, written, and maintained. This section examines how AI augmentation is transforming

traditional development workflows, the mechanisms enabling these changes, and evidence of

successful implementations across domains.

Traditional software development workflows have historically followed a linear progression through

requirements gathering, design, implementation, testing, and maintenance phases. Developers

typically spent a significant portion of their time navigating documentation, writing boilerplate code,

and debugging syntax errors. This created bottlenecks and cognitive overhead that limited

productivity and innovation. Recent case studies show that when AI code assistants are properly

integrated, development teams experience substantial workflow transformations. The research

demonstrates that AI assistants significantly reduce time spent on repetitive coding tasks while

allowing developers to focus on high-level problem-solving. These studies also show that AI pair

programming makes development more conversational and exploratory, enabling developers to

rapidly test ideas and receive immediate feedback. These workflow changes extend beyond

productivity gains, influencing how developers conceptualize and approach programming challenges

[3, 5].

Modern AI coding assistants employ sophisticated mechanisms to generate and suggest code,

integrating at multiple points within the development lifecycle. These systems analyze context from

open files, project structure, version control history, and even developer interaction patterns to

produce relevant suggestions. The underlying technologies range from statistical models trained on

code repositories to transformer-based architectures that infer programming intent from natural

language descriptions. Integration occurs both within the editor through inline suggestions and at

higher levels through dedicated interfaces for complex generation tasks. Analyses across languages

and frameworks show that effectiveness varies with task complexity, domain specificity, and quality of

context. The research reveals that integration approaches need to be tailored to specific development

environments and team structures rather than applied uniformly. The most effective implementations

create a symbiotic relationship, maintaining developer agency by providing contextually appropriate

assistance that respects coding standards and architectural boundaries, enhancing developer

capabilities without disrupting workflows [4].

The emergence of AI pair programming has necessitated new approaches to task allocation, with

certain responsibilities shifting between human developers and their AI counterparts. Effective

allocation leverages complementary strengths: humans excel at business requirements, architectural

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 123

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

decisions, and ethics, while AI excels at code generation, pattern recognition, and library knowledge.

Studies of real-world implementations show that successful task allocation evolves through several

stages as teams gain experience with AI assistants. Initially, developers tend to use AI primarily for

documentation and simple code generation tasks. As trust develops, they gradually delegate more

complex tasks such as refactoring, test generation, and even architectural pattern implementation.

This progressive delegation creates a feedback loop where developers refine collaboration strategies

based on AI performance, leading to sophisticated partnerships that maximize the strengths of both

human and machine [3, 5]. The transformation of development workflows through AI assistants

manifests differently across software domains, with implementation strategies tailored to specific

contexts. Comprehensive cross-domain analysis of AI assistant adoption shows that success factors

vary significantly between application types and organizational contexts. In web and mobile

development, AI tools excel at standardized UI components and integration logic, while in systems

programming their strengths are documentation generation and code review. In data-intensive

applications, AI assistants demonstrate particular strength in generating data transformation

pipelines and visualization code. The findings emphasize that the greatest benefits come when

organizations tailor AI integration to domain constraints and team expertise rather than applying

generic approaches. Tailored implementation ensures AI amplifies existing strengths and addresses

pain points, producing workflows that combine human creativity with machine efficiency in ways

suited to each domain [4].

Fig. 1: Evolution of AI-Assisted Development Workflows. [3, 4]

3. Measuring Productivity and Quality Impacts

The integration of AI programming assistants into development workflows has prompted significant

interest in quantifying their impact on productivity, code quality, developer experience, and

organizational outcomes. This section reviews empirical evidence across these dimensions to provide

a comprehensive understanding of how AI tools are transforming software development.

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 124

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

One of the most visible impacts of AI programming assistants is the acceleration of development

velocity. Research on real-world developer interactions shows substantial changes in how

programmers approach tasks when using AI code generation tools. Longitudinal studies of

professional developers report meaningful increases in task completion rates across diverse

programming scenarios. The research indicates that developers spend less time on repetitive coding

patterns and more time on problem-solving and architectural considerations. Analyses show

developers use AI most effectively for boilerplate code, API patterns, and test implementation—areas

where manual work previously caused friction. Notably, the productivity impact appears particularly

significant for tasks outside a developer's core area of expertise, suggesting that AI tools function as

domain knowledge equalizers. Long-term measurements show developers become more effective with

AI over time, building mental models of when and how to use the technology efficiently. This evolving

relationship results in compound productivity gains as developers learn to collaborate more effectively

with their AI counterparts. It transforms not only coding speed but also the cognitive approach to

problem-solving [2, 3, 5].

Beyond accelerating development, AI programming assistants demonstrate significant potential to

improve code quality across multiple dimensions. Analyses of AI-augmented development identify

several quality indicators that improve when developers collaborate with AI systems. These metrics

include not only traditional measures like defect density and test coverage but also more nuanced

indicators such as code maintainability, documentation quality, and adherence to project-specific

conventions. Research shows AI assistance excels at enhancing consistency across codebases by

synthesizing patterns from large repositories. This standardization effect creates more uniform

implementations that simplify maintenance and knowledge transfer within development teams. The

greatest quality improvements occur when developers use AI tools interactively. This iterative process

involves requesting code, critically evaluating the output, and refining it with further prompts. This

collaboration produces code that combines AI efficiency with human intention and understanding.

Research also shows AI-assisted development improves cross-cutting concerns such as security

validation, input sanitization, and error handling—areas where humans often introduce

inconsistencies [5, 6].

The psychological impact of AI programming assistants is another critical dimension of their influence

on development. Research investigating developer satisfaction and well-being shows that AI code

assistance tools significantly influence how developers experience their work. Surveys consistently

show developers enjoy programming more with AI assistants, citing reduced frustration with

boilerplate and repetition. This satisfaction stems partly from the ability to maintain a flow state. AI

tools help by reducing the need for context switching to look up documentation or syntax. Research

indicates developers feel accomplishment and creative partnership when collaborating with AI, often

describing it as enhancing rather than diminishing their professional identity. Studies show reduced

anxiety when tackling unfamiliar technologies, as AI provides scaffolding that boosts confidence and

reduces impostor syndrome. This psychological benefit appears particularly significant for early-

career developers and those working in isolation without immediate access to senior mentors. Data

further suggests effective AI assistance creates a virtuous cycle: reduced friction leads to more

experimentation, faster learning, and greater productivity [2, 5].

The productivity and quality impacts of AI programming assistants translate into meaningful

economic implications for software organizations. Research on AI-augmented development identifies

several mechanisms for creating organizational value. ROI studies highlight value streams beyond

time savings, including faster onboarding, reduced technical debt, and greater innovation as

developers shift focus from implementation to problem-solving. Research shows organizations gain

the most when they pair AI adoption with process adjustments such as revised code reviews,

documentation, and quality assurance practices. Economic analysis suggests that AI assistants

particularly benefit organizations maintaining large, complex codebases where knowledge

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 125

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

fragmentation traditionally creates significant productivity barriers. Studies show successful adoption

often begins with pilot programs on specific teams or projects, allowing contextual learning before

scaling. Research suggests AI may alter build-versus-buy economics, as faster custom development

reduces the appeal of pre-built solutions. This shift potentially enables more precise alignment

between business requirements and software implementations without corresponding increases in

development costs [2, 3, 6].

Fig. 2: Impacts of AI Programming Assistants on Software Development. [5, 6]

4. Evolving Developer Skills and Education

The rapid integration of AI programming assistants into software development practices is catalyzing

fundamental changes in the skills required for professional success in the field. This transformation

extends beyond individual developers, affecting educational institutions, training methods, and the

broader ecosystem of software development learning. This section examines how developer

competencies, educational approaches, and learning patterns are evolving in response to AI-

augmented development environments.

The emergence of AI programming assistants is reshaping the skill profile of effective software

developers, with certain technical competencies becoming less critical while others gain prominence.

Recent research on the future of programming in the age of advanced AI reveals a substantial

redefinition of software engineering roles. Studies of competitive programming show that developers

using AI assistants can solve more complex problems than before, suggesting a shift in the cognitive

boundaries of software development. This expansion of capability is creating a divide in the industry.

Expertise is now measured less by recalling syntax and more by the ability to frame problems for

effective AI collaboration. Interviews with industry leaders indicate that hiring criteria are evolving to

prioritize systems thinking, problem decomposition, and contextual awareness over traditional coding

proficiency metrics. Research suggests developers with a strategic perspective—understanding why

approaches are chosen and how components interact—achieve better outcomes with AI than those

focused only on tactical coding. This shift is especially clear in domains like machine learning

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 126

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

engineering and distributed systems, where navigating complexity and making architectural decisions

remain the key contributions of human developers in AI-augmented environments [7, 9].

Educational institutions are responding to the changing skill landscape with significant revisions to

computer science curricula and teaching approaches. Analyses of pedagogical frameworks for teaching

prompt engineering and LLM interaction reveal several emerging best practices. Research identifies a

three-tier curriculum: foundational courses on basic collaboration, intermediate courses on domain-

specific applications, and advanced courses on meta-prompt engineering and AI system design.

Studies show students explicitly taught AI collaboration strategies develop better mental models of AI

capabilities and limitations, enabling more effective professional partnerships. The research

highlights the importance of balancing traditional programming fundamentals with AI-specific skills.

Students still need enough technical depth to evaluate and refine AI-generated code. Experiments

comparing instructional approaches show studio-based learning—where students tackle complex

projects with AI under faculty guidance—yields strong gains in both critical thinking and technical

skills. This shift extends to assessment, focusing on students’ ability to direct AI toward solving novel

problems rather than producing code alone. The educational research emphasizes that preparing

future developers requires cultivating both technical foundations and higher-order thinking skills that

will remain distinctly human as AI capabilities continue to advance [8].

The availability of AI programming assistants is fundamentally altering how practicing developers

acquire new skills and knowledge throughout their careers. Studies of professional developers

adapting to AI-augmented environments reveal distinctive learning and skill acquisition patterns that

differ from traditional approaches. Researchers identify “exploratory skill acquisition,” where

developers use AI to tackle projects beyond their expertise, with the tools scaffolding learning while

building competence. Instead of studying concepts first, developers now often begin implementing

with AI guidance, seeking deeper understanding only when needed to solve problems. Analyses of

developer–AI interactions show this exploratory approach yields more grounded knowledge, as

concepts are learned through direct application rather than in isolation. Research shows successful

adopters build sophisticated mental models of AI capabilities, learning when to trust suggestions and

when to scrutinize them. This metacognitive awareness represents a critical component of effective

self-learning in AI-augmented environments. Importantly, studies show professional communities

now emphasize collaboration strategies over purely technical solutions, reflecting these new learning

patterns. This shift in self-learning has major implications for professional development and

organizational knowledge management, highlighting the need for frameworks that support

exploration while ensuring depth [7].

As AI becomes integral to workflows, effectively directing systems through thoughtful prompts and

critical evaluation has emerged as a crucial meta-skill. Research on prompt engineering education

identifies distinct competency levels that define effective AI–human collaboration in software

development. Studies outline a progression from basic prompt construction to advanced system

orchestration, where practitioners decompose complex problems, manage context across interactions,

and evaluate outputs across quality dimensions. Analyses of educational interventions show explicit

instruction in prompt engineering significantly improves developers’ ability to elicit useful code, with

structured frameworks outperforming ad-hoc approaches. Research also highlights critical evaluation

as a complementary skill, covering both technical code quality and strategic suitability. Studies

tracking AI-generated code reveal common failure modes—hallucinated functions, incorrect API

usage, and subtle logic errors—that skilled developers learn to anticipate and mitigate. This research

suggests effective AI collaboration requires both technical and metacognitive skills: developers must

understand the domain, their AI tools’ capabilities, and their own knowledge boundaries to create

effective partnerships. These emerging competencies represent a major evolution in software

development, reshaping how the field views expertise and professional identity in an AI-augmented

landscape [6, 8].

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 127

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Fig. 3: Evolving Developer Skills in AI-Augmented Environments. [7, 8]

5. Future Directions and Challenges

As AI programming assistants evolve, critical challenges and opportunities will shape their future

trajectory and impact. This section examines the technical limitations of current systems, ethical

considerations surrounding their use in sensitive domains, potential workforce transformations, and

promising research directions for advancing human-AI collaboration in programming.

Despite their impressive capabilities, contemporary AI programming assistants exhibit significant

technical limitations that constrain their utility and reliability. Empirical analyses of AI coding

assistants in production reveal several persistent challenges that limit effectiveness. Studies of

thousands of developer–AI interactions identify distinct failure patterns, categorized by type and

severity. A major limitation is context window size, which prevents AI systems from grasping large

codebases and often results in suggestions that break architectural patterns. AI systems also struggle

with domain-specific logic, especially when implementation requires specialized knowledge missing

from training data. Research has documented a phenomenon termed "confidence mirage," wherein AI

assistants generate incorrect code with misleading certainty markers, creating potential traps for

inexperienced developers. Temporal reasoning is another limitation, as AI systems struggle to

anticipate how code evolves over time or interacts with concurrent processes. The hallucination

problem—where systems confidently reference non-existent functions or APIs—remains prevalent

despite advances in model architecture. Research also finds failure modes differ across paradigms,

with functional programming posing unique challenges compared to imperative approaches. Error

patterns cluster around specific types of tasks, suggesting targeted areas for improvement. These

limitations force developers to devise workarounds, building intuition for when AI is reliable versus

when human oversight is essential. Overall, findings emphasize that AI assistants work best as

collaborative tools requiring human guidance, with effectiveness depending on developers’ ability to

recognize and compensate for these limitations [6].

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 128

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The increasing integration of AI programming assistants into development workflows raises

important ethical questions, particularly in safety-critical domains where software failures can have

serious consequences. Research on balancing innovation and ethics in AI-augmented development

highlights multiple tension points requiring careful consideration. Studies of regulatory compliance

reveal challenges with traceability and accountability, especially in sectors such as healthcare,

aviation, and financial services. Emerging frameworks for responsible AI use emphasize layered

verification, with AI contributions reviewed more rigorously as risk increases. Ethical concerns also

include intellectual property and attribution, since AI trained on public repositories may generate

code with unclear provenance. The research documents cases where AI-generated implementations

inadvertently incorporated copyrighted patterns, creating legal uncertainties that existing frameworks

struggle to address. Studies of developer psychology warn that overreliance on AI may erode

fundamental understanding, especially among early-career professionals. This concern is especially

pronounced for security-critical implementations, where subtle vulnerabilities may escape detection

by both AI systems and developers with diminished manual coding experience. Research also notes a

trade-off: more explainable AI systems often show reduced capability, complicating use in high-stakes

domains. Surveys of organizations show a growing consensus: human oversight remains essential for

certain decisions, regardless of AI proficiency. These ethical considerations are increasingly

recognized not merely as constraints but as essential design parameters for the responsible

advancement of AI-augmented software development [10].

The integration of AI programming assistants signals major transformations in workforce

composition, organizational structures, and industry dynamics. Empirical studies of industry adoption

provide insights into emerging workforce transformations. Tracking studies show experienced

developers now spend less time on implementation and more on design, review, and mentoring after

adopting AI assistants. Research highlights a divide between prompt engineering as a specialty and

general AI use, with organizations valuing developers skilled in sophisticated AI collaboration.

Analysis of job postings across the technology sector documents the appearance of new role categories

combining traditional development skills with AI expertise, including "AI-augmented developer" and

"development workflow architect." These roles emphasize optimizing human–AI interaction rather

than direct coding. Studies show organizations experimenting with AI-enabled teams, allowing

smaller units to maintain larger and more complex systems. Research finds distributed teams report

better knowledge sharing and reduced friction when shared AI assistants standardize implementation

approaches. Longitudinal studies suggest developers with strong AI collaboration skills gain versatility

across projects, while those who resist adapt to narrow niches where manual coding remains essential.

These workforce transformations appear to be accelerating historical trends toward higher abstraction

levels in programming, with AI systems increasingly handling implementation details while human

developers focus on translating business requirements into technical specifications and architectural

decisions [9].

Improving the effectiveness and reliability of AI–human programming collaboration requires research

across multiple dimensions. Reviews of current challenges and opportunities identify high-priority

research directions for advancing next-generation systems. Developer feedback highlights the need for

assistants with consistent large-context understanding, pointing to retrieval-augmented generation

and modular reasoning as promising approaches. Promising directions for explainability include auto-

generated documentation that justifies decisions and flags weaknesses for human review. Analyses of

developer–AI interaction reveal inefficiencies in text-based interfaces, suggesting research into

multimodal paradigms with visual programming and natural language conversations about intent.

Studies examining educational applications identify opportunities for AI systems that adapt to

developer expertise levels, providing more detailed explanations for novices while offering higher-

level abstractions to experienced practitioners. Research emphasizes domain-specific assistants with

deep framework or industry knowledge, offering more reliable support within narrower contexts.

Experiments with collaborative learning models—where AI improves through ongoing team

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 129

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

interaction—show promise for assistants aligned with organizational practices and standards. Finally,

researchers call for evaluation methods that assess human–AI collaboration across the software

lifecycle, not just code generation. These research directions aim to address current limitations,

advancing toward partnership models where AI and human capabilities truly complement—rather

than replace—each other [4, 10].

Fig. 4: Future Directions and Challenges in AI-Augmented Software Development

Conclusion

The emergence of AI programming assistants marks a fundamental transformation in how software is

conceived, developed, and maintained. These tools have progressed from simple code completion to

collaborative partners, reshaping workflows across domains and enabling productivity gains through

reduced cognitive load and faster implementation. Beyond metrics, these systems profoundly

influence developer satisfaction, learning, and professional identity. Educational institutions and

industry organizations are adapting to this new reality by emphasizing higher-order thinking skills,

architecture design capabilities, and effective AI collaboration strategies. Despite advances, challenges

remain: context limitations, the need for human oversight in critical applications, intellectual property

concerns, and risks of deskilling. The future of AI-augmented development depends on systems with

better reasoning, domain expertise, transparency, and adaptability—enhancing human creativity

while automating routine tasks. As these technologies continue to mature, the most successful

developers and organizations will be those that thoughtfully integrate AI capabilities while

maintaining strategic human direction and creative vision.

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 130

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

References

[1] Wang, S., Lo, D., & Jiang, L. “An Empirical Study on Developer Interactions in Stack Overflow.”

Proceedings of the 28th ACM Symposium on Applied Computing (SAC), 2013. ACM DOI:

https://dl.acm.org/doi/10.1145/2480362.2480557).

[2] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin, Shawn Simister,

Ganesh Sittampalam, Edward Aftandilian, "Measuring GitHub Copilot’s Impact on Productivity,"

Communications of the ACM, 67(3), 2024. https://cacm.acm.org/research/measuring-github-

copilots-impact-on-productivity/

[3] Cui, K. Z., Demirer, M., Jaffe, S., Musolff, L., Peng, S., & Salz, T. “The Effects of Generative AI on

High-Skilled Work: Evidence from Three Field Experiments with Software Developers.” MIT/SSRN

Working Paper, 2025. https://economics.mit.edu/sites/default/files/inline-

files/draft_copilot_experiments.pdf

[4] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, Rui Wang,

"Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for

Code," arXiv preprint arXiv:2311.07989 [cs.CL], 2024. https://arxiv.org/abs/2311.07989

[5] Paradis, E., Grey, K., Madison, Q., Nam, D., Macvean, A., Meimand, V., Zhang, N., Ferrari-Church,

B., & Chandra, S. “How Much Does AI Impact Development Speed? An Enterprise-Based Randomized

Controlled Trial.” arXiv:2410.12944, 2024. https://arxiv.org/abs/2410.12944

[6] Jiessie Tie, Pengyu Nie, Yifan Wu, Shurui Zhou, Danny Dig, "LLMs are Imperfect, Then What? An

Empirical Study on LLM Failures in Software Engineering," arXiv preprint arXiv:2411.09916 [cs.SE],

2024. https://arxiv.org/abs/2411.09916

[7] Nguyen, S., Babe, H. M., Zi, Y., Guha, A., Anderson, C. J., & Feldman, M. Q. “How Beginning

Programmers and Code LLMs (Mis)read Each Other.” arXiv:2401.15232, 2024.

https://arxiv.org/abs/2401.15232

[8] Manorat, P., Wacharamanotham, W., & Anutariya, C. “Artificial intelligence in computer

programming education: A systematic literature review.” Computers & Education: Artificial

Intelligence, 8, 100217, 2025.

https://www.sciencedirect.com/science/article/pii/S2666920X25000438

[9] World Economic Forum, Geneva, 2025. "The Future of Jobs Report 2025," World Economic

Forum, 2025. https://reports.weforum.org/future-of-jobs-2025/

[10] National Institute of Standards and Technology (NIST), "Artificial Intelligence Risk Management

Framework (AI RMF 1.0)," NIST AI 100-1, 2023. https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-

1.pdf

https://ink.library.smu.edu.sg/sis_research/1811?utm_source=chatgpt.com
https://dl.acm.org/doi/10.1145/2480362.2480557?utm_source=chatgpt.com
https://dl.acm.org/doi/10.1145/2480362.2480557?utm_source=chatgpt.com
https://dl.acm.org/doi/10.1145/2480362.2480557?utm_source=chatgpt.com
https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity/?utm_source=chatgpt.com
https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity/
https://cacm.acm.org/research/measuring-github-copilots-impact-on-productivity/
https://economics.mit.edu/sites/default/files/inline-files/draft_copilot_experiments.pdf?utm_source=chatgpt.com
https://economics.mit.edu/sites/default/files/inline-files/draft_copilot_experiments.pdf?utm_source=chatgpt.com
https://economics.mit.edu/sites/default/files/inline-files/draft_copilot_experiments.pdf?utm_source=chatgpt.com
https://arxiv.org/abs/2311.07989?utm_source=chatgpt.com
https://arxiv.org/abs/2311.07989?utm_source=chatgpt.com
https://arxiv.org/abs/2410.12944?utm_source=chatgpt.com
https://arxiv.org/abs/2410.12944?utm_source=chatgpt.com
https://arxiv.org/abs/2411.09916?utm_source=chatgpt.com
https://arxiv.org/abs/2411.09916?utm_source=chatgpt.com
https://arxiv.org/abs/2401.15232?utm_source=chatgpt.com
https://arxiv.org/abs/2401.15232?utm_source=chatgpt.com
https://arxiv.org/abs/2401.15232?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S2666920X25000438?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S2666920X25000438?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S2666920X25000438?utm_source=chatgpt.com
https://reports.weforum.org/future-of-jobs-2025/
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf?utm_source=chatgpt.com
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf?utm_source=chatgpt.com

