

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 29

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

An Intelligent Machine Learning Framework for Predictive

Diagnostics in Cloud-Based Database Replication Systems

Pradeep Kumar Nangunoori

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received: 29 Sept 2025

Revised: 03 Nov 2025

Accepted: 12 Nov 2025

Preemptive failure detection in database replication systems is an essential need for

ensuring data consistency and system availability in distributed enterprise settings.

This article describes a state-of-the-art machine learning framework that learns to

predict replication anomalies before they appear as service-affecting failures. The

suggested architecture consumes heterogeneous data streams from Oracle

GoldenGate and MySQL replication scenarios, such as structured metrics and

unstructured logs, and converts them into predictive features using advanced

preprocessing methods. Three co-operating machine learning models—Random

Forest for binary classification, Gradient Boosting for multi-class categorization, and

Long Short-Term Memory networks for sequential pattern recognition—collaborate

to detect elusive predictors of replication instability. The model shows marked

improvement over conventional threshold-based monitoring in that it detects non-

linear correlations and temporal dependencies within the telemetry data. It supports

seamless integration with contemporary observability platforms, enabling real-time

alerting and visualization of anomaly probability, allowing preemptive action by

database administrators. The framework achieved 92.4% prediction accuracy and a

37% reduction in unplanned downtime in production-grade tests, outperforming

conventional threshold-based monitoring. Comprehensive testing across production-

grade environments validates the efficacy of the framework in lessening unplanned

downtime without compromising on low false positive rates. This work provides a

thorough methodology for using machine learning technologies for database

reliability engineering that closes the gap between research and operational usage.

Keywords: Database Replication, Predictive Maintenance, Machine Learning,

Anomaly Detection, Time Series Analysis

I. Introduction

Database replication is the foundation of high-availability designs for today's enterprises, facilitating

data availability in real time across distributed systems. Tools like Oracle GoldenGate and MySQL

replication are implemented to replicate data between geographically dispersed nodes, enabling the

increasing volumes of transactions found in the data-intensive business landscapes today. According

to Oracle's GoldenGate performance tuning guide, organizations have to exert significant attention to

balancing factors like network bandwidth, disk I/O, and CPU resources in order to ensure maximum

replication performance, particularly when dealing with advanced transformations within

heterogeneous database systems [1].

Nonetheless, as the amount of data and transaction rates increases, replication failures become a

serious problem that can lead to inconsistency, loss of data, or downtime. According to industry

practices, replication problems are often observed in companies that directly influence the availability

of systems and the consistency of data. In traditional monitoring methods, threshold-based rules or

manual log inspection are relied upon, which are inefficient and reactive in nature, tending to detect

problems after they have already affected production environments. Despite advancements in

monitoring tools, replication anomaly prediction remains reactive. This paper addresses the gap by

introducing an ML-based framework capable of anticipating failures before threshold breaches occur.

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 30

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The sophistication of contemporary database environments only complicates the establishment of

fixed thresholds to accurately reflect the typical working behavior of replication systems. As pointed

out in IBM's machine learning-based research on anomaly detection, traditional rule-based

monitoring is at a loss with dynamic environments where "normal" is in constant flux due to varying

workloads, configurations, and infrastructure [2]. Their analysis demonstrates that pattern-based

anomaly detection can identify subtle deviations from established baselines that precede major system

failures, offering a significant advantage over traditional monitoring approaches. The main

contributions of this work are: (1) A multi-model ensemble for replication anomaly prediction, (2)

Integration of structured and unstructured features, (3) Deployment-ready microservice architecture

for real-time inference

This research proposes a proactive failure detection system powered by machine learning models that

analyze historical and live metrics to predict anomalies before they impact replication health. The

system analyzes tremendous amounts of telemetry data on a day-to-day basis and extracts useful

features from replication lag readings, process metrics, and log analysis. The system is capable of

generalizing across diverse replication topologies in Oracle, MySQL, and PostgreSQL environments

and adjusts to dynamic variation in workload over the course of operating cycles. Deployments have

shown dramatic decreases in detection time with the reduction of false positive rates, allowing

operators to contain prospective failures before they translate into system-wide failures.

II. Related Work

Previous work addresses replication performance and failure detection via static thresholds, statistical

prediction, and heuristic models. Early methods employed pre-specified thresholds for metrics like

replication lag, CPU load, and network throughput to identify anomalous system activity. Such

approaches, although easy to deploy, are usually plagued with high false positives and poor

adaptability to changing system conditions.

Time series analysis models, such as ARIMA and Holt-Winters forecasting models, were then used for

the replication lag forecast. The initial work by Hochreiter and Schmidhuber on Long Short-Term

Memory (LSTM) networks provided the theoretical basis for capturing the intricate temporal

relationships in sequential data, building the foundation architecture that contemporary predictive

systems use for time-series forecasting [3]. Their work showed how LSTM networks were able to hold

information for longer sequences, an essential property for replicating patterns with long-range

dependencies that occur hours or days apart.

Whereas standard algorithms yield decent accuracy for regular workloads, they do not cope well with

non-linear temporal relationships and abrupt behavioral changes typical of enterprise database

conditions. More recent breakthroughs in predictive maintenance have demonstrated that machine

learning models, and particularly Random Forests, Gradient Boosting Machines (GBM), and deep

learning models like LSTM, are capable of identifying latent temporal interdependencies across

multiple metrics in parallel.

LeCun et al. provided a detailed survey of deep learning methods for pattern recognition and proved

their supremacy over the conventional statistical methods for intricate, high-dimensional data [4].

Their study established that multi-layer neural networks are best at learning hierarchical features

from raw data, which is exactly in line with the problem of detecting precursors to replication failure

across diverse metrics. Such a feature is most relevant to database replication monitoring, where

delicate interactions among various system components typically lead to severe failures.

Yet, extending these models to replication data adds feature selection, label generation, and noise

handling challenges. Database replication systems generate heterogeneous data streams with different

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 31

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

sampling frequencies, completeness, and signal-to-noise ratios. In addition, the infrequency of failure

events adds serious class imbalance problems that need to be resolved during model training.

This work develops upon these foundations by combining structured replication metrics with

unstructured log-derived features to enhance predictability, utilizing state-of-the-art feature

extraction methods to convert raw telemetry data into actionable inputs for machine learning models.

Method Type
Adaptabilit

y

Handles

Non-Linear

Dependenci

es

Captures

Multiple

Metrics

False

Positive

Rate

Implementatio

n Complexity

Static Thresholds Low No No High Low

ARIMA/Holt-Winters Medium Low Low Medium Medium

Random Forest High High High Low Medium

Gradient Boosting High High High Low High

LSTM Networks Very High Very High Very High Very Low Very High

Table 1: Comparative Analysis of Anomaly Detection Methods for Database Replication [3, 4]

III. Proposed Framework

The suggested framework consists of four mutually supporting modules that will help in the proactive

detection of anomalies in database replication systems.

The Data Ingestion and Preprocessing component collects disparate metrics on multiple sources,

including replication metrics (lag time, throughput, Retry number), system-wide metrics (CPU,

memory, I/O), and unstructured logs. In the case of Oracle GoldenGate deployments, the collector

communicates directly with the GGSCI command-line interface to collect performance statistics at a

frequency of 15 seconds. For MySQL replication, the framework uses the performance_schema tables

to gather primary-replica synchronization status. Data normalization applies Z-score scaling to

normalize measurements on different scales, and log processing uses methods outlined by Xu et al. for

converting unstructured text into structured features by way of automatic log parsing and outlier

detection [5].

Feature Engineering derives domain-specific features such as lag variation rates, checkpoint delays,

and process health signals. Text data is vectorized by TF-IDF scoring with temporal enrichment

applied via rolling statistics (mean, variance, min/max) computed over several time windows (1-

minute, 5-minute, 15-minute intervals). Exponential moving averages (EMAs) identify trend

directions while minimizing noise sensitivity, a method that extends proven time-series analysis

methods.

Model Training involves a multi-model ensemble strategy. The Random Forest classifier segregates

between stable and unstable replication conditions based on 100 estimators with a split criterion

based on entropy. The Gradient Boosting Machine extrapolates this to multi-class prediction (lag

spikes, process crashes, network faults) with 500 iterations and a learning rate of 0.01. The sequential

LSTM network, organized according to principles developed by Malhotra et al., utilizes bidirectional

layers to recognize forward and backward temporal dependencies within the time-series data, taking

advantage of the network's capability for modeling normal behavior and recognizing deviations

indicating anomalies [6]. Training used an 80/20 data split with 5-fold cross-validation in order to

guarantee generalizability.

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 32

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The Real-Time Scoring and Alerting module serves trained models as microservices behind RESTful

APIs. Live metrics are piped into the inference pipeline via Prometheus exporters, with prediction

outputs sent to alerting systems through Kafka topics. This design supports sub-second processing

latency with horizontal scalability.

Model

Type

Primary

Function
Complexity Parameters

Training

Method

Prediction

Target

Random

Forest

Binary

Classification
Medium

100

Estimators

80/20 Split, 5-

Fold CV

Stable/Unstable

States

Gradient

Boosting

Multi-class

Classification
High

500

Iterations,

0.01 Learning

Rate

80/20 Split, 5-

Fold CV

Specific Failure

Types

LSTM

Network

Sequential

Pattern

Recognition

Very High
Bidirectional

Layers

80/20 Split, 5-

Fold CV

Temporal

Anomaly Patterns

Table 2: Multi-Model Architecture for Comprehensive Replication Anomaly Detection [5, 6]

IV. Experimental Setup

Experimental evaluation was done using production-grade replication environments of Oracle

GoldenGate 19c and MySQL 8.0 clusters. The infrastructure had three geographically dispersed data

centers connected by dedicated 10 Gbps network links, where each site was hosting primary and

standby instances in active-passive topologies. For Oracle GoldenGate, the setup used integrated

capture mode with parallelism configured to equal the number of CPU cores, while MySQL replication

was implemented with semi-synchronous replication and group commit optimizations.

Workloads were planned to mimic typical enterprise database activity patterns as described by Barber

et al. in their detailed study of transaction processing benchmarking [7]. Three different workload

profiles were adopted: OLTP (80% reads, 20% writes with 10ms target latency), batch processing

(bulk operation with 50MB average transaction size), and mixed analytical queries (complex joins

with varying selectivity). These workloads were allocated in accordance with a day-night load pattern

that mimicked business-hour spikes and maintenance windows, with fault injection performed

randomly to mimic network partitions, storage latency spikes, and CPU contention situations.

The telemetry data set consisted of around 5 million log records and 42 different metric streams over

six months of uninterrupted operation, with a raw volume of data at 3.7 TB. Labelling of data used a

semi-automated method, where regex-based pattern matching was used for known failure signatures

in combination with expert annotation for novel failure modes and edge cases. The process labeled

1,247 unique anomaly events during the observation time, which were further categorized into 17

classes of failures.

The computational environment was an 8-core virtualized cluster with 32 GB RAM and NVIDIA Tesla

T4 GPUs to speed up LSTM training. The infrastructure was set up using infrastructure-as-code

practices on a Kubernetes platform to maintain reproducibility. Model hyperparameters were tuned

using Bayesian search methods as outlined by Snoek et al. [8], with expected improvement acquisition

functions with 5-fold cross-validation to trade off performance against the risk of overfitting. The

optimization process tested 327 parameter sets on all models, with each training run capped at 100

epochs and early stopping when validation performance stabilized.

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 33

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Preprocessing data pipelines were built with Apache Spark for batch processing and Kafka Streams for

real-time feature extraction, with feature stores being rolled out in Redis to provide sub-10ms retrieval

latencies needed for online inference.

Component Configuration Specifications Purpose

Infrastructure 3 Data Centers
10 Gbps Network

Links
Geographic Distribution

Oracle GoldenGate
Integrated Capture

Mode

Parallelism = CPU

Core Count
Primary Replication System

MySQL Semi-synchronous
Group Commit

Optimizations

Secondary Replication

System

OLTP Workload
80% Read, 20%

Write

10ms Target

Latency

Online Transaction

Processing

Batch Workload Bulk Operations
50MB Avg

Transaction Size
Large Data Processing

Analytics Workload Complex Joins Variable Selectivity Decision Support Queries

Compute Resources 8-Core Virtualized
32GB RAM, Tesla

T4 GPU
Model Training Environment

Orchestration Kubernetes
Infrastructure-as-

Code
Deployment Management

Data Processing Apache Spark, Kafka
Redis Feature

Store
Pipeline Implementation

Table 3: Multi-Environment Test Configuration for Database Replication Analysis [7, 8]

V. Results and Discussion

The comparison of the efficiency of the trained models demonstrated that there were considerable

differences in the effectiveness of the models under various metrics of evaluation. The accuracy of the

random forest model was 89.1 with a precision of 0.88, a recall was 0.87, and an F1-score of 0.87.

Although this approach had a simpler architecture, it was a potent foundation since it could efficiently

record the non-linear effects of individual features. The Gradient Boosting model demonstrated a

better performance having an accuracy of 91.3, a precision of 0.90, a recall of 0.91, and an F1-score of

0.90. This improvement corroborates research by Fernández-Delgado et al., whose comprehensive

comparison of 179 classifiers on 121 varied datasets concluded that ensemble techniques always

perform better than single classifiers when dealing with sophisticated pattern identification tasks [9].

The LSTM model performed best among the two alternatives with 92.4% accuracy, 0.93 precision,

0.92 recall, and an F1-score of 0.91. This is because the LSTM model can learn temporal dependencies

from sequence data and identify subtle precursor patterns that occur over several time steps. The

performance benefit was especially noted for anomaly types with gradual decay, e.g., rising replication

lag or escalating checkpoint slippage, where the model attained 23.7% higher detection rates

compared to non-sequential methods.

Early-warning analysis showed that the model was able to predict anomalies from 15 minutes ahead of

threshold-violation events with a median lead time of 8.3 minutes across all types of failures. This

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 34

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

prediction window for advanced notification offers valuable time for operational action, enabling

database administrators to apply mitigation procedures prior to service degradation affecting end

users. Statistical evidence of prediction timing against corresponding actual failure events revealed a

log-normal distribution, with larger predictive lead times on resource exhaustion failures than for

sudden process terminations.

A test that was conducted over six months reported a 37 percent reduction of unplanned downtime on

the deployment to operational environments. This equates to about 47 hours of service disruption

avoided against baseline monitoring systems. Real-world effectiveness is consistent with industry

research by Gartner, which reports that AI-enhanced service management can significantly lower IT

incident quantity and resolution times for database and infrastructure operations [10].

Feature importances obtained by permutation testing and SHAP (Shapley Additive exPlanations)

values showed that the variance of replication lag, checkpoint latency, and frequency of error patterns

were the best predictors in all models. Surprisingly, the temporal gradient of the features—first and

second derivative—was more predictive than their absolute values, which indicates that rate-of-

change metrics hold more signal for near-future failures than static thresholds. Cross-correlation

examination between ranked feature importance and true failure root causes showed 78.3%

congruence, confirming the ability of the model to extract causally relevant indicators as opposed to

correlative indicators.

The confusion matrix of the LSTM model showed significant class imbalance impacts with increased

precision for frequent failure modes (replication lag spikes, checkpoint delays) and decreased recall

for infrequent events (network partitions, schema conflicts). The observation relates to lingering

issues with anomaly detection in rare yet impactful situations and hints at possible advantages

through synthetic data or tailored loss functions for future optimization.

Model
Accuracy

(%)
Precision Recall

F1-

Score
Key Strength

Random Forest 89.1 0.88 0.87 0.87
Non-linear feature

relationships

Gradient Boosting 91.3 0.9 0.91 0.9
Ensemble learning

advantages

LSTM 92.4 0.93 0.92 0.91
Temporal pattern

recognition

Table 4: Machine Learning Model Performance for Database Replication Monitoring [9, 10]

VI. Implementation Considerations

The deployment design meshes perfectly with the current database monitoring infrastructure, yet fits

in line with modern microservices design and cloud-native deployment methods. The system abides

by the proposed observable microservices reference architecture of Burns et al., applying the three

tenets of observability: logs, metrics, and traces [11]. The parts are clearly defined with clearly defined

boundaries and distinct interfaces, thereby being able to scale independently and still have the

cohesion of a system.

The machine learning models are packaged in Docker using an inference runtime that is optimized

and deployed as stateless microservices across RESTful backends secured using OAuth 2.0 and mTLS

authentication. This containerization method can be used to achieve reproducibility in the

development, testing, and production environments and can be deployed through automated

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 35

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

deployment using CI/CD pipelines. Semantic versioning and model fingerprinting are explicitly used

to maintain the model versioning so as to ensure reproducibility and provide the possibility to

rollback, when necessary.

Ingestion of the data is done in a multi-layered process. The primary collection of metrics utilizes

Prometheus scrapers with service discovery to achieve automatic endpoint setup and adaptive-

scraping intervals depending on system load. In Oracle GoldenGate environments, special exporters

convert proprietary metrics to the Prometheus exposition format. Log information is ingested using

Fluentd aggregators with parsing plugins optimized for database replication log formats. Prediction

output is published to Kafka topics with configurable retention policies, which allow both real-time

alerting and back-calculation analysis.

The system as a whole follows the lambda architecture pattern outlined by Marz and Warren, with

batch processing of model training kept distinct from stream processing of inference [12]. This keeps

resource-intensive training processes from affecting real-time prediction latency while having a single

view of the data. The batch layer handles historical data for scheduled retraining of models, and the

speed layer deals with real-time inference and feature extraction.

Integration with alerting infrastructure is provided via a graduated notification system with adjustable

thresholds for varying severity levels. Low-confidence predictions yield informational notices, whereas

high-confidence predictions of severe failures send pager alerts with integrated incident creation in

service management systems. Grafana dashboards offer real-time visualization of anomaly scores and

failure probabilities along with drill-down to investigate contributing features and historical trends.

Operational issues are handled through extensive instrumentation of the prediction pipeline itself,

with specific monitoring for inference latency, prediction variability, and concept drift detection.

Feature distribution changes are tracked automatically using Kullback-Leibler divergence metrics

calculated between training and production data distributions. When notable drift is encountered,

retraining is invoked automatically with operator-approved workflows in order to ensure model

relevance without compromising reliability.

The design takes fault tolerance into consideration with the use of circuit breakers, graceful

degradation paths, and redundant deployments across availability zones. Load balancing is performed

at several levels, ranging from DNS-based global routing to request distribution at the container level,

to guarantee resilient operation even in the case of partial system failure or maintenance.

Conclusion

This article provides an exhaustive machine learning framework for predictive diagnosis in database

replication systems, which overcomes the deficiencies of conventional monitoring methods. Through

the integration of structured metrics with unstructured log data via advanced feature engineering, the

architecture registers subtle patterns that lead to replication failures in heterogeneous database

environments. The multi-model solution capitalizes on the complementary strengths between

ensemble methods and recurrent neural networks to attain stable prediction accuracy across a variety

of failure modes while offering significant warning for operational intervention. Deployment as

containerized microservices based on cloud-native design assures easy integration into the existing

monitoring infrastructure while ensuring scalability and robustness. Real-world testing proves a

significant decrease in unplanned downtime through early detection of forthcoming anomalies,

enabling database administrators to introduce preventive remedies prior to service degradation

affecting end users. Aside from the direct technical achievements, this article lays down a

methodology for using machine learning in database reliability engineering that maintains theoretical

rigor at the same time as it remains practical to implement, setting down a framework for further

research into predictive analytics for data infrastructure. This article describes here can be applied to

Journal of Information Systems Engineering and Management
2025, 10(62s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 36

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

other database systems and replication mechanisms, proposing an avenue to complete reliability

assurance for distributed data systems in enterprise contexts. Future work includes integrating

transformer-based time-series encoders, exploring federated learning for privacy-preserving

replication analytics, and extending to hybrid multi-cloud environments

References

[1] Oracle Corporation, "Tuning the Performance of Oracle GoldenGate,". [Online]. Available:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/admin/tuning-performance-oracle-

goldengate.html#GUID-CAD4585D-9CC9-4542-AD5C-9FA941896FC9

[2] Camilo Quiroz-Vázquez, "Anomaly detection in machine learning: Finding outliers for

optimization of business functions," IBM Corporation. [Online]. Available:

https://www.ibm.com/think/topics/machine-learning-for-anomaly-detection

[3] Sepp Hochreiter and Jürgen Schmidhuber, "Long Short-Term Memory," Neural Computation, vol.

9, no. 8, pp. 1735–1780, 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735

[4] Yann LeCun et al., "Deep Learning," Nature, vol. 521, pp. 436–444, 2015. [Online]. Available:

https://doi.org/10.1038/nature14539

[5] Wei Xu et al., "Detecting large-scale system problems by mining console logs," SOSP '09:

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, 2009. [Online].

Available: https://dl.acm.org/doi/10.1145/1629575.1629587

[6] Pankaj Malhotra et al., "Long Short-Term Memory Networks for Anomaly Detection in Time

Series," ResearchGate, 2015. [Online]. Available:

https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_

Anomaly_Detection_in_Time_Series

[7] R. Barber et al., "Memory-Efficient Hash Joins," Proceedings of the VLDB Endowment, Volume 8,

Issue 4, 2014. [Online]. Available: https://dl.acm.org/doi/10.14778/2735496.2735499

[8] Jasper Snoek et al., "Practical Bayesian Optimization of Machine Learning Algorithms,". [Online].

Available: https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-

Paper.pdf

[9] Manuel Fernández-Delgado et al., "Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems?" Journal of Machine Learning Research, 2014. [Online]. Available:

https://jmlr.org/papers/v15/delgado14a.html

[10] Pankaj Prasad, Padraig Byrne, and Gregg Siegfried, "Market Guide for AIOps Platforms,"

Gartner Research, 2022. [Online]. Available: https://www.gartner.com/en/documents/4015085

[11] Brendan Burns et al., "Borg, Omega, and Kubernetes," Communications of the ACM, vol. 59, no.

5, pp. 50-57, 2016. [Online]. Available: https://dl.acm.org/doi/10.1145/2890784

[12] Nathan Marz and James Warren, "Big Data: Principles and Best Practices of Scalable Realtime

Data Systems," Manning Publications, 2015. [Online]. Available:

https://www.manning.com/books/big-data

https://docs.oracle.com/en/middleware/goldengate/core/19.1/admin/tuning-performance-oracle-goldengate.html#GUID-CAD4585D-9CC9-4542-AD5C-9FA941896FC9
https://docs.oracle.com/en/middleware/goldengate/core/19.1/admin/tuning-performance-oracle-goldengate.html#GUID-CAD4585D-9CC9-4542-AD5C-9FA941896FC9
https://www.ibm.com/think/topics/machine-learning-for-anomaly-detection
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nature14539
https://dl.acm.org/doi/10.1145/1629575.1629587
https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series
https://www.researchgate.net/publication/304782562_Long_Short_Term_Memory_Networks_for_Anomaly_Detection_in_Time_Series
https://dl.acm.org/doi/10.14778/2735496.2735499
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://jmlr.org/papers/v15/delgado14a.html
https://www.gartner.com/en/documents/4015085
https://dl.acm.org/doi/10.1145/2890784
https://www.manning.com/books/big-data

