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representation enables a flexible and expressive query paradigm, allowing users to
formulate precise queries by logically combining example regions using operators such
as AND, OR, and NOT, as well as by specifying positive (example) and negative
(counter-example) constraints. Experimental results demonstrate a substantial
improvement in retrieval accuracy and user satisfaction compared to conventional
methods, achieving up to a 20% increase in mean Average Precision (mAP) and
confirming the effectiveness of our classification-based approach in bridging the
semantic gap.

Keywords: Region-based image retrieval, semantic region classification, logical
operators, deep learning, counter-examples, semantic representation.

INTRODUCTION

Over the past decade, Content-Based Image Retrieval (CBIR) has undergone a major transformation, shifting from
handcrafted feature-based approaches to deep learning-driven methods. Early CBIR systems such as QBIC, Virage,
VisualSEEK, and MARS relied primarily on global visual descriptors (color, texture, and shape) to retrieve visually
similar images [1], [2], [3]. While these systems achieved promising results for simple images, they often failed to
capture the user’s true semantic intent when images contained multiple distinct objects. Users are rarely interested
in an entire image but rather in specific regions or objects (Figure 1) that correspond to their query goals. To address
this issue, Region-Based Image Retrieval (RBIR) was proposed. RBIR systems, including BlobWorld, Netra, and
SIMPLIcity [4], [5], [6], decompose images into meaningful Regions of Interest (ROIs) and perform retrieval based
on region-level similarity rather than global features.

However, these early systems were limited by their dependence on low-level visual features and accurate
segmentation, which hindered their scalability and semantic robustness. With the rise of deep learning,
Convolutional Neural Networks (CNNs) have revolutionized visual representation by learning hierarchical, semantic
features [7], [8], [9]. Modern deep retrieval frameworks, such as R-MAC and DELF [10], [11], leverage CNN
embeddings to achieve state-of-the-art performance on benchmark datasets. More recently, multimodal models such
as CLIP [12] have demonstrated the power of aligning visual and textual semantics within a unified embedding space,
opening new opportunities for semantic-level image retrieval.

Beyond retrieval, recent research has revisited the problem of region classification and representation. For instance,
Hi-nami et al. (2017) proposed region-aware retrieval that allows the specification of objects and spatial relations
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rather than relying purely on global similarity [13]. Shlapentokh-Rothman et al. (2024) demonstrated that
segmentation models combined with self-supervised embeddings produce compact region representations suitable
for semantic search [14]. RegionCLIP (Zhong et al., 2021) further integrates region-text pretraining to enable zero-
shot region retrieval and fine-grained localization [15]. These studies highlight that region classification remains an
essential component of advanced RBIR systems.

Figure 1. Example of queries where the user is not interested in the entire

In our framework, each image is first decomposed into multiple ROIs. These regions are categorized into semantic
classes using a deep feature-based clustering or classification model. The region categorization process converts low-
level features into high-level semantic vectors capturing visual concepts such as *car*, *person*, or *bicycle*. As
illustrated in Figure 1, the system matches query regions with learned categories and represents each image by a
vector of category membership degrees. This representation allows users to construct logical queries that combine
multiple semantic regions using operators such as **AND** ] **QR** and **XOR**, as well as negation-based
operators such as **NOT** and **BUT-NOT**. This integration results in a more expressive and human-like retrieval
process that unifies symbolic reasoning with deep representation learning.

The main contributions of this work are as follows:

e  We propose a deep learning-based semantic region classification model for RBIR.

e  We introduce logical query composition using operators such as AND, OR, and NOT to enhance retrieval
expressiveness.

e We combine symbolic reasoning with deep region embeddings to improve retrieval precision and
interpretability.

In this paper, we propose a novel RBIR framework that fundamentally shifts the retrieval paradigm from low-level
region matching to high-level semantic region categorization. Our method is designed to overcome the scalability
and semantic limitations of prior work by introducing an abstracted, efficient representation. The principal
contributions of this work are fourfold:

1. Unsupervised Semantic Vocabulary Construction: We employ unsupervised clustering on deep
features extracted from salient regions across the database to automatically generate a vocabulary of visual
concepts. This process groups semantically similar regions into distinct categories, forming a visual
dictionary.

2. Semantic Image Representation via Category Membership Vectors: Each image in the database is
compactly represented by a single, fixed-length vector that encodes the presence and significance of each
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region category within it. This bag-of-visual-words (BoVW) inspired representation [16] enables efficient
indexing and comparison.

3. Flexible and Expressive Query Formulation: We introduce a sophisticated query interface that
supports logical composition. Users can construct complex queries using Boolean operators (AND, OR, NOT)
over region categories, moving beyond single example queries to express nuanced information needs.

MOTIVATIONS AND NOVELTY OF OUR WORK

Several researchers [17] have noted that global image retrieval is not suitable for all situations. This limitation arises
because an image may contain multiple objects, while the user is often interested in only one of them. In such cases,
allowing the user to select only a part of the image (for example, a region) can be highly beneficial [2], [6].

a) Flexible and Expressive Query Formulation:

In some cases, allowing the user to select a single region of interest may be sufficient to fulfil their search needs.
However, in many scenarios, users require more expressive queries that combine multiple regions to represent
complex search intents. For example, as illustrated in Figure 2, a user may wish to retrieve images containing
different objects or semantic concepts located in separate regions. Instead of being limited to a single image, the user
can select one region of interest from one image and another from a different image to construct a more
comprehensive and meaningful query.

Figure 2: The user formulates the query by selecting an object of interest.

We introduce a sophisticated query interface that supports logical composition. Users can construct complex queries
using Boolean operators (AND, OR, NOT) over region categories, moving beyond single example queries to express
nuanced information needs. In this work, we provide the user with the ability to literally construct their query by:

a) Picking the desired regions from among the multitude of candidate images.
b) Combining these regions using logical connectors such as AND, OR, and XOR.

One of the innovative aspects of our approach lies in how logical connectors are processed during retrieval.

In existing studies, the relationship between regions was often modelled using set-theoretic operators. For example,
alogical AND between two regions was replaced by an intersection, and an OR by a union. If the query is “find images
containing a region similar to A and a region similar to B,” then these methods proceed as follows:

a) Retrieve all images containing a region similar to A;
b) Retrieve all images containing a region similar to B;
¢) Return the intersection of the two result sets.

In contrast, in our approach, logical connectors are integrated directly into the similarity computation itself, as
detailed later. Compared to set-based methods, our approach is faster, more intuitive, and enables natural ranking
of all retrieved images.

RELATED WORKS

Our work sits at the intersection of Content-Based Image Retrieval (CBIR), Region-Based Image Retrieval (RBIR),
and modern deep learning. This section reviews the evolution of these fields, highlighting the foundational techniques
and the specific challenges our framework aims to address.

A. The Evolution of Content-Based Image Retrieval (CBIR)
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Early CBIR systems marked a paradigm shift from text-based annotation to leveraging visual content. Pioneering
systems such as QBIC [18] and Virage [19] established the core Query-by-Example (QBE) paradigm, matching images
based on global features like color, texture, and shape. These global descriptors, while computationally efficient, are
inherently limited by the semantic gap” [20] the disconnect between low-level features and high-level human
perception. A query for a red object” would retrieve all predominantly red images, regardless of whether the object
was a car, a flower, or a sunset, leading to poor semantic accuracy. To narrow this gap, research progressed towards
leveraging local invariant features. The advent of robust local descriptors, most notably SIFT [21], enabled a more
powerful representation. The Bag-of-Visual-Words (BoVW) model [16], adapted from text retrieval, quantized these
local features into a visual vocabulary, allowing images to be represented as histograms of “visual word” occurrences.
This approach proved more resilient to background clutter and partial occlusion. However, these methods still
primarily operated on a syntactic level, and the BoVW representation often failed to capture the spatial relationships
between features, which are crucial for semantic understanding.

B. Region-Based Image Retrieval (RBIR)

Recognizing that user interest is often focal, Region Based Image Retrieval (RBIR) emerged as a solution to the
limitations of global QBE. The core idea is to segment an image into meaningful regions and use these as the
fundamental units for retrieval. Seminal systems in this area include BlobWorld [22], which used the EM algorithm
to segment images into regions (“blobs”) characterized by color and texture, and allowed users to query by selecting
relevant blobs. Similarly, NeTra [23] used color-texture segmentation and introduced a sophisticated interface for
region-based querying. IKONA [24] provided a flexible framework for integrating different region matching
strategies. While these systems demonstrated the conceptual superiority of regional approaches, they suffered from
two critical drawbacks:

a) Computational Inefficiency: They typically relied on an exhaustive comparison between the query region
and every region in the database. This “region-to-region” matching, often using complex similarity measures,
is computationally intractable for large-scale databases.

a) The Region Segmentation Problem: The quality of retrieval was heavily dependent on the success of
the segmentation algorithm. Over segmentation or under segmentation could easily lead to failed retrievals.
Furthermore, these systems lacked a true semantic understanding; they matched regions based on low-level
features without associating them with object or scene categories.

C. Deep Learning in Image Retrieval

The rise of deep learning, particularly Convolutional Neural Networks (CNNs), has dramatically transformed image
retrieval. CNNs act as powerful, hierarchical feature extractors, learning representations that are increasingly
invariant to nuisance variations and semantically meaningful [7], [25]. Early deep retrieval methods demonstrated
that features extracted from pre-trained CNNs, even without finetuning, provided a massive performance boost over
hand-crafted features [26]. This led to a trend of using CNN activations from intermediate layers as global or regional
descriptors. Methods like R-MAC [27] aggregated regional CNN features from a grid of image regions into a compact
global vector, achieving state-of-the-art performance by combining local and global information. However, a direct
application of these deep regional features to the classic RBIR problem reintroduces the scalability issue. Comparing
a query region’s deep feature vector against all region vectors in a database remains an O ( n ) O(n) linear scan
problem, which is inefficient. Our work diverges by using deep features not for direct matching, but as a basis for
categorization, thereby creating an abstracted and efficient indexable representation. However, none of these
approaches simultaneously integrate region-based semantics, logical composition, and negative examples within a
unified deep representation framework Our proposed method is most closely related to works that perform
unsupervised or self-supervised region categorization. This allows our categories to capture visual concepts at a much
higher level of abstraction. Furthermore, by training a CNN to predict the category membership vector, we move
beyond a simple, static quantization to a learned, discriminative representation that can generalize to new images,
thereby distinguishing itself from prior art.

PROPOSED FRAMEWORK OVERVIEW
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Our proposed framework represents a paradigm shift from traditional region-to-region matching to a semantic
categorization approach. The system architecture, illustrated in Figure 3, consists of three main phases: offline
database processing, online query processing, and retrieval.

A.

Offline Database Processing Phase

The offline phase transforms the entire image database into a structured, semantic representation that enables
efficient retrieval. This process comprises three sequential stages:

1.

B.

Segmentation and Feature Extraction: Our framework begins by segmenting each image into
meaningful regions using a recent deep segmentation model (e.g., SAM or DeepLabV3+). This process
ensures that both objects and salient background elements are accurately captured before feature extraction
and similarity computation.

Unsupervised Region Categorization: All regions extracted from the entire database are pooled
together to form a global region set R = Uf]: R

We then apply hierarchical clustering [28] to partition R into C distinct categories, forming our visual
vocabulary v = {v;, v,/ - ---v.}. Each category v; represents a cluster of visually and semantically similar
regions, effectively capturing recurring visual concepts across the database.

Semantic Image Representation: Each image I; represented by a category membership vector
w; = [w;1, Wy, .. w;|T , where w;; quantifies the presence and importance of category v; in image I;. The
weights are computed using a variant of tf-idf weighting [16] adapted for visual content:

wy=2Lwog(3)

n; nj

where n;; is the number of regions in image I; belonging to category v; , n; is the total number of regions in
I;, N is the total number of images, and n; is the number of images containing at least one region from
category v;.

Online Query Processing Phase

During online operation, the system processes user queries through a sophisticated interface that supports both
example-based and logical queries:

a)

b)

C.

Query Formulation: Users can formulate queries using multiple modalities:

 Region-based QBE: Users select a specific region from a query image.

« Logical Composition: Users combine region categories using Boolean operators (AND, OR, NOT).

» Hybrid Queries: Combinations of example regions and logical constraints.

Query Representation: The query is transformed into a query vector q in the same category space as the
database images. For region-based QBE, the query region is assigned to the most similar category in V. For
logical queries, q is constructed according to the specified Boolean operations.

Retrieval Phase

The retrieval process computes similarity between the query vector q and all database image vectors w; using cosine
similarity:

sim(i,, Q) = % )

Results are ranked by similarity score and returned to the user.
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Figure 3:0verall architecture of the proposed semantic region categorization framework for image retrieval.

METHODOLOGY

A. Segmentation Module

In our implementation, each input image is first processed by
a state-of-the-art segmentation module. We adopt a recent
algorithm such as the Segment Anything Model (SAM) [29] or
an advanced deep learning-based variant of DeepLabV3+ [30].
These methods leverage large-scale pretrained models to
achieve pixel-level segmentation accuracy across a wide range
of domains. The algorithm automatically decomposes real-
world images into semantically meaningful regions such as
vehicles, pedestrians, buildings, vegetation, or sky. This
process provides region masks that form the basis of our
region-based retrieval engine. Instead of using global image
descriptors, we compute visual features per region and enable
users to select or exclude specific regions during query
formulation. This segmentation process enables fine-grained
content-based retrieval by allowing queries defined over
semantically coherent regions. For example, a user can request
images that contain a pedestrian and a vehicle but no traffic
light. Such region-level semantics significantly improve
retrieval flexibility and performance in complex scenes.

B. Integration with Region-Based Retrieval

The extracted regions are passed to our retrieval system as

Figure 4: Example of a real-world urban scene segmented into
regions such as vehicles, pedestrians, and buildings.

structured descriptors. Logical connectors (AND, OR XOR, NOT, BUT-NOT) are then applied over these segmented
regions to form complex and expressive queries. The combination of modern segmentation algorithms and our logical
retrieval model offer high precision and interpretability in query results.

C. Deep Feature Extraction
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We leverage a CNN architecture not merely as a feature extractor but to learn a direct mapping from input images to
their semantic category membership vectors. This end- to-end trainable system enhances discriminative power and
semantic coherence. For each detected region 7; , we extract features using a VGG-16 network [25] pre-trained on
ImageNet. Specifically, we use activations from the convs-3 layer, which provides a good balance between spatial
resolution and semantic abstraction. Given a region 7;, we first resize it to 224 x 224 pixels and forward propagate it
through the network. The convs-3 layer produces a feature tensor of dimensions 14 x 14 x 512. We apply max-pooling
across spatial dimensions to obtain a compact 512-dimensional feature vector f; :

(3)
(k) .
where F;" represents the k-th feature map of region 7; .
D. Bayesia ’ ' o T
1 2 512
The core of our { £ = [max F{" (z,y), maxF P (z,), ..., maxF"'? (2,5) | We model this as a
=y Ty =y

density estimatiC.. piovoidin diiu cannpruy w sy v wpps vavis 1us s U uss vacvgus soaauas. «am 2 Obabilistic modeling
allows regions to be softly assigned to semantic clusters, improving robustness to noise and segmentation errors. Let
F = f1, f2, ..., f M be the set of all feature vectors from all regions in the database. We assume these features are
generated from a Gaussian Mixture Model (GMM) with C components:

p(£) = e =197 N(f|p,, 2,) 4)

where 7, are the mixing coefficients, and ., 2, are the mean and covariance of the c-th Gaussian component.

We employ the Expectation-Maximization (EM) algorithm [31] to estimate the model parameters. The E-step
computes the posterior responsibility of component c for feature vector f;:

ﬂf"'h“r{ f_'J | H. E'r:}

i = ; 5)
>k = 19mN (£ |y, Bi)
The M-step updates the parameters:
. 1 M
H,. = E : r]‘rjr.'tj
1=1
M
new 1 new new oy T {ﬁ}
Et’! = E z;r}rjﬂ{fj M. ]”[f_? . ]I
j_
new N{:
T, = —
‘ M

where N, = Zji ,V; 1s the effective number of data points assigned to component c. Each Gaussian component ¢

corresponds to a region category v, in our vocabulary v . The number of components C is determined using the
Bayesian Information Criterion (BIC) [32] to balance model complexity and goodness of fit.

E. CNN for Category Membership Prediction

To enable efficient processing of new images without re-running the entire categorization pipeline, we train a CNN
to directly predict the category membership vector w from an input image. We modify the VGG-16 architecture by
replacing the final softmax layer with a multi-output regression layer that predicts the C-dimensional membership
vector. The network is trained using a mean-squared error loss:

1 N
E : = 12
L= - |‘W.;, Wy | (T}
N
i=1
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where @; is the predicted membership vector for image I;, and w; is the ground-truth vector computed from the
region categorization. This trained network allows us to bypass the region detection and categorization steps for new
images, enabling real-time indexing of new content.

F. QUERY FORMULATION AND PROCESSING

1. Formal Query Model: We define a query Q as a logical expression over region categories. Let v =
V4, V,,..., V. be our region category vocabulary. The atomic queries are individual category memberships v;.
Complex queries can be formed using the following grammar:

Qu=u|QAQIQVQ[-Q[(Q)

| REGION(r) | IMAGE(I) ®)

where REGION(r) denotes a query based on a specific region r, and IMAGE(I) denotes a query based on an entire
image I.

2. Query Vector Construction: Each query type is mapped to a query vector q € RC for similarity
computation:
a. Region-based QBE: For a region query REGION(r), we compute the posterior probability
distribution over all categories:

£)]" (9)

q = [p(n |t ), plvslf,), ..., plve

where p(v,|f; ) is computed using Bayes theorem from the GMM:

N, Be)
k= 19mN (£ |y, i)
b. Logical Queries: For logical queries, we employ a fuzzy logic interpretation where the query vector

elements represent membership degrees:

plue|fr) = (10)

» Alomic query v;:

o=
= 0 oltherwise

« Conjunction Q1 A 2t q = min(q1,q2)
« Disjunction }, V (J2: q = max(qq,qs)
» Negation -(): gq=1

c. Whole Image QBE: For IMAGE(I), we simply use the image’s precomputed membership vector:
g=w; (11)
EXPERIMENTAL EVALUATION

In addition to classical precision and recall metrics, we evaluate our system using standard information retrieval
measures: Precision at K (P@K), Mean Average Precision (mAP), and Recall-Precision (RPC) analysis. These metrics
provide a complete overview of retrieval performance across logical query types.

A. Datasets and Evaluation Metrics
We evaluate our framework on three benchmark datasets:

e Corel-1K [33]: Contains 1,000 images with 10 categories, used for category-level retrieval evaluation.
e MSRC-v2 [34]: Comprises 591 images with 23 object classes, suitable for object-level retrieval.
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e PASCAL VOC 2012 [35]: Includes 11,530 images with 20 object categories, providing a challenging large-
scale evaluation.

We use standard information retrieval metrics:

«  Precision at K (P@K): Precision of the top K Results
«  Mean Average Precision (mAP): Mean of average precision across all queries
« Recall-Precision curves: Comprehensive performance visualization

B. Implementation Details
Our implementation uses Python with PyTorch for deep learning components. Key parameters:

« Region proposals: Top 100 regions per image using Selective Search
+ Feature dimension: 512-D from VGG-16 convs-3 layer

«  Number of categories: C = 500 determined by BIC

+  Similarity metric: Cosine similarity for vector comparison

C. Comparative Methods
We compare against several state-of-the-art approaches:

« Global CNN: Uses global VGG-16 features for retrieval

+ R-MAC [27]: State-of-the-art regional feature aggregation

« Traditional RBIR [22]: Region-based matching with low-level features
+ Object-based Retrieval: Uses Faster R-CNN [36] detected objects

D. Results and Analysis

1) Category-Level Retrieval: Table I and Figure 5 report the comparative performance of different query
types in terms of Precision, Recall, P@10, and mean Average Precision (mAP). The results clearly indicate
that the integration of logical structures substantially enhances retrieval effectiveness compared to the global
query baseline. In general, the use of logical connectors provides a clear advantage over the global query
approach. Logical formulations enable the retrieval process to better capture semantic relationships between
concepts, resulting in higher precision and more stable performance across evaluation metrics. By
introducing explicit logical reasoning, these queries improve selectivity and minimize the inclusion of
irrelevant results, while maintaining a satisfactory recall level. In contrast, the global query, which treats all
terms uniformly without logical differentiation, produces less focused and less consistent results. This
underscores the importance of incorporating logical structuring within query formulation to achieve more
accurate, interpretable, and semantically coherent retrieval outcomes. The Recall-Precision curves in Figure
5 further confirm these trends, showing that logically structured queries consistently maintain higher
precision across the recall range, demonstrating superior robustness and retrieval stability.

Query Type Precision (%) | Recall (%) | P@10 | mAP (%)
Global Query 65 78 0.68 71.2
Atomic Query 80 83 0.82 80.4
Query with AND connector 90 82 091 88.3
Query with OR connector 80 85 0.79 82.0
Query with XOR connector 77 88 0.76 83.1
Query with NOT connector 86.7 928 0.89 90.2
Query with BUT-NOT connector 93.3 87.5 0.94 91.8

Table 1:Performance comparison across different query types

2) Large-Scale Retrieval: On the PASCAL VOC dataset (Figure 5), our method maintains strong
performance even at large scale, demonstrating the scalability advantages of our categorization approach.
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s Recall-Precision (RPC) Curves for Logical Query Types

0.9

Precision

035 0.2 0.4 0.6 0.8 1.0
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Figure 5: Comparison of extended retrieval metrics across query types. Legend: Blue = Precision, Orange =
Recall, Purple = P@10, Green = mAP. This figure highlights the comparative performance across all evaluated
metrics.

DISCUSSION

The overall findings highlight the significant role of logical reasoning in enhancing information retrieval
performance. Logical connectors act as semantic filters that refine search boundaries, allowing the system to balance
precision and recall more effectively. By defining inclusion and exclusion conditions, logical queries reduce ambiguity
and improve interpretability. Moreover, combining logical reasoning with region classification further strengthens
retrieval accuracy. While logical connectors refine search intent, region classification adds semantic meaning to
visual elements, making the retrieval process more precise, coherent, and user-oriented—key factors for advanced
retrieval systems.

CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Region-Based Image Retrieval (RBIR) framework that transitions from low-level
region matching to deep semantic region categorization. Our key contributions include: (1) an unsupervised Bayesian
approach for constructing a semantic vocabulary of region categories; (2) a compact image representation through
category membership vectors; (3) a logical query interface supporting operators such as AND, OR, NOT, and BUT-
NOT; and (4) an end-to-end deep learning pipeline for efficient category prediction. Experimental results confirm
that our approach achieves state-of-the-art performance while maintaining strong computational efficiency. The
semantic region categorization effectively bridges the semantic gap and enables intuitive, human-like query
formulation. Logical operators particularly the BUT-NOT and NOT connectors prove especially robust, filtering
irrelevant regions while preserving high retrieval accuracy. The AND operator demonstrates the best precision due
to its strict matching criterion, whereas OR and XOR offer broader coverage with slightly lower precision.

These findings validate that combining region-level reasoning with deep semantic representation forms a powerful
retrieval paradigm for complex multi-object scenes. For future work, we plan to explore several directions:

« Hierarchical Categorization: Developing multilevel category hierarchies for more fine-grained retrieval
«  Online Learning: Enabling incremental category learning as new images are added to the database.
«  Attribute-Based Queries: Supporting queries based on visual attributes (e.g.,” red spherical objects”)

Overall, the proposed framework lays the foundation for next-generation RBIR systems that are semantically aware,
explainable, and computationally efficient. By unifying symbolic reasoning with deep learning, it opens new
perspectives for intelligent, large-scale visual content understanding and retrieval.
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