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1. Introduction

The study of dominating sets in graphs has been a fundamental area of research in graph theory, with
numerous variations developed to address specific applications and theoretical interests. A dominating set for
a graph G = (V,E) is defined as a subset D < V such that every vertex not in D is adjacent to at least one vertex
in D. This concept has significant implications in various fields, including network design, resource allocation,
and social network analysis.

This paper introduces a new variant called Secure Distance Matrix Dominating Sets (SDMDS), which combines
three essential properties: domination, security, and distance matrix conditions. The integration of these
properties allows for a more robust framework that is particularly relevant in contexts where both coverage
and communication efficiency are critical.

1.1. Detailed Overview

The concept of Secure Distance Matrix Dominating Sets (SDMDS) emerges from the need to enhance
traditional dominating sets by incorporating security and distance considerations. In many practical
applications, it is not sufficient to merely cover all vertices in a graph; it is also essential to ensure that the
dominating set is resilient to changes and maintains efficient communication among its members.\

Motivation

The concept of Secure Distance Matrix Dominating Sets (SDMDS) arises from practical applications in various
fields, including;:

«Network Security and Surveillance: Optimizing the placement of monitoring nodes to ensure coverage
and security.

«Facility Location Problems: Determining optimal locations for facilities while ensuring accessibility and
security.

«Communication Network Design: Ensuring efficient communication among nodes while maintaining
coverage.

*Resource Allocation in Distributed Systems: Efficiently allocating resources while maintaining
robustness against failures.

1.2 Historical Context
The development of Secure Distance Matrix Dominating Sets (SDMDS) is rooted in several classical concepts
in graph theory, each contributing to the understanding and application of domination in graphs.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 2047
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.


mailto:neethialagan15@gmail.com
mailto:meenakshikarthikeyan8@gmail.com

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

1. Traditional Dominating Sets: The concept of dominating sets was first introduced by Ore in 1962. A
dominating set for a graph G = (V,E) is defined as a subset D € V such that every vertex not in D is adjacent
to at least one vertex in D. This foundational idea has been extensively studied and has numerous applications
in network design, resource allocation, and social network analysis.

2. Secure Dominating Sets: Building on the traditional concept, secure dominating sets were developed
by Cockayne et al. in 2003. This variation introduces an additional layer of security, ensuring that the removal
of any vertex from the dominating set does not compromise the overall coverage of the graph. This property is
particularly important in applications where robustness is critical, such as in surveillance and monitoring
systems.

3. Distance Matrices in Graph Theory: The study of distance matrices, initiated by Hakimi in 1964,
provides essential insights into the relationships between vertices in a graph. The distance matrix D of a graph
is defined such that D[i][j] represents the distance between vertices i and j. This concept is crucial for
understanding the distance matrix condition in SDMDS, which ensures that the distances between vertices in
the dominating set are maintained within certain bounds.

The integration of these classical concepts into the framework of SDMDS allows for a more robust approach to
domination in graphs. By combining the principles of traditional domination, security, and distance
considerations, SDMDS addresses complex problems in various applications, paving the way for further
research and exploration in graph theory.

In summary, the historical context of SDMDS is built upon the foundational work of Ore, Cockayne et al., and
Hakimi, each contributing to the rich tapestry of graph theory and its applications in real-world scenarios.

2. Preliminaries

2.1 Basic Graph Theory Concepts

In this section, we introduce fundamental concepts in graph theory that are essential for understanding Secure
Distance Matrix Dominating Sets (SDMDS).

2.1.1. Graphs

A graph G is defined as an ordered pair G = (V, E), where:

e Vs a set of vertices (or nodes).

e FE is a set of edges, which are 2-element subsets of V. Each edge connects two vertices, representing a
relationship or connection between them.

Graphs can be classified into various types, including:

¢ Undirected Graphs: In these graphs, edges have no direction. The edge (u, v) is identical to the edge
(v, u).

¢ Directed Graphs (Digraphs): In directed graphs, edges have a direction, indicated by an arrow. The
edge (u, v) is distinct from (v, u).

¢ Weighted Graphs: Each edge in a weighted graph is assigned a weight (or cost), which can represent
distance, time, or other metrics.

2.1.2. Distance Between Vertices

For any two vertices u, v € V, the distance d(u, v) is defined as the length of the shortest path connecting u and
v in the graph G. If no path exists between u and v, the distance is considered to be infinite. The concept of
distance is crucial in various applications, including network routing and communication efficiency.

2.1.3. Neighborhood of a Vertex
The closed neighborhood of a vertex v, denoted as N[v], is defined as the set of vertices that are adjacent to v
along with v itself. Formally, it can be expressed as:

Nv]={u€eV|(uv) €E}V{v}
The closed neighborhood provides insight into the local structure of the graph around vertex v and is essential
for understanding domination properties.

2.1.4. Degree of a Vertex
The degree of a vertex v, denoted as deg (v), is the number of edges incident to v. In other words, it counts how
many vertices are directly connected to v. The degree can be classified into two types:
¢ Minimum Degree: The minimum degree of a graph G, denoted as §(G), is defined as:
6(G) = rglei‘pdeg v)

This value indicates the least number of connections any vertex in the graph has.
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e Maximum Degree: The maximum degree of a graph G, denoted as A(G), is defined as:
AG) = mé:E(deg (v)
v
This value reflects the highest number of connections any vertex in the graph has.

Understanding the degree of vertices is vital for analyzing the connectivity and robustness of the graph, as well
as for determining the potential for domination.

2.1.5. Types of Graphs

Graphs can be further categorized based on their properties:

¢ Connected Graphs: A graph is connected if there is a path between every pair of vertices. In contrast, a
disconnected graph consists of two or more components that are not connected to each other.

¢ Complete Graphs: A complete graph K, is a graph in which every pair of distinct vertices is connected by
a unique edge. The degree of each vertex in a complete graph is n — 1, where n is the number of vertices.

¢ Bipartite Graphs: A bipartite graph is one whose vertices can be divided into two disjoint sets such that
no two graph vertices within the same set are adjacent. This property is useful in modeling relationships
between two different classes of objects.

2.1.6. Graph Representation

Graphs can be represented in various forms, including:

e Adjacency Matrix: A square matrix used to represent a finite graph. The element at row i and column j
indicates whether there is an edge between vertex i and vertex j.

e Adjacency List: A collection of lists or arrays that represent the graph. Each list corresponds to a vertex
and contains a list of adjacent vertices.

These representations are crucial for implementing algorithms and performing computations on graphs.

2.2 Domination Concepts

e AsetD c Vis adominating set if every vertex in V-D is adjacent to at least one vertex in D
¢ V(G) denotes the domination number of G

e A secure dominating set requires additional defense properties

e The distance matrix D of a graph contains all pairwise distances

2. 3. Formal Definition of SDMDS
A subset S € V is called a Secure Distance Matrix Dominating Set (SDMDS) of a graph G if it satisfies the
following conditions:
1. Domination Condition: For every vertex v € V — S, there exists a vertex u € S such that uv € E. This
ensures that all vertices in the graph are either in the dominating set or are adjacent to a vertex in the
dominating set.
2. Security Condition: For each vertex v € V — S, there exists a vertex u € S such that the set (S — {u}) U
{v}is also a dominating set of G. This condition guarantees that the removal of any vertex from the dominating
set does not compromise the overall coverage of the graph.
3. Distance Matrix Condition: For every pair of vertices x, y € S and for all vertices z € V — S, the distance
d(x,y) must satisfy:

d(x,y) < max{d(x,z) + d(z,y)}
This condition ensures that the distances between vertices in the dominating set are maintained within certain
bounds, which is crucial for applications requiring efficient communication.

3.1. Definition of SDMDS Number
3.1.1. Definition:
The secure distance matrix domination number, denoted as y¢4,, (G), is defined as the minimum cardinality of
a secure distance matrix dominating set (SDMDS) of a graph G. Formally, it can be expressed as:

Vsam(G) = min{|S|: S is an SDMDS of G}
This definition emphasizes the goal of finding the smallest subset S of vertices in G that satisfies the conditions
of being a secure distance matrix dominating set.

3.1.2. Understanding the Definition

To fully grasp the concept of y4,,, (G), it is essential to understand the properties that the set S must satisfy:

1. Domination Condition: Every vertex in the graph G must either be included in the set S or be adjacent
to at least one vertex in S.
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2. Security Condition: For every vertex v not in S, there must exist a vertex u in S such that replacing u
with v still results in a dominating set.

3. Distance Matrix Condition: The distances between any two vertices x,y in S must not exceed the
maximum distance through any vertex z notin S.

The objective is to find the smallest set S that meets all these criteria, ensuring both coverage and security
within the graph.

3.1.3. Example
Consider the following simple graph G:

Graph G with Vertices {A, B, C, D} and Edges {(A,B), (B,C), (B,D)}

C
A

I

In this graph:

e The vertices are V = {4, B, C, D}.

e Theedgesare F = {(4,B),(B,C),(B,D)}.

To find y4,m (G), we need to identify the SDMDS.

1. Checking Possible Sets:

o LetS; ={B}:

= Domination Condition: B dominates 4, C, and D (satisfied).

» Security Condition: If we remove B, A cannot dominate C or D (not satisfied).
o LetS, ={B,C}:

= Domination Condition: B dominates 4 and D, C dominates B (satisfied).

* Security Condition: If we remove B, C can still dominate A and D (satisfied).
» Distance Matrix Condition: d(B, C) = 1, which is less than or equal to the maximum distance through
any vertex not in S (satisfied).

o LetS; ={B,D}:

= Domination Condition: B dominates 4 and C, D dominates B (satisfied).
Security Condition: If we remove B, D can still dominate 4 and C (satisfied).
Distance Matrix Condition: d(B, D) = 1 (satisfied).

Finding Minimum SDMDS:

Both S, and S; are valid SDMDS, but they both contain 2 vertices.

o Therefore, Y4, (G) = 2.

In conclusion, the secure distance matrix domination number y,,,,, (G) for the given graph is 2, indicating that
the smallest secure distance matrix dominating set consists of 2 vertices.

onN =

4. Examples
Example 4.1: Path Graph Pe
Consider the path graph P with vertices labeled {1,2,3,4,5,6}:

O, ® ; ® O O
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Path Graph P_6 with Dominating Set S = {2, 4, 6}

Let S = {2,4,6}. We will verify that S is a secure distance matrix dominating set (SDMDS) by checking the
following conditions:

4.1. 1. Domination Condition

A dominating set must ensure that every vertex in the graph is either included in the set S or is adjacent to at
least one vertex in S.

« Vertex 1: Dominated by vertex 2 (since 1 is adjacent to 2).

+ Vertex 2: Included in S.

+ Vertex 3: Dominated by vertex 2 (since 3 is adjacent to 2).

« Vertex 4: Included in S.

» Vertex 5: Dominated by vertex 4 (since 5 is adjacent to 4).

+ Vertex 6: Included in S.

Thus, every vertex is dominated, and the domination condition is satisfied.

4.2. 2. Security Condition

The security condition requires that for each vertex v not in S, there exists a vertex u in S such that replacing u
with v still maintains domination.

« Vertex 1: If we replace vertex 2 with vertex 1, the new set S’ = {1,4,6} still dominates all vertices:
- Vertex 1 dominates itself.

- Vertex 4 dominates vertices 3 and 5.

- Vertex 6 dominates itself.

+ Vertex 3: If we replace vertex 2 with vertex 3, the new set S’ = {3,4,6} still dominates all vertices:
- Vertex 3 dominates itself.

- Vertex 4 dominates vertices 2 and 5.

- Vertex 6 dominates itself.

« Vertex 5: If we replace vertex 4 with vertex 5, the new set S’ = {2,5,6} still dominates all vertices:
- Vertex 2 dominates vertices 1 and 3.

- Vertex 5 dominates itself.

- Vertex 6 dominates itself.

+ Vertex 6: If we replace vertex 6 with vertex 5, the new set S’ = {2,4,5} still dominates all vertices:
- Vertex 2 dominates vertices 1 and 3.

- Vertex 4 dominates itself.

- Vertex 5 dominates itself.

Thus, the security condition is satisfied.

4.3. 3. Distance Matrix Condition

The distance matrix condition requires that for every pair of vertices x,y € S and for all z € V — S:d(x,y) <
max{d(x,z) + d(z,y)}

Let's check the distances:

« Vertices 2 and 4:

-d(24) =2

-Forz=3:d(23)+dB4)=1+1=2

- Condition satisfied: 2 < 2

+ Vertices 2 and 6:

-d(2,6) =4
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-Forz=5:d(25)+d(56)=3+1=4
- Condition satisfied: 4 < 4

« Vertices 4 and 6:

-d(4,6) =2
-Forz=5:d(45)+d(56)=1+1=2
- Condition satisfied: 2 < 2

Since all three conditions (domination, security, and distance matrix) are satisfied for the set S = {2,4,6}, we
conclude that S is indeed a secure distance matrix dominating set (SDMDS) for the path graph P.
Thus, the secure distance matrix domination number is:

Ysam(Ps) = 3
o\ 7\
1 O——O—=
7\ )
8 \Z/ \E/ 5

5. Example: Cycle Graph (g
Consider the cycle graph Cg with vertices labeled {1,2,3,4,5,6,7,8}:
Cycle Graph C_8 with Dominating Set S = {1, 3,5, 7}

3

Let S = {1,3,5,7}. We will verify that S is a secure distance matrix dominating set (SDMDS) by checking the
following conditions:

5.1. 1. Domination Condition

A dominating set must ensure that every vertex in the graph is either included in the set S or is adjacent to at
least one vertex in S.

+ Vertex 1: Included in S.

« Vertex 2: Dominated by vertex 1 (since 2 is adjacent to 1).

+ Vertex 3: Included in S.

« Vertex 4: Dominated by vertex 3 (since 4 is adjacent to 3).

« Vertex 5: Included in S.

+ Vertex 6: Dominated by vertex 5 (since 6 is adjacent to 5).

+ Vertex 7: Included in S.
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« Vertex 8: Dominated by vertex 7 (since 8 is adjacent to 7).
Thus, every vertex is dominated, and the domination condition is satisfied.

5.2. 2. Security Condition

The security condition requires that for each vertex v not in S, there exists a vertex u in S such that replacing u
with v still maintains domination.

« Vertex 2: If we replace vertex 1 with vertex 2, the new set S’ = {2,3,5,7} still dominates all vertices:
- Vertex 2 dominates itself.

- Vertex 3 dominates vertex 4.

- Vertex 5 dominates vertex 6.

- Vertex 7 dominates vertex 8.

» Vertex 4: If we replace vertex 3 with vertex 4, the new set S’ = {1,4,5,7} still dominates all vertices:

- Vertex 1 dominates vertex 2.

- Vertex 4 dominates itself.

- Vertex 5 dominates vertex 6.

- Vertex 7 dominates vertex 8.

« Vertex 6: If we replace vertex 5 with vertex 6, the new set S’ = {1,3,6,7} still dominates all vertices:
- Vertex 1 dominates vertex 2.

- Vertex 3 dominates vertex 4.

- Vertex 6 dominates itself.

- Vertex 7 dominates vertex 8.

« Vertex 8: If we replace vertex 7 with vertex 8, the new set S’ = {1,3,5,8} still dominates all vertices:
- Vertex 1 dominates vertex 2.

- Vertex 3 dominates vertex 4.

- Vertex 5 dominates vertex 6.

- Vertex 8 dominates itself.

Thus, the security condition is satisfied.

5.3. 3. Distance Matrix Condition

The distance matrix condition requires that for every pair of vertices x,y € Sand forallz € V — S:
d(x,y) < max{d(x,z) +d(z,y)}

Let's check the distances:

« Vertices 1 and 3:

-d(1,3) =2

-Forz=2:d(1,2)+d(23)=1+1=2

- Condition satisfied: 2 < 2

« Vertices 1 and 5:

-d(1,5) = 4

-Forz=4:d(1,4)+d45) =3+1=4

- Condition satisfied: 4 < 4

« Vertices 1 and 7:

-d(1,7) =6

-Forz=6:d(1,6)+d(67)=5+1=6

- Condition satisfied: 6 < 6

« Vertices 3 and 5:

-d(3,5)=2

-Forz=4:d(34)+d(45) =1+1=2

- Condition satisfied: 2 < 2

« Vertices 3 and 7:

-d(3,7)=4

-Forz=6:d(3,6)+d(67)=3+1=4

- Condition satisfied: 4 < 4

« Vertices 5 and 7:

-d(5,7)=2
-Forz=6:d(56)+d(67)=1+1=2
- Condition satisfied: 2 < 2

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 29053
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Since all three conditions (domination, security, and distance matrix) are satisfied for the set S = {1,3,5,7}, we
conclude that S is indeed a secure distance matrix dominating set (SDMDS) for the cycle graph Cg.
Thus, the secure distance matrix domination number is:

Ysam(Cg) = 4
6. Example: Complete Graph K;

The complete graph Ky consists of 5 vertices, where every pair of distinct vertices is connected by a unique
edge. The graph can be represented as follows:

Domination Condition in Complete Graph K_5

Let S = {1,2}. We will verify that S is a secure distance matrix dominating set (SDMDS) by checking the
following conditions:

6.1 Domination Condition

A dominating set must ensure that every vertex in the graph is either included in the set S or is adjacent to at
least one vertex in S.

+ Vertex 1: Included in S.

« Vertex 2: Included in S.

+ Vertex 3: Dominated by vertex 1 (since 3 is adjacent to 1).

+ Vertex 4: Dominated by vertex 1 (since 4 is adjacent to 1).

» Vertex 5: Dominated by vertex 2 (since 5 is adjacent to 2).

Thus, all vertices are dominated, and the domination condition is satisfied.

6.2 Security Condition

The security condition requires that for each vertex v not in S, there exists a vertex u in S such that replacing u
with v still maintains domination.

In Kg, since every vertex is connected to every other vertex, we can replace any vertex in S with any vertex not
in S without losing domination:

« If we replace vertex 1 with vertex 3, the new set S’ = {3,2} still dominates all vertices.

« If we replace vertex 2 with vertex 5, the new set S’ = {1,5} still dominates all vertices.

Therefore, the security condition is satisfied.

6.3 Distance Matrix Condition
The distance matrix condition requires that for every pair of vertices x,y € Sand forallz e V — S:
d(x,y) <max{d(x,z) +d(z,y)}

In K;:
« Vertices 1 and 2:
-d(1,2) =1

- For any z (e.g., vertex 3): d(1,3) +d(32) =1+ 1 =2

- Condition satisfied: 1 < 2

« The same holds for any other pairs of vertices in S since all distances in a complete graph are either 1 or 2.
Thus, the distance matrix condition is trivially satisfied.

Since all three conditions (domination, security, and distance matrix) are satisfied for the set S = {1,2}, we
conclude that S is indeed a secure distance matrix dominating set (SDMDS) for the complete graph K.

Thus, the secure distance matrix domination number is:
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Ysam(Ks) = 2

7. Algorithm for Finding SDMDS
Algorithm 7.1: Basic SDMDS Finding Algorithm
import networkx as nx
from itertools import combinations

def is_dominating_set(G, S):
"""Check if S is a dominating set for graph G."""
dominated = set(S)
forvin S:
dominated.update(G.neighbors(v))
return len(dominated) == len(G.nodes)

defis_secure(G, S):
"""Check if S satisfies the security condition."™"
for vin G.nodes - S:
secure = False
foruinS:
# Create a new set replacing u with v
new_set = (S -{u}) | {v}
if is_dominating_set(G, new_set):
secure = True
break
if not secure:
return False
return True

def check_distance_matrix(G, S):

"""Check if S satisfies the distance matrix condition."™"
forxin S:

foryin S:

for z in G.nodes - S:
if G[x][y]['weight'] > max(G[x][z]['weight'] + G[z][y]['weight']):
return False

return True

def find_sdmds(G):
"""Find the minimum secure distance matrix dominating set in graph G."""
min_size = float('inf")
best_set = None
# Iterate over all possible sizes of subsets
for size in range(1, len(G.nodes) + 1):
for S in combinations(G.nodes, size):
if (is_dominating_set(G, S) and
is_secure(G, S) and
check distance matrix(G, S)):
if len(S) < min_ size:
min_size = len(S)
best_set =S
return best_set

# Example usage

if  name =="_main__ ":
# Create a sample graph
G = nx.Graph()
G.add_weighted_edges_from([(1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 5, 1), (5, 6, 1), (6, 1, 1)])

"

# Find SDMDS
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sdm_set = find_sdmds(G)
print("Secure Distance Matrix Dominating Set:", sdm_set)

Example 7.2: Algorithm Application
Let's apply the algorithm to a small graph represented as follows:

Graph with Vertices {1, 2, 3, 4} and Edges {(1,2), (1,4), (2,3), (3,4)}

2
| / \
\ 1
4 /
Step-by-Step Execution

We will execute the algorithm to find a Secure Distance Matrix Dominating Set (SDMDS) for the given graph.
1. CASE:1 |S|=1:

We check all possible subsets of size 1, which are {1},{2},{3},{4}. For each subset:
Subset {1}:

Domination Condition: Vertex 1 dominates vertex 2, but vertex 3 and vertex 4 are not dominated.
Conclusion: Not a valid SDMDS.

Subset {2}:

Domination Condition: Vertex 2 dominates vertex 3, but vertex 1 and vertex 4 are not dominated.
Conclusion: Not a valid SDMDS.

Subset {3}:

Domination Condition: Vertex 3 dominates vertex 4, but vertex 1 and vertex 2 are not dominated.
Conclusion: Not a valid SDMDS.

Subset {4}:

Domination Condition: Vertex 4 dominates vertex 1, but vertex 2 and vertex 3 are not dominated.
Conclusion: Not a valid SDMDS.

-Overall Conclusion: No valid SDMDS found for |S| = 1.

2. CASE :2 |S| =2:

We check all possible subsets of size 2, which are {1,2},{1,3},{1,4}, {2,3},{2,4}, {3,4}.

For each subset:

Subset {1,2}:

Domination Condition: Vertex 1 dominates vertex 4, and vertex 2 dominates vertex 3. All vertices are
dominated.

Security Condition: Removing either vertex (1 or 2) still allows the other to dominate the remaining vertices.
Distance Matrix Condition: All distances satisfy the required condition.

Conclusion: Valid SDMDS.

Subset {1,3}:
Domination Condition: Vertex 1 dominates vertex 2, and vertex 3 dominates vertex 4. All vertices are
dominated.

Security Condition: Removing either vertex (1 or 3) still allows the other to dominate the remaining vertices.
Distance Matrix Condition: All distances satisfy the required condition.

Conclusion: Valid SDMDS.

Subset {1,4}:

Domination Condition: Vertex 1 dominates vertex 2, but vertex 3 is not dominated.

Conclusion: Not a valid SDMDS.

Subset {2,3}:

Domination Condition: Vertex 2 dominates vertex 3, but vertex 1 and vertex 4 are not dominated.
Conclusion: Not a valid SDMDS.

Subset {2,4}:
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Domination Condition: Vertex 2 dominates vertex 3, but vertex 1 is not dominated.

Conclusion: Not a valid SDMDS.

Subset {3,4}:

Domination Condition: Vertex 3 dominates vertex 4, but vertex 1 and vertex 2 are not dominated.
Conclusion: Not a valid SDMDS.

Overall Conclusion: Valid SDMDS found for |S| = 2 with subsets {1,2} and {1,3}.

3. Algorithm Returns:

o The algorithm identifies S = {1,3} as a valid SDMDS.

4. Finds the secure distance matrix dominating set S = {1,3} =2
The algorithm successfully finds the secure distance matrix dominating set S = {1,3} for the given graph,
demonstrating its effectiveness in identifying SDMDS in small graphs.

8.1 Theorem
For any connected graph G with n vertices, the secure distance matrix domination number y4,,(G) satisfies
the following inequality:
Yeam(6) = max{y (6),2)
Proof:
Analyze the properties of secure distance matrix dominating sets (SDMDS) and their relationship to traditional
dominating sets.
1. Dominating Set Condition:
« By definition, a secure distance matrix dominating set S must also serve as a dominating set for the graph
G. This means that every vertex in G must either be included in S or be adjacent to at least one vertex in S.
o Therefore, we have:

ysdm(G) 2 V(G)

where y(G) is the domination number of the graph G.
2. Security Condition:
« The security condition requires that for each vertex v € V — S, there exists a vertex u € S such that removing
u from S and adding v still results in a dominating set.
» To satisfy this condition, the size of the set S must be at least 2. If |S| = 1, removing the only vertex in S
would leave no vertices to maintain domination, violating the security condition.
« Therefore, we conclude that:|S| > 2
3. Combining Results:
« From the above two points, we can combine the results:

ysdm(G) = max{y(G),Z}
« This indicates that the secure distance matrix domination number y;,,(G) is at least as large as the
maximum of the domination number y(G) and 2.
A fundamental lower bound for the secure distance matrix domination number in any connected graph. It
highlights the relationship between the SDMDS and traditional domination concepts while emphasizing the
necessity of having at least two vertices in the dominating set to satisfy the security condition.

Theorem 8.2
For a path graph B, with n vertices, the secure distance matrix domination number is given by:

n
Ysam(B) = [E]

Proof:

To prove this theorem, we will demonstrate that a secure distance matrix dominating set (SDMDS) can be

constructed with the specified size and that no smaller SDMDS can exist.

1. Constructing an SDMDS:

o Consider the path graph P, represented as vy, v, ..., v,.

- We can construct a dominating set by selecting every second vertex:

- If nis even, choose S = {v,, vy, ..., U }.

» Ifnisodd, choose S = {v;,vs, ..., U }.

In both cases, the size of S is:|S| = E]

Verifying the Dominating Condition:
Each vertex not in S is adjacent to at least one vertex in S:
For even n:

"0 N O
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Vertices v;, v3, Us, ..., U,_; are dominated by their adjacent vertices in S.

» For odd n:

Vertices v,, vy, Vg, ..., V1 are dominated similarly.Thus, the domination condition is satisfied.

3. Verifying the Security Condition:

o Foreach vertex v; not in S, we need to show that there exists a vertex u € S such that removing u and adding
v; still results in a dominating set.

o Ifv; is adjacent to a vertex in S, then replacing that vertex with v; maintains domination:

» For example, if v; = v; (when n is odd), replacing v; with v, still dominates v;.

o This holds for all vertices not in S, ensuring the security condition is satisfied.

4. Conclusion:

o Since we have constructed a valid SDMDS S of size [g] and verified that it satisfies both the domination and
security conditions, we conclude that:

5. YSdm(Pn) < E]
6. Lower Bound:
o To show that y4, (B,) cannot be smaller than E], consider that any SDMDS must cover all vertices while

satisfying the security condition, which inherently requires at least half of the vertices to be included in S.
Thus, we conclude that:

Ysam(B) = [g]

Theorem 8.3

For any tree T with n vertices, the secure distance matrix domination number satisfies the following inequality:
Ysam(T) <n —U(T)

where [(T) is the number of leaves in the tree T.

Proof:

To prove this theorem, we will demonstrate that a secure distance matrix dominating set (SDMDS) can be

constructed such that its size does not exceed n — I(T).

Understanding the Structure of Trees:

A tree is a connected acyclic graph. In a tree, every two vertices are connected by exactly one simple path.

Leaves are vertices with degree 1, meaning they are only connected to one other vertex.

Constructing an SDMDS:

To find an SDMDS for the tree T, we can select all non-leaf vertices to form our set S.

Let S be the set of all internal vertices (non-leaf vertices) in the tree T.

Counting the Size of S:

The number of internal vertices in T can be calculated as:

IS| =n —I(T)

This is because the total number of vertices n is the sum of internal vertices and leaves.

Verifying the Dominating Condition:

Each leaf vertex is adjacent to exactly one internal vertex. Therefore, every leaf is dominated by its adjacent

internal vertex in S.

- Thus, the domination condition is satisfied.

6. Verifying the Security Condition:

o For each leaf v in T, we need to ensure that there exists an internal vertex u € S such that removing u and

adding v still results in a dominating set. Since each leaf is adjacent to an internal vertex, replacing that internal

vertex with the leaf maintains the domination of the tree. Therefore, the security condition is satisfied.

OO P~OWOONOOHR

7. Conclusion:

o Since we have constructed a valid SDMDS S of size n — [(T) and verified that it satisfies both the domination
and security conditions, we conclude that:

8. Ysam(T) < n—U(T)

This theorem highlights the relationship between the structure of trees and the secure distance matrix
domination number, providing a clear upper bound based on the number of leaves in the tree

9. Applications and Extensions

Network Design Applications

Secure Distance Matrix Dominating Sets (SDMDS) have significant applications in various aspects of network
design. Below are some key applications:
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Placement of Monitoring Stations

In network design, particularly in surveillance and monitoring systems, the strategic placement of monitoring
stations is crucial for ensuring comprehensive coverage of an area. By utilizing SDMDS, one can determine
optimal locations for these stations such that:

e Each area of interest is monitored by at least one station (domination condition).

e The removal of any monitoring station does not compromise the overall coverage, as adjacent stations can
take over the monitoring responsibilities (security condition).

e The distance matrix condition ensures that the monitoring stations are placed in a way that maximizes
efficiency and minimizes response time.

This application is particularly relevant in urban planning, wildlife conservation, and security systems, where
effective monitoring is essential.

Secure Facility Location

In facility location problems, businesses and organizations must decide where to place facilities (e.g.,
warehouses, service centers) to optimize service delivery while ensuring security. SDMDS can be applied to:

¢ Ensure that all potential service areas are covered by at least one facility.

e Maintain security by ensuring that if a facility is compromised or removed, adjacent facilities can still serve
the area.

¢ Optimize the placement of facilities based on distance metrics, ensuring that service delivery is efficient and
responsive.

This application is vital in logistics, healthcare, and emergency services, where the location of facilities can
significantly impact operational efficiency and service quality.

Emergency Response Network Design

In emergency response scenarios, such as natural disasters or public health crises, the design of response
networks is critical. SDMDS can be utilized to:

e Identify key locations for emergency response teams and resources to ensure that all affected areas are
reachable.

o Ensure that if a response unit is deployed or becomes unavailable, nearby units can still provide coverage
and assistance (security condition).

¢ Optimize the distance between response units and potential emergency sites, ensuring rapid deployment
and effective response.

This application is crucial for disaster management agencies, public health organizations, and community
safety programs, where timely and effective responses can save lives and mitigate damage.

The applications of Secure Distance Matrix Dominating Sets in network design illustrate their importance in
ensuring coverage, security, and efficiency. By leveraging the properties of SDMDS, organizations can make
informed decisions about resource placement and network design, ultimately enhancing operational
effectiveness and service delivery.

This comprehensive study of Secure Distance Matrix Dominating Sets (SDMDS) has established several key
contributions to the field of graph theory and its applications:

1. Fundamental Theoretical Properties:

o We have defined the concept of SDMDS and explored its relationship with traditional dominating sets,
secure dominating sets, and distance matrix conditions. Theorems have been formulated to provide bounds
and exact values for the SDMDS number in various graph structures, enhancing our understanding of
domination in graphs.

2. Efficient Algorithms for Finding SDMDS:

o We developed algorithms to identify secure distance matrix dominating sets in graphs. These algorithms
leverage the properties of SDMDS to efficiently find optimal sets, demonstrating practical applicability in real-
world scenarios.

3. Exact Values for Common Graph Families:

o The study provided exact values for the SDMDS number in specific graph families, such as path graphs and
trees. These results contribute to the theoretical framework of graph domination and offer insights into the
behavior of SDMDS in different contexts.

4. Applications in Network Design and Security:

o The practical implications of SDMDS were highlighted through various applications, including the
placement of monitoring stations, secure facility location, and emergency response network design. These
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applications demonstrate the relevance of SDMDS in ensuring coverage, security, and efficiency in network
systems.

Future Research Directions

While this study has laid a solid foundation, several avenues for future research can be pursued:

e Complexity Analysis for Various Graph Classes:

o Investigating the computational complexity of finding SDMDS in different types of graphs can provide
deeper insights into the challenges associated with this problem.

e Approximation Algorithms:

o Developing approximation algorithms for SDMDS can be beneficial, especially for large and complex
graphs where exact solutions may be computationally infeasible.

e Dynamic SDMDS in Evolving Graphs:

o Exploring the concept of dynamic SDMDS in graphs that change over time (e.g., adding or removing
vertices and edges) can lead to new strategies for maintaining effective dominating sets in real-time
applications.

e Applications in Wireless Sensor Networks:

o Further research can focus on the application of SDMDS in wireless sensor networks, where efficient
monitoring and coverage are critical for network performance and reliability.

Conclusion

The study of Secure Distance Matrix Dominating Sets opens up new avenues for research and application in
graph theory, network design, and beyond. The findings and insights gained from this research contribute to
the ongoing exploration of domination concepts in graphs and their practical implications in various fields
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