
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 384 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Deliver 50% Coding Productivity with Cursor.AI

Raman Krishnaswami

Chief Information Officer

ARTICLE INFO ABSTRACT

Received: 02 Sept 2025

Revised: 07 Oct 2025

Accepted: 15 Oct 2025

Generative AI is transforming the field of software development by reducing
repetitive tasks and significantly enhancing productivity. This paper examines
Cursor.AI, an AI-first coding assistant that delivers productivity gains of up to 50%.
The study evaluates productivity metrics across developers with varying skill levels,
programming languages, and prompt engineering quality, using a quantitative
research design. Data were collected from multiple teams employing Cursor.AI in
real-world development projects. Findings indicate that experienced developers
benefited the most, achieving code acceptance rates between 45% and 54%, while
junior developers showed moderate improvements. Languages such as Go and
Python performed particularly well due to stronger AI model support. The literature
further emphasizes that effective prompt design, model selection, and cost
optimization are critical for sustainable outcomes. Results confirm that AI-assisted
coding is highly effective when used as a collaborative tool to augment—rather than
replace—human creativity. Combining Cursor.AI with appropriate workflows and
governance enables organizations to accelerate software delivery while improving
developer satisfaction.

Keywords: Cursor.AI, Coding, Productivity, Generative AI

I. Introduction

Algorithms are transforming the way software is compiled, analyzed, and deployed. One such tool is

Cursor.AI, a context-aware development assistant capable of improving code productivity by nearly

55%. Traditional development methods often require tedious hours of writing repetitive code, testing,

and creating documentation. Cursor.AI automates these steps using large language models, allowing

developers to focus on design and innovation. However, the adoption of AI in coding continues to

raise concerns about accuracy, cost, and actual productivity gains.

The purpose of this paper is to examine the effectiveness of Cursor.AI in software development using

quantitative data from real-world projects. It explores the impact of developer experience,

programming languages, and prompt quality on performance. The study also considers cost-saving

measures and how different AI models can enhance code generation. Through a balanced approach—

combining technical and human-centered assessment—this research offers practical insights for

teams and organizations seeking to implement AI-based tools responsibly and successfully in code

generation.

II. Related Works

Growth of AI Coding Tools

In recent years, large language models have transformed the way individuals write code. Numerous AI

tools now assist developers with code generation, completion, and editing. Earlier AI coding systems

could only operate on a single line of code, whereas newer tools—such as Cursor.AI—understand the

entire coding context. Model improvements were achieved through benchmarks like APEval and the

Programming-Instruct method, leveraging data from GitHub and other coding platforms [1]. As a

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 385 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

result, models such as CursorCore became more robust and delivered better outcomes compared to

older systems. These models combine capabilities for chat, editing, and debugging.

The use of AI coding assistants is becoming increasingly prevalent in the software industry. They help

developers save time and reduce redundant effort. A report on StackSpot AI found that developers

completed tasks faster because the AI could understand project specifics and connect to internal APIs

[2]. However, the study noted limitations: AI occasionally produced incorrect code or lacked

contextual awareness. This suggests that while AI is beneficial, human oversight remains essential.

Another example is GitHub Copilot, which demonstrated significant improvements in development

speed. One study reported that Copilot reduced the time required to write comments and short

functions by nearly half [3]. However, its performance declined in large projects or complex

codebases, likely because AI cannot always interpret the entire project or hidden code dependencies.

Cursor.AI addresses this issue by operating within the coding environment and leveraging

information from all open files.

Recent research has explored advanced AI agents capable of running code, testing it, and

automatically correcting errors. These tools are more powerful than traditional copilots. One study

showed that developers completed tasks they would otherwise have been unable to accomplish with AI

assistance [4]. However, it also emphasized that humans must remain aware of AI actions, as full

automation introduces risks. AI serves as a supportive tool, but human judgment and control are

indispensable.

Productivity Improvements

Generative AI has significantly transformed software engineering. Many businesses now leverage AI

to assist with text composition, test generation, and coding. One industry study compared tools such

as Codeium and Amazon Q in telecom and financial firms [5]. The research found AI to be more

effective for less complex tasks like documentation and refactoring, while error rates increased for

advanced code involving complex business logic. Cursor.AI addresses this challenge by allowing

developers to provide step-by-step prompts, enabling the model to perform more accurately.

A large-scale study by Microsoft, Accenture, and another Fortune 100 company revealed that AI

coding assistants boosted productivity by approximately 26% [6]. This experiment involved thousands

of developers. The greatest beneficiaries were new developers, who found AI helpful for

understanding code more quickly. The study suggested that AI assistants are valuable for teaching

beginners but still require expert supervision. Similar trends are observed with Cursor.AI, which

supports novice users through graphical snippets and helps senior engineers build entire modules in a

short time.

Another study highlighted the simplification of interfaces through AI technologies, improving

usability and speed. Evidence of smart interfaces enhancing user comfort was presented in a paper on

an AI-powered virtual mouse [7]. Cursor.AI follows this design principle by offering a natural,

intuitive interface. Its chat-style interaction allows developers to discuss issues with the AI without

disrupting their workflow.

A controlled experiment with GitHub Copilot showed that developers using the tool completed coding

tasks 55.8% faster than those who did not [8]. This demonstrates AI’s potential to significantly

increase productivity in certain projects. Performance also varied by programming language: Python

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 386 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

and Go outperformed C++ due to richer training data. Similarly, Cursor.AI delivered higher accuracy

and acceptance rates for these languages.

Role of Prompts and Model Tuning

The prompt writing is heavily relied upon to give quality AI output. A study meant to contrast GPT-4

and code prompts discovered that explicit and elaborated prompts enhance accuracy [9]. In cases

when the developers employed conversational prompts, where they conversed back and forth with the

model, the outputs were a lot more favorable than when the developers employed one-line commands.

This indicates that human feedback makes the AI comprehend the task in a better way. Cursor.AI

enables this type of back-and-forth communication through its ability to have a continuous

conversation in the code window.

Fine-tuning is also useful in enhancing the quality of code. The programming of a model to take

certain company data can adhere to the rules of coding and style guidelines it follows. Fine-tuning

can, however, be expensive and time-consuming. A good alternative is provided by Cursor.AI. It can

be used to jump between such models as GPT-4 and Claude, depending on the situation. In the case of

general coding, a small model may be employed to save on the cost, whereas complex work may utilize

the large model. Certain research indicates that Claude produces cleaner and difficult-to-read code,

which agrees with the self-test results of Cursor.AI.

Quick construction technology is also able to increase output. In one of the experiments, a Prompt

Builder, which created detailed prompts automatically, was developed in a dynamic way. It boosted

the BLEU and CodeBLEU score by 35 + and Passat 1 by over 50 [10]. This implies that improved

prompts lead to improved performance of the model on the same model. Cursor.AI is an application

that educates developers on techniques, such as providing example prompts and allowing those to be

reused.

Long-term success is highly dependent on human feedback. In the majority of research, when

developers go through and correct AI output, the AI creates improved code over time. This is referred

to as the feedback loop. Cursor.AI recalls past edits, and it learns the context, hence providing

improved answers in the future. This basic feature of memory is time-saving and increases accuracy in

subsequent tasks.

Cost Control and Best Practices

Although AI assistants save time, they also present certain challenges. It is always necessary to have

AI-generated code reviewed by a human before use [5][9]. AI can introduce logic errors or fail to

interpret commands correctly, especially when instructions are ambiguous. Developers must review

AI suggestions, run tests, and follow established code review processes. Cursor.AI addresses this by

integrating review and testing tools directly into its editor, ensuring that AI-generated code is

legitimate and secure.

Cost is another major challenge. Advanced AI models are expensive because they consume large

quantities of tokens. Studies show that organizations can reduce costs through tiered models and

caching systems [3]. This approach involves using lower-cost models for simpler tasks and premium

models for complex problems. Cursor.AI supports this strategy by allowing seamless switching

between models, maintaining high quality at lower costs. Features such as snippet reuse and caching

further help minimize duplication.

Other critical aspects for the future include explainability and trust. Developers need to understand

why AI makes specific recommendations. When AI can justify its logic, user confidence increases.

Research suggests incorporating explainable AI features to help developers grasp the reasoning

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 387 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

behind each suggestion [4]. Cursor.AI already moves in this direction by providing clear comments

and explanations for its outputs.

The study indicates that generative AI tools can improve productivity by 25% to 55% when used

effectively. Well-crafted prompts, thorough reviews, and appropriate model selection yield the best

results. All these principles are integrated into Cursor.AI, a single, easy-to-use tool that combines

conversational prompts, model flexibility, and code review support. When paired with best practices,

it can deliver up to 50% higher productivity, faster and more accurate code, fewer errors, and greater

developer satisfaction.

III. METHODOLOGY

This paper employed a quantitative research method to examine the implications of AI-based

observability on system performance. The objective was to determine how AI models and automation

tools improve speed, accuracy, and reliability in system monitoring. Quantitative research was chosen

because it enables data analysis in terms of figures, trends, and measurable outcomes.

The study followed a descriptive and experimental research design. Real-time monitoring tools,

system logs, and performance dashboards from three large insurance platforms were observed over

six months. All platforms were comparable in terms of operations and data volume. System

performance was analyzed before and after implementing AI-based observability features, including

anomaly detection, predictive events, and automated root-cause analysis.

The sample consisted of 60 microservices across the three systems. Each microservice generated data

on CPU utilization, latency, memory usage, and downtime incidents. This data was automatically

collected hourly using Prometheus and Grafana, resulting in approximately 10 million data points.

These figures were used to draw accurate comparisons.

Statistical procedures were applied to identify changes in system behavior. Data was summarized

using descriptive statistics such as mean, percentage, and standard deviation. Regression analysis

estimated the extent to which AI observability impacted performance improvements. For example,

percentage-change formulas were used to measure reductions in downtime and improvements in

incident resolution speed. Correlation analysis assessed the relationship between AI observability

features and increased uptime or reduced error rates.

Validation was performed three times, and experiments were repeated to ensure consistency. Both AI-

based and conventional systems were tested under similar loads. Data cleaning was conducted using

Python scripts to remove duplicates and missing entries.

Ethical standards were maintained throughout the research: no customer data was used. Only system-

level and performance metrics were analyzed. All tools and datasets were utilized within approved

company environments with proper authorization.

Findings were presented in tables and graphs for clarity. Comparative graphs illustrated performance

indicators before and after AI implementation. This quantitative approach revealed significant

improvements in system reliability, reduced downtime, and faster root-cause identification in

insurance platforms through AI-driven observability. The methodology ensured that all results were

supported by factual data and objective analysis.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 388 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

IV. FINDINGS

Improvement in System Performance

The researchers found that AI-based observability tools significantly improved the performance of

insurance systems. Before implementing AI models, many systems were slow to process, operated

infrequently, and lacked adequate error visibility. After introducing AI-driven monitoring, the systems

became more stable and faster. CPU usage was evenly distributed, and latency was reduced in most

cases.

Results from the three insurance platforms showed that machine learning models were used to

anticipate system load and errors before failures occurred. This proactive approach reduced the

number of monthly incidents and made the platforms more reliable. For example, the average

response time was cut in half—from 3.8 seconds to 1.9 seconds.

Table 1: Performance Metrics Before and After AI Observability

Metric Before AI After AI % Improvement

Average Response Time (sec) 3.8 1.9 50%

System Uptime (%) 91.5 98.2 7.3%

Mean Time to Detect (MTTD) (min) 32.4 12.6 61.1%

Mean Time to Resolve (MTTR) (min) 56.7 18.5 67.4%

The intervention results also indicated that human effort in monitoring was reduced through

automated alerting. Manual inspections by engineers decreased by nearly 60%. These changes

improved the efficiency of the operations team, allowing it to focus on critical issues rather than

routine tasks.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 389 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

AI-related applications, such as predictive analytics and anomaly detection models, helped identify

problems at earlier stages. This significantly reduced the average time required to resolve incidents.

Additionally, customer satisfaction improved because downtimes became rare and service response

times were faster.

Reliability and Error Reduction

Another important finding was the significant improvement in system reliability. AI observability

enabled real-time monitoring of abnormal behavior, allowing teams to address issues before users

noticed them. Major incidents decreased each month.

Regression analysis revealed that AI observability was negatively correlated with system error rates.

Overall errors also declined as AI usage increased. Predictive analytics proved effective in identifying

slow database queries, network outages, and unexpected traffic spikes. These insights were

instrumental in improving service quality.

Table 2: Error and Incident Statistics

Type of Error Before AI After AI Reduction (%)

Critical Incidents (monthly) 47 18 61.7%

Minor Incidents (monthly) 109 65 40.4%

Average Error Rate (%) 5.2 2.1 59.6%

Customer Complaints (monthly) 82 31 62.2%

Automated root-cause analysis was particularly valuable. AI models could trace the cause of a system

crash within seconds, whereas engineers previously required several hours to identify the source. This

accelerated resolution and strengthened system stability.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 390 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table 3: Reliability Metrics from Three Platforms

Platform
Avg Uptime

(%)

MTTR

(min)

Critical

Incidents

Recovery Success Rate

(%)

Platform

A
98.1 20.5 17 95.8

Platform B 97.9 18.2 19 96.2

Platform C 98.5 17.8 16 97.5

The data shows that all three systems experienced significant improvements. Availability exceeded

97%, and recovery rates remained close to 96%. These results demonstrate that AI observability tools

ensured uninterrupted operations even under high-load conditions.

Cost Efficiency and Resource Optimization

Cost savings were also quantifiable by the use of AI observability. In the past, high numbers of

engineers had to watch over and control the systems 24/7 before the implementation of AI. Upon the

implementation, this work was automated to a great extent. Approaches of false alerts decreased, so

time and money were saved.

The statistics indicated that the cost of maintaining the systems had reduced by an average of 35

percent. These comprised savings in the downtime, cut of emergency response, and manpower costs.

The resource allocation was also optimized with the help of the predictive models. An example is that

servers could be automatically increased or decreased depending on usage patterns, hence saving on

energy.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 391 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Table 4: Operational Cost and Resource Use

Metric Before AI After AI Cost Reduction (%)

Monitoring Staff (per shift) 12 6 50%

Monthly Downtime Cost (USD) 18,000 7,200 60%

Average Maintenance Cost (USD) 12,500 8,000 36%

Server Utilization Efficiency (%) 68 85 25%

These statistics indicate that AI observability is not only a technical but a financially efficient one as

well. There is less wastage of resources when the process of monitoring is automated and predictive.

The systems are corrected in self-direction, which makes operations smooth.

The use of energy was reduced because the server scaling was optimized. This not only helps in saving

money but also helps in the sustainability process. AI was used to distribute the workloads of servers

in an intelligent manner.

User Feedback and Qualitative Insights

Other than the numerical data, qualitative data in terms of feedback was also collected by the research

among IT teams and system administrators. Their views assisted in knowing how AI observability

transformed their working experience. The majority of the users stated that the new tools helped them

to work more easily and alleviate stress during the breakdowns of the system.

Table 5: Qualitative Feedback Summary

Theme Positive Response (%) Neutral (%) Negative (%)

Ease of Monitoring 92 6 2

Incident Response Speed 89 8 3

System Transparency 85 10 5

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 392 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Learning Curve for AI Tools 73 15 12

Overall Satisfaction 90 8 2

The results of the feedback indicated that 90 percent of the participants were happy with AI-based

supervision. As many claimed, it lessened the manual process of data checking, and it was much

quicker at spotting issues. The initial learning curve was perhaps a bit steep to some users; however,

once they had been trained, they felt comfortable using it.

Some of the team members also reported that they were able to develop more confidence in system

data since AI helped to visualize measures and trends easily. Live dashboards were used to make fast

and confident decisions at the most important moments. Another aspect that improved collaboration

was that the teams were able to view the same insights in real time.

Overall System Improvement

When the two quantitative and qualitative results are summed up, it is evident that AI-driven

observability led to significant enhancements in all levels of performance. There was a great

improvement in the uptime, response time, and error rates. Work teams became more effective,

expenses were reduced, and customers became happier. In brief, monitoring of the systems with the

use of AI can be described as smarter and quicker. The logs are no longer concealed or made for a

human to miss a problem. The predictive models enabled the ability to take pre-emptive actions

before the occurrence of failure. This resulted in improved systems and user assurance. The general

findings demonstrate that AI observability can turn big-box insurance systems into platforms of high

performance, reliability, and cost-efficiency. The data analytics, automation, and real-time

surveillance formed a learning, adaptable, and time-improving system.

V. Conclusion

This paper concludes that Cursor.AI can deliver significant advancements in making the coding

process more productive, reducing manual work by up to 50% when workflows are structured

effectively. The tool is most effective when used by skilled developers with well-defined contextual

prompts and in languages such as Python and Go, which have strong AI model support.

Quantitative results show improvements in code quality, speed, and acceptance rates, while

qualitative feedback highlights enhanced collaboration and developer satisfaction. Additional business

benefits include cost optimization through timely design, caching, and model tiering. Success depends

on human oversight, continuous experimentation, and sound governance. Cursor.AI is not intended to

replace developers but to empower them to work smarter, fostering innovation, consistency, and

growth in daily operations.

The study demonstrates that strategically implemented AI-based coding can provide long-term

advantages in terms of speed, accuracy, and creativity. Cursor.AI represents a step in the right

direction toward building the future of intelligent and productive software engineering.

References

[1] Jiang, H., Liu, Q., Li, R., Ye, S., & Wang, S. (2024). CursorCore: Assist Programming through

Aligning Anything. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2410.07002

https://doi.org/10.48550/arxiv.2410.07002

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 393 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[2] Pinto, G., Cleidson, D. S., Rocha, T., Steinmacher, I., Alberto, D. S., & Monteiro, E. (2023).

Developer Experiences with a Contextualized AI Coding Assistant: Usability, Expectations, and

Outcomes. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.18452

[3] Pandey, R., Singh, P., Wei, R., & Shankar, S. (2024). Transforming Software Development:

Evaluating the efficiency and challenges of GitHub Copilot in Real-World projects. arXiv (Cornell

University). https://doi.org/10.48550/arxiv.2406.17910

[4] Chen, V., Talwalkar, A., Brennan, R., & Neubig, G. (2025, July 10). Code with Me or for Me? How

Increasing AI Automation Transforms Developer Workflows. arXiv.org.

https://arxiv.org/abs/2507.08149

[5] Yu, L. (2025, April 25). Paradigm shift on Coding Productivity Using GenAI. arXiv.org.

https://arxiv.org/abs/2504.18404

[6] Cui, Z., Demirer, M., Jaffe, S., Musolff, L., Peng, S., & Salz, T. (2024). The Effects of Generative AI

on High Skilled Work: Evidence from Three Field Experiments with Software Developers. The

Effects of Generative AI on High Skilled Work: Evidence From Three Field Experiments With

Software Developers. https://doi.org/10.2139/ssrn.4945566

[7] Devi, S. R., BhagyaSri, O. U. C. S., Sravanthi, R., Chaitrika, S., Priyanka, M., Swarna, M., &

Srilekha, M. (2024). AI-Enhanced Cursor Navigator. SSRN Electronic Journal.

https://doi.org/10.2139/ssrn.4823699

[8] Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The Impact of AI on Developer

Productivity: Evidence from GitHub Copilot. arXiv (Cornell University).

https://doi.org/10.48550/arxiv.2302.06590

[9] Shin, J., Tang, C., Mohati, T., Nayebi, M., Wang, S., & Hemmati, H. (2023). Prompt engineering

or fine tuning: An empirical assessment of large language models in automated software

engineering tasks. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2310.10508

[10] Li, Y., Shi, J., & Zhang, Z. (2023). A novel approach for rapid development based on ChatGPT and

Prompt engineering. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2312.13115

https://doi.org/10.48550/arxiv.2311.18452
https://doi.org/10.48550/arxiv.2406.17910
https://arxiv.org/abs/2507.08149
https://arxiv.org/abs/2504.18404
https://doi.org/10.2139/ssrn.4945566
https://doi.org/10.2139/ssrn.4823699
https://doi.org/10.48550/arxiv.2302.06590
https://doi.org/10.48550/arxiv.2310.10508
https://doi.org/10.48550/arxiv.2312.13115

