Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

React's Architectural Limitations in Distributed UI Systems: A
Critical Analysis

Swaraj Guduru

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received:01 Sept 2025 This article critically examines React's architectural limitations when applied to

. distributed user interface systems, particularly in micro-frontend implementations. It
Revised:05 Oct 2025 explores the fundamental tension between React's component model, which assumes a
unified runtime with shared context and rendering cycles, and the distributed nature of
modern frontend architectures that emphasize team autonomy and independent
deployment. The article progresses through React's core design assumptions, identifies
specific challenges in cross-boundary state management and server-side rendering
coordination, evaluates current industry mitigation strategies, including isolation
techniques and module federation, and explores emerging paradigms that reimagine
frontend architectures for distributed contexts. By identifying the architectural
mismatches between React's monolithic design and distributed UI requirements, the
article provides insights for organizations navigating these competing paradigms while
seeking to maintain both system cohesion and team independence.

Accepted:15 Oct 2025

Keywords: Micro-Frontends, React Architecture, Distributed User Interfaces,
Frontend Composition, Cross-Boundary State Management

1. Introduction and Background

Frontend development has undergone a deep transformation over the course of the 2010s. Codebases
that were dominated by jQuery began to be supplanted by architectures that were organized in terms
of components. Then in 2013, React became available, providing a new and different way of building
interfaces that is based on the declarative style of programming and rendering via a virtual DOM.
React quickly became popular in development communities because of the various technical benefits
its architecture afforded. This library grew even faster in the development industry, thanks to its many
technical affordances.

The component-based structure advocated by React enables decomposition of complex interfaces into
modular, reusable units. Each component maintains an internal state while rendering predictably
based on input properties. [1] This marked a significant departure from imperative DOM
manipulation techniques prevalent in earlier frameworks. Traditional direct DOM operations incurred
substantial performance penalties during re-rendering cycles. React's virtual DOM addressed these
inefficiencies through the implementation of differential reconciliation algorithms, selectively
updating only necessary DOM nodes rather than reconstructing entire interface trees. Combined with
unidirectional data flow patterns, this architecture substantially improved performance characteristics
for complex interface implementations.

React's evolution brought sophisticated features—hooks for state management, context API for prop-
drilling prevention, concurrent rendering capabilities—while parallel shifts occurred in broader web
architecture paradigms. Service-oriented systems have already been adopted by backend systems.
Microservices have become a standard practice for designing scalable systems. Frontend architectures
have followed suit, and monolithic applications are breaking apart into micro-frontends, or smaller
applications that are independently deployable, owned by development teams, and built into the
application flow. This approach is simply microservices for the UI, allowing sections of connected
interfaces to be built and deployed without redeploying the entire app, the work of possibly multiple

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 345
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

teams. Architectural boundaries drawn along business domain lines rather than technical concerns
facilitate organizational alignment with software structure. [2] Development teams gain the capability
to deploy interface sections independently, potentially leveraging different technology stacks while
maintaining adherence to shared design systems and integration contracts.

The fundamental question emerges regarding compatibility between React's core design assumptions
and distributed UTI requirements. React fundamentally presupposes unified runtime environments—
shared memory space, coherent component hierarchies, synchronized rendering cycles. These
architectural assumptions create tension points when applications fragment across team boundaries,
service domains, or deployment units. Projects implementing distributed React architectures
frequently encounter these limitations.

React's architectural constraints affect at least three disparate dimensions of creating an application:
the pace at which features can be delivered, the characteristics of system reliability, and how the
product scales with the organization. Organizations creating development initiatives using React
experience friction between the inherent, centralized component model in React and micro-frontend's
decentralized architecture. The misalignment between declarative programming in React and the
decentralized nature of micro-frontends presents a formidable barrier to implementation.

Technical teams encounter numerous integration challenges: dependency collision issues (React
version conflicts coexisting in single-page contexts), runtime boundary complications, cross-fragment
state synchronization requirements, and disjointed rendering lifecycles. Architectural considerations
extend beyond purely technical domains into organizational territories—team autonomy boundaries,
deployment independence requirements, and governance frameworks. DOM hydration
inconsistencies frequently emerge when server-rendered content spans multiple independent
applications. Performance degradation often results from duplicated bundle content and initialization
logic across fragment boundaries.

Ultimately, if enterprises are going to support micro-frontend architectures, they will generally need
to ensure their teams understand the inherent bounds of React outside of a single page's context. The
conceptual understanding of the in-framework limitations will provide the basis for reasoned
architectural decisions and impactful mitigation in ongoing debates between developer experience,
runtime performance, and scaling at the organization level.

2, Theoretical Foundations of React's Component Model

The React component model catalyzed a paradigm shift in thinking about frontend architecture. React
incorporates a handful of core technical principles that drive its construction of user interfaces; some
of these principles can be regarded as strengths for monolithic applications, while others are more
likely to create limitations in distributed settings.

The performance story hinges on React's virtual DOM. Instead of using traditional libraries that
perform direct updates to the DOM, React keeps a lightweight tree of JavaScript objects that closely
mirrors the actual DOM in the browser. This abstraction layer is where it will be able to stage
rendering work. State mutations trigger the creation of a new virtual tree, which React then compares
against the previous version. The comparison process—reconciliation—employs several heuristic
shortcuts rather than computationally expensive exact tree diffing. Type-based element comparison
forms the primary heuristic; React assumes elements of different types produce entirely different
trees, while same-type elements merely require attribute updates. Key props function as persistent
identifiers during collection rendering, preserving component state during reordering operations and
preventing unnecessary recreations.

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 346
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
React Micro-Frontend . .
. . Architectural Tension
Assumption Requirement

React assumes a unified tree structure while micro-

Single Virtual DOM | Independent . .
frontends require autonomous rendering processes

Tree Rendering Trees .
across boundaries
. . React optimizes for shared memory and
Shared Runtime Isolated Execution pHrt . . Y
. dependencies, while micro-frontends need clear
Environment Contexts

runtime isolation

React expects synchronized component updates
while micro-frontends demand independent
release schedules

Unified Component | Independent
Lifecycle Deployment Cycles

Table 1: React's Core Architectural Assumptions vs. Micro-Frontend Requirements. [3, 4]

Performance optimization techniques include batched DOM updates and selective subtree re-
rendering. The entire architecture assumes a singular reconciliation context—one virtual tree within
one JavaScript runtime. This architectural assumption becomes problematic for distributed UI
systems where separate teams independently develop and deploy distinct interface sections on
asynchronous release schedules [3]. Multiple reconciliation contexts existing simultaneously on a
single page create boundary issues that React wasn't designed to handle smoothly.

Unidirectional data flow constitutes another foundational React principle affecting distributed
implementation. Traditional React apps pass data downward through component hierarchies via
props, with state changes triggering cascading re-renders through affected component subtrees.
Parent components maintain state requiring modification from children through callback prop
passing. This model creates predictable debug patterns—components function deterministically based
solely on current props/state. FBJS DevTools relies on this predictability for time-travel debugging.

The architecture presupposes shared memory access between components. Distributed Ul
architectures fragment this assumption when components span runtime boundaries, forcing
alternative communication patterns. Cross-boundary state synchronization typically requires event-
driven architectures, pub/sub patterns, or backend-mediated state sharing. Many orgs implement
Redux middleware layers with custom serialization/deserialization for cross-boundary events. Others
employ BFFs (Backend-for-Frontend) proxies maintaining unified state sources. Both approaches
diverge significantly from React's original mental model and introduce complexity absent in
monolithic implementations [4]. Dev teams frequently maintain hybrid approaches—React-native
state management within boundaries, custom cross-boundary protocols between them.

Component hierarchy coupling creates additional distributed system challenges. React's composition
model builds deeply nested component trees where parent components control children's props and
lifecycle. Context API extends this coupling beyond direct parent-child relationships, enabling any
component to consume values from providers anywhere above in the tree. While solving prop-drilling
headaches elegantly in monolithic apps, Context utterly breaks at micro-frontend boundaries since
providers and consumers must share a single React tree instance. Similar limitations affect React's
newer composition mechanisms—hooks like useContext, useReducer, and custom hooks combining
multiple stateful behaviors all assume runtime proximity.

The coupling creates practical problems for standard UI concerns spanning micro-frontend
boundaries. Global theming systems traditionally implemented via ThemeProviders must be
duplicated across boundaries or reimplemented using alternative mechanisms. Auth state

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 347
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

traditionally flowing through context requires alternative sharing approaches—often via
cookie/localStorage with redundant hydration or federated login services. Design system component
libraries, depending on contextual configuration, face difficult implementation decisions at
boundaries.

React's runtime assumptions further highlight architectural limitations in distributed environments.
The library expects a unified JavaScript context where all components access identical React
instances, reconciler implementations, and event systems. This unity enables synthetic events to
normalize browser differences and implement efficient delegation patterns. Features like concurrent
rendering, suspense boundaries, and prioritized transitions depend entirely on a single scheduler
coordinating the entire component tree.

Distributed architectures break these assumptions when multiple React versions coexist on a single
page. Version conflicts create subtle and difficult debugging challenges—especially when shared
component libraries inadvertently reference multiple React instances. Synthetic events behave
unpredictably across boundaries. Error boundaries fail to catch exceptions across reconciler contexts.

Building robust distributed React systems requires explicit strategies addressing these limitations.
Teams commonly implement runtime isolation through module federation with shared singletons,
namespace sandboxing techniques, or custom runtime bridges mediating between React instances.
Standardized versioning policies, explicit interface contracts, and comprehensive integration testing
become mandatory rather than optional practices.

React's architectural decisions, optimized perfectly for cohesive monolithic applications, become
significant liabilities in distributed contexts without additional coordination mechanisms. The
fundamental tension between React's unified runtime expectations and distributed system principles
creates unavoidable complexity that must be explicitly managed.

3. Fundamental Challenges in Distributed UI Implementation

Distributed UI architectures built with React face substantial technical hurdles originating from
architectural incompatibilities. Micro-frontends fragment application interfaces into distinct chunks
maintained by separate teams. This concept extends backend microservice principles into frontend
territory. Key drivers behind micro-frontend adoption include domain-aligned team boundaries,
release independence, technology flexibility, and integration resilience.

These architectural principles fundamentally clash with React's design assumptions. React expects
components to exist within a unified memory space sharing a single rendering context. Micro-
frontends create vertical application slices that encapsulate functionality from the database through
UI layers with minimal cross-team dependencies during development cycles. This contrasts with
React's inherent horizontal composition structure, where components freely share context, props, and
rendering lifecycle hooks within a unified application boundary.

Approach Implementation Method Key Limitations
Backend- Shared API endpoints with Network latency impacts responsiveness;
Mediated State WebSockets or polling requires additional backend infrastructure
Client-Side Custom event dispatchers with Complex synchronization logic; potential
Event Bus serialized payloads race conditions across boundaries
Federated State | Coordinated Redux/MobX Version compatibility issues; increased
Stores stores with bridge adapters bundle size from duplicate state libraries

Table 2: State Management Approaches in Distributed React Architectures. [5, 6]

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 348
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Integration techniques vary substantially across implementations. Some organizations employ iframe-
based strategies, providing maximum runtime isolation at the cost of seamless visual integration.
Others leverage Web Components as standardized interface boundaries. Build-time approaches use
module bundlers for composition during compilation phases. Server-side strategies utilize fragment-
based composition through ESI or template assembly. Runtime orchestration dynamically loads
fragment code into shell applications. Each strategy introduces specific trade-offs regarding isolation
strength, performance characteristics, and developer experience [5].

Technical conflicts emerge across multiple fronts. Dependency collisions occur when different React
versions must coexist on a single page - particularly problematic given React's internal reconciler
implementation details. CSS isolation remains notoriously difficult - global styling from one fragment
frequently disrupts another's layout unexpectedly. Runtime composition demands sophisticated
orchestration mechanisms handling asynchronous loading, graceful degradation during failures, and
proper initialization sequencing.

State management across fragment boundaries presents particularly thorny challenges. Traditional
React patterns depend entirely on component proximity within a shared tree structure. Context API
becomes useless across micro-frontend boundaries since providers and consumers require the same
React instance. Redux stores cannot directly span separate applications without significant
adaptation. Even basic component communication via props breaks down completely at runtime
boundaries.

Organizations adopt various workarounds for cross-boundary state coordination. Many implement
BFF proxies that maintain a centralized state server-side while synchronizing to multiple frontend
fragments. Custom event mechanisms using browser storage events or postMessage APIs create
communication channels between isolated fragments. Message broker architectures sometimes
mediate between fragments using WebSocket connections to central state services. Establishing clear
state ownership rules becomes critical - defining which fragment controls specific data and how
changes propagate [6].

Complex workflows spanning multiple domain boundaries create additional integration challenges.
Shopping functionality split between product catalog and checkout fragments requires meticulous
state synchronization. User authentication must maintain consistency across all application sections.
Notifications need reliable delivery to relevant UI components regardless of which team owns the
receiving fragment.

Server rendering compounds these difficulties substantially. Monolithic React applications follow
straightforward SSR patterns: the server produces complete HTML markup, the client receives it
alongside JavaScript bundles, and React hydrates the static DOM by attaching event handlers and
reconstructing virtual component trees. Distributed architectures fragment this unified process across
team boundaries.

Each micro-frontend team implements SSR independently while ensuring a compatible output.
Numerous coordination problems emerge: fragments might depend on others loading first, nested
hydration occurs when fragments contain components from multiple teams, and duplicate resource
loading happens without careful dependency management. Organizations must select appropriate
composition strategies based on specific requirements - pure server composition achieves fast initial
rendering but complicates interactive elements, while client-side approaches offer flexibility at the
cost of potential hydration inconsistencies.

Organizational impacts often match or exceed technical challenges. Though micro-frontends promise
team autonomy, React's composition model creates unavoidable interdependencies. Teams frequently
discover their supposedly independent technical decisions cascade unexpectedly across fragment

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 349
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

boundaries. Choices about state management approaches, styling methodologies, or dependency
versions create integration conflicts requiring cross-team coordination.

Development workflows grow increasingly complex. Local environments must simulate integration
with fragments from other teams. Testing strategies require both isolated component validation and
cross-boundary integration verification. Deployment pipelines need sophisticated orchestration to
prevent broken user experiences during partial updates.

Many enterprises establish dedicated platform teams responsible for integration infrastructure,
shared libraries, and cross-team governance. These groups maintain standardized communication
patterns between fragments, ensure consistent design system implementation, and establish
versioning policies for shared dependencies. This governance layer represents substantial overhead
absent from monolithic applications, highlighting fundamental tensions between React's inherent
architectural assumptions and micro-frontend organizational objectives.

4. Current Industry Mitigation Strategies

The software industry has devised numerous techniques addressing React's limitations in distributed
interface scenarios. Each technique presents unique balances between boundary strength, rendering
efficiency, and developer accessibility. Technical teams typically adopt approaches that match specific
organizational constraints and technical needs. iFrame-based separation stands as the simplest
isolation method. This approach embeds separate React applications within distinct browsing
contexts, creating natural DOM partitioning and runtime separation. The method resolves several
persistent challenges: style interference disappears since CSS remains confined to each frame's scope;
module conflicts vanish through complete runtime separation; security boundaries strengthen as
browser protections prevent cross-fragment scripting attacks.

Nevertheless, frame-based architectures present substantial operational difficulties. Fragment
interaction requires complex messaging protocols using serialized data through browser messaging
channels. Common interface components like navigation elements or modals cannot naturally
traverse boundaries, forcing teams toward either component duplication or elaborate synchronization
mechanisms. System resources face significant strain from redundant asset loading, memory
inefficiency, and duplicate JavaScript processing across contexts. Interface coherence frequently
suffers from perceptible discontinuities and interaction constraints [7]. The Custom Elements
specification offers alternative boundary mechanisms utilizing platform-native standards. This
approach packages React applications inside defined custom elements with Shadow DOM, providing
style isolation. The method enables tighter page integration compared to frames while preserving
necessary boundaries. Interface fragments expose formalized contracts through element attributes
and event interfaces, establishing cleaner integration points than direct component coupling. Shadow
DOM boundaries prevent most styling conflicts while supporting theme inheritance through custom
CSS properties.

Strategy Integration Fidelity Team Autonomy Impact

. Low - Significant UX and styling High - Complete technical independence
1Frames . o . .. -

discontinuities with minimal coordination
Web Medium - Native DOM Moderate - Framework-agnostic
Components integration with style isolation interfaces with shared styling standards
Module High - Seamless React component | Lower - Requires coordination on shared
Federation composition dependencies and versions

Table 3: Comparison of Micro-Frontend Integration Strategies. [7]
Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 350

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

React implementations inside Shadow DOM encounter several technical obstacles. Event delegation
systems in React operate inconsistently through shadow boundaries, requiring additional handling
layers. Programmatic DOM access using reference objects fails across boundary edges without
specialized adapters. Portal functionality needs significant modification to function properly with
shadow root containers.

Webpack Module Federation represents a sophisticated dependency-sharing approach addressing
numerous isolation limitations. This mechanism allows discrete build pipelines to share JavaScript
modules during runtime execution without code duplication. Unlike basic separation techniques,
Federation establishes cross-application dependency relationships while maintaining deployment
autonomy.

The architecture depends on several critical components: container applications managing the
federated environment; exposed remote modules providing functionality; shared dependency
definitions preventing duplication; and asynchronous interface modules handling cross-application
interaction. Implementation patterns vary considerably: shell designs where lightweight containers
orchestrate remote functionality; component approaches assembling interface elements from
distributed sources; and route-based systems loading complete application sections per navigation
path [8].

Despite significant advantages, Federation introduces substantial configuration complexity. Build
systems require precise coordination preventing version incompatibilities. Common dependencies
demand strict version management preventing subtle runtime failures. Loading sequence becomes
critically important when applications share initialization state. Error recovery grows exponentially
more complex when remote modules encounter loading or execution problems.

Proprietary composition frameworks have emerged addressing unique organizational requirements
beyond standardized solutions. These custom implementations typically provide specialized
management layers controlling fragment loading, initialization sequencing, and cross-boundary
communication. Solutions range from basic route handlers dynamically importing bundles to
comprehensive runtime containers implementing standardized lifecycle protocols and messaging
systems.

Sophisticated custom implementations frequently include specialized capabilities missing from
standard approaches: failure isolation, preventing cascade effects across fragment boundaries; unified
performance monitoring spanning distributed components; compliance verification, ensuring
adherence to architectural standards. While effectively addressing organization-specific requirements,
these custom frameworks represent substantial engineering investments requiring dedicated
maintenance teams. This creates potential organizational bottlenecks, potentially undermining the
very team independence micro-frontends aim to establish.

Strategy selection requires detailed trade-off analysis considering technical requirements,
organizational capabilities, and sustainability concerns. Basic isolation minimizes implementation
overhead but degrades user experience through performance limitations. Federation enables seamless
composition but requires sophisticated build infrastructure and governance frameworks that smaller
teams struggle to support. Custom frameworks provide targeted functionality but create ongoing
maintenance obligations and potential organizational dependencies.

Beyond technical factors, organizations must consider broader implications: team structure
requirements when dedicated platform groups become necessary; security exposure differences
between approaches; scalability limitations for organizations managing numerous micro-frontends;
and maintainability challenges as underlying technologies evolve.

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 351
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

5. Emerging Paradigms and Future Directions

React's architectural constraints in distributed environments have sparked significant innovation
across frontend architecture domains. Several emerging paradigms now challenge traditional
rendering models while addressing fundamental distribution challenges.

Resumability-based frameworks mark a decisive shift from traditional hydration approaches. Server
rendering has evolved through distinct phases since React's introduction. Early SSR simply generated
static markup for initial display before completely reinitializing applications client-side—improving
perceived performance but introducing substantial JavaScript overhead and potential hydration
inconsistencies. Later advances brought streaming HTML delivery, allowing browsers to process
content chunks progressively rather than waiting for complete server responses.

Recent innovations focus on partial hydration techniques where only interactive elements require
JavaScript initialization while static content remains untouched. This evolutionary path culminates in
resumability patterns that fundamentally redefine server-client relationships. Unlike conventional
hydration, which essentially duplicates rendering work client-side, resumability mechanisms serialize
application state and execution context, enabling browsers to continue rather than restart application
execution. These frameworks employ fine-grained reactivity systems with progressive enhancement
principles, drastically reducing JavaScript requirements while preserving rich interactions where
necessary.

Server components represent another architectural advancement, shifting rendering responsibilities
dynamically between server and client based on data access patterns, interactivity requirements, and
performance considerations. These approaches create cleaner boundaries between static and
interactive interface regions, aligning naturally with micro-frontend architectural principles [9].
System resilience improves substantially as component failures remain isolated without
compromising entire application experiences.

Distribution-native rendering addresses fundamental misalignments between React's monolithic
model and distributed interface requirements. Edge computing emerges as particularly
transformative, relocating rendering logic to network periphery nodes rather than centralized servers
or client devices. This architectural shift harnesses globally distributed infrastructure to process
requests at physically proximate points, substantially reducing response latency while enhancing
scalability and reliability characteristics.

Edge rendering implementations typically deploy lightweight JavaScript processors across numerous
geographic locations, enabling dynamic content generation with performance profiles approaching
static asset delivery. This approach delivers several critical advantages for distributed interfaces:
drastically improved time-to-first-byte measurements with content generated physically nearer users;
consistent global performance metrics eliminating regional variations common in centralized
architectures; enhanced fault tolerance through geographic distribution of rendering capabilities.

This paradigm aligns naturally with micro-frontend principles—independent interface fragments
render and compose at edge locations without requiring origin server communication. Advanced
implementations incorporate contextual rendering decisions based on device capabilities, network
conditions, or user attributes, optimizing delivery strategies per request. The approach typically
employs streaming response patterns, delivering static elements immediately while dynamic or
personalized components follow progressively. This enables sophisticated multi-level caching
strategies with static content stored aggressively while dynamic elements utilize validation patterns
balancing freshness against performance [10].

Cross-framework composition models address organizational realities where multiple frontend
technologies coexist, particularly during migration periods or following corporate acquisitions. These

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 352
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

approaches acknowledge practical limitations of framework standardization across teams, focusing
instead on interoperability layers enabling heterogeneous technologies to function cooperatively.

Technical implementation challenges extend into governance considerations, requiring organizations
to balance the standardization necessary for cohesive experiences against team autonomy. Cross-
framework systems establish explicit contracts through standardized communication interfaces,
frequently leveraging browser-native mechanisms like Custom Elements with Shadow DOM for
encapsulation. These interfaces define consistent property passing, event handling, and lifecycle
management patterns regardless of underlying implementation details.

Sophisticated implementations develop adaptation layers translating between fundamentally different
programming models—bridging React's declarative approach with Angular's change detection systems
or Vue's reactivity mechanisms. These translation layers enable seamless component composition
across frameworks while preserving internal implementation specifics. Enterprise component
registries frequently supplement these technical approaches, providing discovery mechanisms for
available components while establishing governance around dependency sharing, version
management, and compatibility requirements.

Resulting architectures support gradual technology migration, allowing teams to adopt newer
frameworks without requiring organization-wide coordination. This flexibility creates sustainable
enterprise architectures accommodating both technological advancement and organizational
evolution while maintaining system cohesion and experience consistency.

Research indicates several promising directions potentially transform distributed interface
construction fundamentally. Compiler-centric approaches gain increasing attention, applying build-
time analysis techniques for runtime optimization by eliminating unnecessary abstractions,
optimizing rendering paths, and generating specialized code variants. These approaches identify
optimization opportunities impossible during runtime execution—removing unused components,
inlining critical paths, or generating deployment-specific variants.

Content-aware rendering represents another emerging direction where systems dynamically select
rendering strategies based on content characteristics, interaction patterns, and performance
requirements. These frameworks might apply static generation for relatively stable content, server
rendering for personalized non-interactive elements, and client-side rendering for highly interactive
components—all within unified architectures optimizing each rendering decision independently

rather than applying monolithic approaches across entire applications.
Paradigm Key Innovation Distributed UI Benefit
Resumabili State serialization without full | Eliminates cross-boundary hydration
ty hydration mismatches while reducing client JavaScript

Partial Selective interactivity for Enables independent activation of micro-
Hydration specific components frontend fragments with lower overhead

. Computation moved to CDN | Improves global performance consistency

dge Rendering edge locations while enabling distributed composition

Table 4: Emerging Rendering Paradigms for Distributed Uls. [9, 10]

Conclusion

The architectural limitations of React in distributed UI contexts represent a significant challenge for
organizations scaling frontend development across multiple teams. While React excels in single-

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 353
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.



Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

application contexts through its unified component model and efficient reconciliation process, these
same characteristics create friction when applied to distributed architectures that prioritize team
autonomy and independent deployment. Current mitigation strategies offer viable but imperfect
solutions: isolation approaches maintain strong boundaries at the cost of user experience cohesion;
Module Federation enables more seamless composition but introduces complex dependency
coordination requirements; and custom runtime solutions demand significant development
investment. Emerging paradigms like resumability-based frameworks and edge-rendering approaches
suggest a future direction where frontend architectures embrace distribution as a fundamental design
principle rather than an afterthought. Organizations navigating this evolving landscape must carefully
balance the developer experience benefits of React against the organizational scalability advantages of
truly distributed architectures, potentially adopting hybrid approaches that leverage React within
team boundaries while implementing distribution-aware patterns for cross-team integration. The
continued evolution of these patterns will likely reshape frontend architecture practices as distributed
Ul systems become increasingly prevalent across the industry.

References

[1] Sanity, "React.js overview," 2023. [Online]. Available: https://www.sanity.io/glossary/react-js [2]
Michael Geers, "Micro Frontends extending the microservice idea to frontend development,” 2023.
[Online]. Available: https://micro-frontends.org/

[3] GeeksforGeeks, "ReactJS Reconciliation," 2023. [Online]. Available:
https://www.geeksforgeeks.org/reactjs/reactjs-reconciliation/

[4] Chad R. Stewart, "Build Resilient Uls: Frontend Architecture that doesn't suck!," Dev. to 2022.
[Online]. Available: https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-
to-a-more-resilient-codebase-7ib

[5] Cam Jackson, "Micro Frontends," Martin Fowler's Technology Radar, 2021. [Online]. Available:
https://martinfowler.com/articles/micro-frontends.html

[6] Geeks for Geeks, "Handling State and State Management | System Design," GeeksforGeeks, 2025.
[Online]. Available: https://www.geeksforgeeks.org/system-design/handling-state-and-state-
management-system-design/

[7] Rahul Gupta, "How Microfrontends Work: From iframes to Module Federation," FreeCodeCamp,
2025. [Online]. Available: https://www.freecodecamp.org/news/how-microfrontends-work-iframes-
to-module-federation/

[8] Webpack, "Module Federation,” Webpack Documentation, 2023. [Online]. Available:
https://webpack.js.org/concepts/module-federation/

[9] Aurora Scharff, "React Frameworks and Server-Side Features: Beyond Client-Side Rendering,"
Certificates.dev Blog, 2025. [Online]. Available: https://certificates.dev/blog/react-frameworks-and-
server-side-features-beyond-client-side-rendering

[10] Esolz Technology Blog, "Edge-Rendered Websites: Next-Gen Static and Dynamic Delivery,”
[Online]. Available: https://esolz.net/edge-rendered-websites/

Copyright © 2025 by Author/s and Licensed by [ISEM. This is an open access article distributed under the Creative Commons 354
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.


https://www.sanity.io/glossary/react-js
https://micro-frontends.org/
https://www.geeksforgeeks.org/reactjs/reactjs-reconciliation/
https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-to-a-more-resilient-codebase-7ib
https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-to-a-more-resilient-codebase-7ib
https://martinfowler.com/articles/micro-frontends.html
https://www.geeksforgeeks.org/system-design/handling-state-and-state-management-system-design/
https://www.geeksforgeeks.org/system-design/handling-state-and-state-management-system-design/
https://www.freecodecamp.org/news/how-microfrontends-work-iframes-to-module-federation/
https://www.freecodecamp.org/news/how-microfrontends-work-iframes-to-module-federation/
https://webpack.js.org/concepts/module-federation/
https://certificates.dev/blog/react-frameworks-and-server-side-features-beyond-client-side-rendering
https://certificates.dev/blog/react-frameworks-and-server-side-features-beyond-client-side-rendering
https://esolz.net/edge-rendered-websites/

