
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 345 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

React's Architectural Limitations in Distributed UI Systems: A

Critical Analysis

Swaraj Guduru

Independent Researcher, USA

ARTICLE INFO ABSTRACT

Received:01 Sept 2025

Revised:05 Oct 2025

Accepted:15 Oct 2025

This article critically examines React's architectural limitations when applied to
distributed user interface systems, particularly in micro-frontend implementations. It
explores the fundamental tension between React's component model, which assumes a
unified runtime with shared context and rendering cycles, and the distributed nature of
modern frontend architectures that emphasize team autonomy and independent
deployment. The article progresses through React's core design assumptions, identifies
specific challenges in cross-boundary state management and server-side rendering
coordination, evaluates current industry mitigation strategies, including isolation
techniques and module federation, and explores emerging paradigms that reimagine
frontend architectures for distributed contexts. By identifying the architectural
mismatches between React's monolithic design and distributed UI requirements, the
article provides insights for organizations navigating these competing paradigms while
seeking to maintain both system cohesion and team independence.

Keywords: Micro-Frontends, React Architecture, Distributed User Interfaces,
Frontend Composition, Cross-Boundary State Management

1. Introduction and Background

Frontend development has undergone a deep transformation over the course of the 2010s. Codebases

that were dominated by jQuery began to be supplanted by architectures that were organized in terms

of components. Then in 2013, React became available, providing a new and different way of building

interfaces that is based on the declarative style of programming and rendering via a virtual DOM.

React quickly became popular in development communities because of the various technical benefits

its architecture afforded. This library grew even faster in the development industry, thanks to its many

technical affordances.

The component-based structure advocated by React enables decomposition of complex interfaces into

modular, reusable units. Each component maintains an internal state while rendering predictably

based on input properties. [1] This marked a significant departure from imperative DOM

manipulation techniques prevalent in earlier frameworks. Traditional direct DOM operations incurred

substantial performance penalties during re-rendering cycles. React's virtual DOM addressed these

inefficiencies through the implementation of differential reconciliation algorithms, selectively

updating only necessary DOM nodes rather than reconstructing entire interface trees. Combined with

unidirectional data flow patterns, this architecture substantially improved performance characteristics

for complex interface implementations.

React's evolution brought sophisticated features—hooks for state management, context API for prop-

drilling prevention, concurrent rendering capabilities—while parallel shifts occurred in broader web

architecture paradigms. Service-oriented systems have already been adopted by backend systems.

Microservices have become a standard practice for designing scalable systems. Frontend architectures

have followed suit, and monolithic applications are breaking apart into micro-frontends, or smaller

applications that are independently deployable, owned by development teams, and built into the

application flow. This approach is simply microservices for the UI, allowing sections of connected

interfaces to be built and deployed without redeploying the entire app, the work of possibly multiple

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 346 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

teams. Architectural boundaries drawn along business domain lines rather than technical concerns

facilitate organizational alignment with software structure. [2] Development teams gain the capability

to deploy interface sections independently, potentially leveraging different technology stacks while

maintaining adherence to shared design systems and integration contracts.

The fundamental question emerges regarding compatibility between React's core design assumptions

and distributed UI requirements. React fundamentally presupposes unified runtime environments—

shared memory space, coherent component hierarchies, synchronized rendering cycles. These

architectural assumptions create tension points when applications fragment across team boundaries,

service domains, or deployment units. Projects implementing distributed React architectures

frequently encounter these limitations.

React's architectural constraints affect at least three disparate dimensions of creating an application:

the pace at which features can be delivered, the characteristics of system reliability, and how the

product scales with the organization. Organizations creating development initiatives using React

experience friction between the inherent, centralized component model in React and micro-frontend's

decentralized architecture. The misalignment between declarative programming in React and the

decentralized nature of micro-frontends presents a formidable barrier to implementation.

Technical teams encounter numerous integration challenges: dependency collision issues (React

version conflicts coexisting in single-page contexts), runtime boundary complications, cross-fragment

state synchronization requirements, and disjointed rendering lifecycles. Architectural considerations

extend beyond purely technical domains into organizational territories—team autonomy boundaries,

deployment independence requirements, and governance frameworks. DOM hydration

inconsistencies frequently emerge when server-rendered content spans multiple independent

applications. Performance degradation often results from duplicated bundle content and initialization

logic across fragment boundaries.

Ultimately, if enterprises are going to support micro-frontend architectures, they will generally need

to ensure their teams understand the inherent bounds of React outside of a single page's context. The

conceptual understanding of the in-framework limitations will provide the basis for reasoned

architectural decisions and impactful mitigation in ongoing debates between developer experience,

runtime performance, and scaling at the organization level.

2. Theoretical Foundations of React's Component Model

The React component model catalyzed a paradigm shift in thinking about frontend architecture. React

incorporates a handful of core technical principles that drive its construction of user interfaces; some

of these principles can be regarded as strengths for monolithic applications, while others are more

likely to create limitations in distributed settings.

The performance story hinges on React's virtual DOM. Instead of using traditional libraries that

perform direct updates to the DOM, React keeps a lightweight tree of JavaScript objects that closely

mirrors the actual DOM in the browser. This abstraction layer is where it will be able to stage

rendering work. State mutations trigger the creation of a new virtual tree, which React then compares

against the previous version. The comparison process—reconciliation—employs several heuristic

shortcuts rather than computationally expensive exact tree diffing. Type-based element comparison

forms the primary heuristic; React assumes elements of different types produce entirely different

trees, while same-type elements merely require attribute updates. Key props function as persistent

identifiers during collection rendering, preserving component state during reordering operations and

preventing unnecessary recreations.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 347 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

React

Assumption

Micro-Frontend

Requirement
Architectural Tension

Single Virtual DOM

Tree

Independent

Rendering Trees

React assumes a unified tree structure while micro-

frontends require autonomous rendering processes

across boundaries

Shared Runtime

Environment

Isolated Execution

Contexts

React optimizes for shared memory and

dependencies, while micro-frontends need clear

runtime isolation

Unified Component

Lifecycle

Independent

Deployment Cycles

React expects synchronized component updates

while micro-frontends demand independent

release schedules

Table 1: React's Core Architectural Assumptions vs. Micro-Frontend Requirements. [3, 4]

Performance optimization techniques include batched DOM updates and selective subtree re-

rendering. The entire architecture assumes a singular reconciliation context—one virtual tree within

one JavaScript runtime. This architectural assumption becomes problematic for distributed UI

systems where separate teams independently develop and deploy distinct interface sections on

asynchronous release schedules [3]. Multiple reconciliation contexts existing simultaneously on a

single page create boundary issues that React wasn't designed to handle smoothly.

Unidirectional data flow constitutes another foundational React principle affecting distributed

implementation. Traditional React apps pass data downward through component hierarchies via

props, with state changes triggering cascading re-renders through affected component subtrees.

Parent components maintain state requiring modification from children through callback prop

passing. This model creates predictable debug patterns—components function deterministically based

solely on current props/state. FBJS DevTools relies on this predictability for time-travel debugging.

The architecture presupposes shared memory access between components. Distributed UI

architectures fragment this assumption when components span runtime boundaries, forcing

alternative communication patterns. Cross-boundary state synchronization typically requires event-

driven architectures, pub/sub patterns, or backend-mediated state sharing. Many orgs implement

Redux middleware layers with custom serialization/deserialization for cross-boundary events. Others

employ BFFs (Backend-for-Frontend) proxies maintaining unified state sources. Both approaches

diverge significantly from React's original mental model and introduce complexity absent in

monolithic implementations [4]. Dev teams frequently maintain hybrid approaches—React-native

state management within boundaries, custom cross-boundary protocols between them.

Component hierarchy coupling creates additional distributed system challenges. React's composition

model builds deeply nested component trees where parent components control children's props and

lifecycle. Context API extends this coupling beyond direct parent-child relationships, enabling any

component to consume values from providers anywhere above in the tree. While solving prop-drilling

headaches elegantly in monolithic apps, Context utterly breaks at micro-frontend boundaries since

providers and consumers must share a single React tree instance. Similar limitations affect React's

newer composition mechanisms—hooks like useContext, useReducer, and custom hooks combining

multiple stateful behaviors all assume runtime proximity.

The coupling creates practical problems for standard UI concerns spanning micro-frontend

boundaries. Global theming systems traditionally implemented via ThemeProviders must be

duplicated across boundaries or reimplemented using alternative mechanisms. Auth state

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 348 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

traditionally flowing through context requires alternative sharing approaches—often via

cookie/localStorage with redundant hydration or federated login services. Design system component

libraries, depending on contextual configuration, face difficult implementation decisions at

boundaries.

React's runtime assumptions further highlight architectural limitations in distributed environments.

The library expects a unified JavaScript context where all components access identical React

instances, reconciler implementations, and event systems. This unity enables synthetic events to

normalize browser differences and implement efficient delegation patterns. Features like concurrent

rendering, suspense boundaries, and prioritized transitions depend entirely on a single scheduler

coordinating the entire component tree.

Distributed architectures break these assumptions when multiple React versions coexist on a single

page. Version conflicts create subtle and difficult debugging challenges—especially when shared

component libraries inadvertently reference multiple React instances. Synthetic events behave

unpredictably across boundaries. Error boundaries fail to catch exceptions across reconciler contexts.

Building robust distributed React systems requires explicit strategies addressing these limitations.

Teams commonly implement runtime isolation through module federation with shared singletons,

namespace sandboxing techniques, or custom runtime bridges mediating between React instances.

Standardized versioning policies, explicit interface contracts, and comprehensive integration testing

become mandatory rather than optional practices.

React's architectural decisions, optimized perfectly for cohesive monolithic applications, become

significant liabilities in distributed contexts without additional coordination mechanisms. The

fundamental tension between React's unified runtime expectations and distributed system principles

creates unavoidable complexity that must be explicitly managed.

3. Fundamental Challenges in Distributed UI Implementation

Distributed UI architectures built with React face substantial technical hurdles originating from

architectural incompatibilities. Micro-frontends fragment application interfaces into distinct chunks

maintained by separate teams. This concept extends backend microservice principles into frontend

territory. Key drivers behind micro-frontend adoption include domain-aligned team boundaries,

release independence, technology flexibility, and integration resilience.

These architectural principles fundamentally clash with React's design assumptions. React expects

components to exist within a unified memory space sharing a single rendering context. Micro-

frontends create vertical application slices that encapsulate functionality from the database through

UI layers with minimal cross-team dependencies during development cycles. This contrasts with

React's inherent horizontal composition structure, where components freely share context, props, and

rendering lifecycle hooks within a unified application boundary.

Approach Implementation Method Key Limitations

Backend-

Mediated State

Shared API endpoints with

WebSockets or polling

Network latency impacts responsiveness;

requires additional backend infrastructure

Client-Side

Event Bus

Custom event dispatchers with

serialized payloads

Complex synchronization logic; potential

race conditions across boundaries

Federated State

Stores

Coordinated Redux/MobX

stores with bridge adapters

Version compatibility issues; increased

bundle size from duplicate state libraries

Table 2: State Management Approaches in Distributed React Architectures. [5, 6]

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 349 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Integration techniques vary substantially across implementations. Some organizations employ iframe-

based strategies, providing maximum runtime isolation at the cost of seamless visual integration.

Others leverage Web Components as standardized interface boundaries. Build-time approaches use

module bundlers for composition during compilation phases. Server-side strategies utilize fragment-

based composition through ESI or template assembly. Runtime orchestration dynamically loads

fragment code into shell applications. Each strategy introduces specific trade-offs regarding isolation

strength, performance characteristics, and developer experience [5].

Technical conflicts emerge across multiple fronts. Dependency collisions occur when different React

versions must coexist on a single page - particularly problematic given React's internal reconciler

implementation details. CSS isolation remains notoriously difficult - global styling from one fragment

frequently disrupts another's layout unexpectedly. Runtime composition demands sophisticated

orchestration mechanisms handling asynchronous loading, graceful degradation during failures, and

proper initialization sequencing.

State management across fragment boundaries presents particularly thorny challenges. Traditional

React patterns depend entirely on component proximity within a shared tree structure. Context API

becomes useless across micro-frontend boundaries since providers and consumers require the same

React instance. Redux stores cannot directly span separate applications without significant

adaptation. Even basic component communication via props breaks down completely at runtime

boundaries.

Organizations adopt various workarounds for cross-boundary state coordination. Many implement

BFF proxies that maintain a centralized state server-side while synchronizing to multiple frontend

fragments. Custom event mechanisms using browser storage events or postMessage APIs create

communication channels between isolated fragments. Message broker architectures sometimes

mediate between fragments using WebSocket connections to central state services. Establishing clear

state ownership rules becomes critical - defining which fragment controls specific data and how

changes propagate [6].

Complex workflows spanning multiple domain boundaries create additional integration challenges.

Shopping functionality split between product catalog and checkout fragments requires meticulous

state synchronization. User authentication must maintain consistency across all application sections.

Notifications need reliable delivery to relevant UI components regardless of which team owns the

receiving fragment.

Server rendering compounds these difficulties substantially. Monolithic React applications follow

straightforward SSR patterns: the server produces complete HTML markup, the client receives it

alongside JavaScript bundles, and React hydrates the static DOM by attaching event handlers and

reconstructing virtual component trees. Distributed architectures fragment this unified process across

team boundaries.

Each micro-frontend team implements SSR independently while ensuring a compatible output.

Numerous coordination problems emerge: fragments might depend on others loading first, nested

hydration occurs when fragments contain components from multiple teams, and duplicate resource

loading happens without careful dependency management. Organizations must select appropriate

composition strategies based on specific requirements - pure server composition achieves fast initial

rendering but complicates interactive elements, while client-side approaches offer flexibility at the

cost of potential hydration inconsistencies.

Organizational impacts often match or exceed technical challenges. Though micro-frontends promise

team autonomy, React's composition model creates unavoidable interdependencies. Teams frequently

discover their supposedly independent technical decisions cascade unexpectedly across fragment

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 350 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

boundaries. Choices about state management approaches, styling methodologies, or dependency

versions create integration conflicts requiring cross-team coordination.

Development workflows grow increasingly complex. Local environments must simulate integration

with fragments from other teams. Testing strategies require both isolated component validation and

cross-boundary integration verification. Deployment pipelines need sophisticated orchestration to

prevent broken user experiences during partial updates.

Many enterprises establish dedicated platform teams responsible for integration infrastructure,

shared libraries, and cross-team governance. These groups maintain standardized communication

patterns between fragments, ensure consistent design system implementation, and establish

versioning policies for shared dependencies. This governance layer represents substantial overhead

absent from monolithic applications, highlighting fundamental tensions between React's inherent

architectural assumptions and micro-frontend organizational objectives.

4. Current Industry Mitigation Strategies

The software industry has devised numerous techniques addressing React's limitations in distributed

interface scenarios. Each technique presents unique balances between boundary strength, rendering

efficiency, and developer accessibility. Technical teams typically adopt approaches that match specific

organizational constraints and technical needs. iFrame-based separation stands as the simplest

isolation method. This approach embeds separate React applications within distinct browsing

contexts, creating natural DOM partitioning and runtime separation. The method resolves several

persistent challenges: style interference disappears since CSS remains confined to each frame's scope;

module conflicts vanish through complete runtime separation; security boundaries strengthen as

browser protections prevent cross-fragment scripting attacks.

Nevertheless, frame-based architectures present substantial operational difficulties. Fragment

interaction requires complex messaging protocols using serialized data through browser messaging

channels. Common interface components like navigation elements or modals cannot naturally

traverse boundaries, forcing teams toward either component duplication or elaborate synchronization

mechanisms. System resources face significant strain from redundant asset loading, memory

inefficiency, and duplicate JavaScript processing across contexts. Interface coherence frequently

suffers from perceptible discontinuities and interaction constraints [7]. The Custom Elements

specification offers alternative boundary mechanisms utilizing platform-native standards. This

approach packages React applications inside defined custom elements with Shadow DOM, providing

style isolation. The method enables tighter page integration compared to frames while preserving

necessary boundaries. Interface fragments expose formalized contracts through element attributes

and event interfaces, establishing cleaner integration points than direct component coupling. Shadow

DOM boundaries prevent most styling conflicts while supporting theme inheritance through custom

CSS properties.

Strategy Integration Fidelity Team Autonomy Impact

iFrames
Low - Significant UX and styling

discontinuities

High - Complete technical independence

with minimal coordination

Web

Components

Medium - Native DOM

integration with style isolation

Moderate - Framework-agnostic

interfaces with shared styling standards

Module

Federation

High - Seamless React component

composition

Lower - Requires coordination on shared

dependencies and versions

Table 3: Comparison of Micro-Frontend Integration Strategies. [7]

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 351 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

React implementations inside Shadow DOM encounter several technical obstacles. Event delegation

systems in React operate inconsistently through shadow boundaries, requiring additional handling

layers. Programmatic DOM access using reference objects fails across boundary edges without

specialized adapters. Portal functionality needs significant modification to function properly with

shadow root containers.

Webpack Module Federation represents a sophisticated dependency-sharing approach addressing

numerous isolation limitations. This mechanism allows discrete build pipelines to share JavaScript

modules during runtime execution without code duplication. Unlike basic separation techniques,

Federation establishes cross-application dependency relationships while maintaining deployment

autonomy.

The architecture depends on several critical components: container applications managing the

federated environment; exposed remote modules providing functionality; shared dependency

definitions preventing duplication; and asynchronous interface modules handling cross-application

interaction. Implementation patterns vary considerably: shell designs where lightweight containers

orchestrate remote functionality; component approaches assembling interface elements from

distributed sources; and route-based systems loading complete application sections per navigation

path [8].

Despite significant advantages, Federation introduces substantial configuration complexity. Build

systems require precise coordination preventing version incompatibilities. Common dependencies

demand strict version management preventing subtle runtime failures. Loading sequence becomes

critically important when applications share initialization state. Error recovery grows exponentially

more complex when remote modules encounter loading or execution problems.

Proprietary composition frameworks have emerged addressing unique organizational requirements

beyond standardized solutions. These custom implementations typically provide specialized

management layers controlling fragment loading, initialization sequencing, and cross-boundary

communication. Solutions range from basic route handlers dynamically importing bundles to

comprehensive runtime containers implementing standardized lifecycle protocols and messaging

systems.

Sophisticated custom implementations frequently include specialized capabilities missing from

standard approaches: failure isolation, preventing cascade effects across fragment boundaries; unified

performance monitoring spanning distributed components; compliance verification, ensuring

adherence to architectural standards. While effectively addressing organization-specific requirements,

these custom frameworks represent substantial engineering investments requiring dedicated

maintenance teams. This creates potential organizational bottlenecks, potentially undermining the

very team independence micro-frontends aim to establish.

Strategy selection requires detailed trade-off analysis considering technical requirements,

organizational capabilities, and sustainability concerns. Basic isolation minimizes implementation

overhead but degrades user experience through performance limitations. Federation enables seamless

composition but requires sophisticated build infrastructure and governance frameworks that smaller

teams struggle to support. Custom frameworks provide targeted functionality but create ongoing

maintenance obligations and potential organizational dependencies.

Beyond technical factors, organizations must consider broader implications: team structure

requirements when dedicated platform groups become necessary; security exposure differences

between approaches; scalability limitations for organizations managing numerous micro-frontends;

and maintainability challenges as underlying technologies evolve.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 352 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

5. Emerging Paradigms and Future Directions

React's architectural constraints in distributed environments have sparked significant innovation

across frontend architecture domains. Several emerging paradigms now challenge traditional

rendering models while addressing fundamental distribution challenges.

Resumability-based frameworks mark a decisive shift from traditional hydration approaches. Server

rendering has evolved through distinct phases since React's introduction. Early SSR simply generated

static markup for initial display before completely reinitializing applications client-side—improving

perceived performance but introducing substantial JavaScript overhead and potential hydration

inconsistencies. Later advances brought streaming HTML delivery, allowing browsers to process

content chunks progressively rather than waiting for complete server responses.

Recent innovations focus on partial hydration techniques where only interactive elements require

JavaScript initialization while static content remains untouched. This evolutionary path culminates in

resumability patterns that fundamentally redefine server-client relationships. Unlike conventional

hydration, which essentially duplicates rendering work client-side, resumability mechanisms serialize

application state and execution context, enabling browsers to continue rather than restart application

execution. These frameworks employ fine-grained reactivity systems with progressive enhancement

principles, drastically reducing JavaScript requirements while preserving rich interactions where

necessary.

Server components represent another architectural advancement, shifting rendering responsibilities

dynamically between server and client based on data access patterns, interactivity requirements, and

performance considerations. These approaches create cleaner boundaries between static and

interactive interface regions, aligning naturally with micro-frontend architectural principles [9].

System resilience improves substantially as component failures remain isolated without

compromising entire application experiences.

Distribution-native rendering addresses fundamental misalignments between React's monolithic

model and distributed interface requirements. Edge computing emerges as particularly

transformative, relocating rendering logic to network periphery nodes rather than centralized servers

or client devices. This architectural shift harnesses globally distributed infrastructure to process

requests at physically proximate points, substantially reducing response latency while enhancing

scalability and reliability characteristics.

Edge rendering implementations typically deploy lightweight JavaScript processors across numerous

geographic locations, enabling dynamic content generation with performance profiles approaching

static asset delivery. This approach delivers several critical advantages for distributed interfaces:

drastically improved time-to-first-byte measurements with content generated physically nearer users;

consistent global performance metrics eliminating regional variations common in centralized

architectures; enhanced fault tolerance through geographic distribution of rendering capabilities.

This paradigm aligns naturally with micro-frontend principles—independent interface fragments

render and compose at edge locations without requiring origin server communication. Advanced

implementations incorporate contextual rendering decisions based on device capabilities, network

conditions, or user attributes, optimizing delivery strategies per request. The approach typically

employs streaming response patterns, delivering static elements immediately while dynamic or

personalized components follow progressively. This enables sophisticated multi-level caching

strategies with static content stored aggressively while dynamic elements utilize validation patterns

balancing freshness against performance [10].

Cross-framework composition models address organizational realities where multiple frontend

technologies coexist, particularly during migration periods or following corporate acquisitions. These

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 353 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

approaches acknowledge practical limitations of framework standardization across teams, focusing

instead on interoperability layers enabling heterogeneous technologies to function cooperatively.

Technical implementation challenges extend into governance considerations, requiring organizations

to balance the standardization necessary for cohesive experiences against team autonomy. Cross-

framework systems establish explicit contracts through standardized communication interfaces,

frequently leveraging browser-native mechanisms like Custom Elements with Shadow DOM for

encapsulation. These interfaces define consistent property passing, event handling, and lifecycle

management patterns regardless of underlying implementation details.

Sophisticated implementations develop adaptation layers translating between fundamentally different

programming models—bridging React's declarative approach with Angular's change detection systems

or Vue's reactivity mechanisms. These translation layers enable seamless component composition

across frameworks while preserving internal implementation specifics. Enterprise component

registries frequently supplement these technical approaches, providing discovery mechanisms for

available components while establishing governance around dependency sharing, version

management, and compatibility requirements.

Resulting architectures support gradual technology migration, allowing teams to adopt newer

frameworks without requiring organization-wide coordination. This flexibility creates sustainable

enterprise architectures accommodating both technological advancement and organizational

evolution while maintaining system cohesion and experience consistency.

Research indicates several promising directions potentially transform distributed interface

construction fundamentally. Compiler-centric approaches gain increasing attention, applying build-

time analysis techniques for runtime optimization by eliminating unnecessary abstractions,

optimizing rendering paths, and generating specialized code variants. These approaches identify

optimization opportunities impossible during runtime execution—removing unused components,

inlining critical paths, or generating deployment-specific variants.

Content-aware rendering represents another emerging direction where systems dynamically select

rendering strategies based on content characteristics, interaction patterns, and performance

requirements. These frameworks might apply static generation for relatively stable content, server

rendering for personalized non-interactive elements, and client-side rendering for highly interactive

components—all within unified architectures optimizing each rendering decision independently

rather than applying monolithic approaches across entire applications.

Paradigm Key Innovation Distributed UI Benefit

Resumability
State serialization without full

hydration

Eliminates cross-boundary hydration

mismatches while reducing client JavaScript

Partial

Hydration

Selective interactivity for

specific components

Enables independent activation of micro-

frontend fragments with lower overhead

Edge Rendering
Computation moved to CDN

edge locations

Improves global performance consistency

while enabling distributed composition

Table 4: Emerging Rendering Paradigms for Distributed UIs. [9, 10]

Conclusion

The architectural limitations of React in distributed UI contexts represent a significant challenge for

organizations scaling frontend development across multiple teams. While React excels in single-

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 354 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

application contexts through its unified component model and efficient reconciliation process, these

same characteristics create friction when applied to distributed architectures that prioritize team

autonomy and independent deployment. Current mitigation strategies offer viable but imperfect

solutions: isolation approaches maintain strong boundaries at the cost of user experience cohesion;

Module Federation enables more seamless composition but introduces complex dependency

coordination requirements; and custom runtime solutions demand significant development

investment. Emerging paradigms like resumability-based frameworks and edge-rendering approaches

suggest a future direction where frontend architectures embrace distribution as a fundamental design

principle rather than an afterthought. Organizations navigating this evolving landscape must carefully

balance the developer experience benefits of React against the organizational scalability advantages of

truly distributed architectures, potentially adopting hybrid approaches that leverage React within

team boundaries while implementing distribution-aware patterns for cross-team integration. The

continued evolution of these patterns will likely reshape frontend architecture practices as distributed

UI systems become increasingly prevalent across the industry.

References

[1] Sanity, "React.js overview," 2023. [Online]. Available: https://www.sanity.io/glossary/react-js [2]

Michael Geers, "Micro Frontends extending the microservice idea to frontend development," 2023.

[Online]. Available: https://micro-frontends.org/

[3] GeeksforGeeks, "ReactJS Reconciliation," 2023. [Online]. Available:

https://www.geeksforgeeks.org/reactjs/reactjs-reconciliation/

[4] Chad R. Stewart, "Build Resilient UIs: Frontend Architecture that doesn't suck!," Dev. to 2022.

[Online]. Available: https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-

to-a-more-resilient-codebase-7ib

[5] Cam Jackson, "Micro Frontends," Martin Fowler's Technology Radar, 2021. [Online]. Available:

https://martinfowler.com/articles/micro-frontends.html

[6] Geeks for Geeks, "Handling State and State Management | System Design," GeeksforGeeks, 2025.

[Online]. Available: https://www.geeksforgeeks.org/system-design/handling-state-and-state-

management-system-design/

[7] Rahul Gupta, "How Microfrontends Work: From iframes to Module Federation," FreeCodeCamp,

2025. [Online]. Available: https://www.freecodecamp.org/news/how-microfrontends-work-iframes-

to-module-federation/

[8] Webpack, "Module Federation," Webpack Documentation, 2023. [Online]. Available:

https://webpack.js.org/concepts/module-federation/

[9] Aurora Scharff, "React Frameworks and Server-Side Features: Beyond Client-Side Rendering,"

Certificates.dev Blog, 2025. [Online]. Available: https://certificates.dev/blog/react-frameworks-and-

server-side-features-beyond-client-side-rendering

[10] Esolz Technology Blog, "Edge‑Rendered Websites: Next‑Gen Static and Dynamic Delivery,”

[Online]. Available: https://esolz.net/edge-rendered-websites/

https://www.sanity.io/glossary/react-js
https://micro-frontends.org/
https://www.geeksforgeeks.org/reactjs/reactjs-reconciliation/
https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-to-a-more-resilient-codebase-7ib
https://dev.to/chad_r_stewart/frontend-architecture-and-tooling-that-will-lead-to-a-more-resilient-codebase-7ib
https://martinfowler.com/articles/micro-frontends.html
https://www.geeksforgeeks.org/system-design/handling-state-and-state-management-system-design/
https://www.geeksforgeeks.org/system-design/handling-state-and-state-management-system-design/
https://www.freecodecamp.org/news/how-microfrontends-work-iframes-to-module-federation/
https://www.freecodecamp.org/news/how-microfrontends-work-iframes-to-module-federation/
https://webpack.js.org/concepts/module-federation/
https://certificates.dev/blog/react-frameworks-and-server-side-features-beyond-client-side-rendering
https://certificates.dev/blog/react-frameworks-and-server-side-features-beyond-client-side-rendering
https://esolz.net/edge-rendered-websites/

