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ARTICLE INFO ABSTRACT

Received:01 Sept 2025  This systematic literature review aims to systematically analyze current methods of

continuous validation and improvement in AI systems. It investigates techniques,

application domains, scope of implementation, and real-world challenges to identify

Accepted:18 Oct 2025 prevailing trends, limitations, and opportunities for enhancing adaptive, reliable, and
ethically responsible AI deployment This systematic review employed a structured
search across IEEE Xplore, Scopus, Web of Science, and ACM Digital Library (2018-
2025), using defined keywords. Studies were screened through title, abstract, and
full-text review, applying inclusion/exclusion criteria. Quality was assessed using
context, design, validity, rigor, and relevance dimensions. A total of 51 studies were
analyzed. Cross-validation (25.49%) and online retraining (23.53%) were the most
used validation methods. Improvement efforts centered on iterative model
refinement (21.57%) and integration with feedback and workflows (15.69% each).
Most studies focused on smart manufacturing and robotics (each 27.45%), with
healthcare (13.73%) and environmental systems (11.76%) trailing behind. Industry-
focused deployments dominated (19.61%), while only 9.80% addressed cross-
regional implementations. Key challenges included model drift (13.73%),
generalizability issues (11.76%), and ethical concerns (11.76%). Real-time feedback
mechanisms, regulatory alignment, and interpretability remained under-addressed,
signaling critical gaps in sustainable and trustworthy AI development. While
technical validation and improvement strategies are maturing, gaps persist in real-
world adaptability, ethical integration, and socio-technical feedback loops. Bridging
these gaps will require collaborative, context-aware, and regulatory-informed AI
systems capable of maintaining performance and trust across diverse, evolving
environments.

Revised:07 Oct 2025

Keywords: Continuous Validation, Continuous Improvement, Al Systems, Model
Drift, Real-World Deployment.

INTRODUCTION

One of the most transformational and revolutionary technologies of our time is Artificial Intelligence
(AI). The advent of AI technology has transformed the role of robots from mere tools to active
participants in solving problems, driving innovation, and making decisions, owing to their ability to
emulate human intelligence and decision-making processes. The development of AI has been
accelerated by breakthroughs in machine learning, deep learning, neural networks, and natural
language processing. Consequently, Al now permeates almost every aspect of human life, from the
personal electronic devices which we now carry to the sophisticated systems which control industries
and economies [1]. Over the last few years, Al systems have been experiencing rapid development,
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which has resulted in their integration in a variety of industries. These include self-driving cars,
diagnostics in healthcare, natural language processing, and finance. Given this pervasive impact, the
dependability and trustworthiness of Al systems has become a critical concern. Al systems are designed
to tackle sophisticated problems, and as such, they must be able to perform correct, ethical, and effective
functioning. Validation processes are critical in confirming that AI models perform as expected and
protect against errors and biases [2].

Al-based systems are commonly constructed using various Machine Learning (ML) approaches, which
depend on vast amounts of data to train models. With time, the models are refined based on new
information and numerous factors. Consequently, performance or behavioral drifting may occur in Al
systems due to the data they are exposed to, the environment they are in, or changes to the internal
parameters. This phenomenon known as “model drift” highlights the need for systematic validation and
continuous iteration to sustain the AI systems’ efficiency. It is for these reasons that there is an
accelerated focus on the continuous validation and enhancement of AT models [3]. Through continuous
validation, an iterative feedback loop is established, which ensures that the AI system is capable of
retaining the desired performance metrics during the course of its life-cycle. Such systems are geared
towards the dynamic monitoring, assessment, and iteration of Al systems to combat the degradation of
performance due to model drift and shifting data patterns. Unlike traditional validation approaches,
which occur during the development phase or post-deployment, continuous validation allows for real-
time adaptability to shifting contexts [4,5].

The expansion of Al technologies into sensitive sectors like healthcare, finance, and criminal justice
amplifies the need for effective, constant validation processes. These systems can lead to serious
consequences such as misdiagnoses, unjust legal determinations, financial errors, and system
malfunctions. The rising need for precision and real-time adaptability in Al systems is what drives the
need for new validation techniques that incorporate dynamic feedback systems to allow models self-
improvement and adjustment beyond static testing [6,7]. The drive for this systematic literature review
is to analyze and amalgamate the different methods for active validation and enhancement of Al
systems. This review focuses on integrated studies, frameworks, and techniques to showcase the most
prevalent gaps in research alongside the most effective solutions, challenges, and emerging trends
within AT validation. As with any high-stakes technology, the importance of Al validation is paramount.
Al validation is the mission-critical process of confirming that an AI system employs the expected
processes and operations with the frameworks of compliance to the determined benchmarks of
precision, bias, security, and resilience. Approximately, every Al model in the lifecycle requires
incessant validation at all stages to ensure the systems are functioning to standards. Appropriate
validation can avert catastrophic failures, improve system dependability, and build trust in Al
technologies [8].

Validation, in the case of Al, refers to checking the model against a number of scenarios, datasets, and
metrics to ascertain whether the model can effectively generalize to new data. Traditionally, validation
has placed greater emphasis on offline evaluation, which refers to the model validation using the
historical data prior to the model being put to use. This technique has its drawbacks, however, for the
systems that work in ever changing data and condition contexts. Offline validation fails to consider the
instantaneous shifts that happen post-deployment, such as user behavior, environmental interactions,
or other systems interdependencies, and interactions[9]. Given the rate at which AI technologies are
developing, there is an urgent interdisciplinary demand for continuous validation frameworks that
ensure an Al system’s integrity, reliability, and ethical accountability in real-world interactions. The
models of autonomous vehicles, for instance, need to validate them against necessity of adapting to
ever-changing and unpredictable road, weather, and traffic conditions. AI in healthcare also requires
continuous evaluation of model predictions in the context of new data and shifting trends in medicine,
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demography, or disease patterns. The lack of continuous assessment may cause Al systems to become
obsolete, which can result in risks, or in the worst-case scenarios, harm, in the vital decisions that they
make [10,11].

These challenges can be solved using continuous methods validation, which incorporates the real-time
monitoring, testing, and adjustment of Al systems. With these systems, it is possible to intervene early
with the corrections required to prevent failures and ensure optimal outcomes. Moreover, Al systems
can be adequately trained to learn and adjust to new data as it is continuously validated, meaning they
can be effective in novel situations [12]. Aside from system performance, continuous validation is
important in managing the dangers of bias and fairness in Al It is possible to imbalance social justice
issues in trained Al systems since they rely on datasets that are often diverse, which can contain latent
biases forged from social inequality. Without active intervention models, these systems will unfairly and
unjustly discriminate algorithmically. Through continuous validation, biased behavior can be
monitored and discovered, thus allowing fairness in AI and enabling the “right to biased behavior”
systems to be set in place [13]. Continuous validation is equally important to the ethical side of fairness,
as Al systems are often employed in areas with a critical need for public safety. Sectors such as
healthcare, finance, and defense rely on Al systems to deliver correct predictions all the time, as even
slight deviations from the truth can have catastrophic repercussions. For instance, an Al system applied
in medical imaging might incorrectly classify a tumor, resulting in a misdiagnosis and a lapse in care
that could severely compromise the patient's health. Continuous validation endeavors to identify and
rectify such errors as they occur, ensuring that the Al systems in use will repeatedly and accurately
provide safe and dependable results [14]. Trust and acceptance of Al technologies are maintained
through public validation. AI systems operate within a framework of increasingly critical societal
expectations, therefore, their accountability and transparency is of utmost importance. Validation is
useful in confirming AI systems meet performance benchmarks. Al developers that undertake
validation protocols demonstrate a willing commitment to public acceptance, trust, and the adoption of
Artificial Intelligence technologies, thereby enhancing public confidence across sectors [15]. Validation
in the case of Al systems is of critical concern as trust, ethics, safety, and fairness are non-negotiable in
the responsible governance of these technologies. With the increasing pervasiveness of Al in various
sectors, the need for extensive and continuous validation procedures will increase. This literature review
will provide the scope of validation procedures to support researchers, practitioners, and policy makers
in their work and ensure Al systems are trustworthy across all applications.

METHODS AND METHODOLOGY
Research Objective:

e To assess the categories and prevalence of continuous validation practices and their application
across different AI domains.

e To assess the application and incorporation of the methods of adaptive learning, automation,
feedback loops, and self-improvement systems.

e To examine the contextual scope, sectoral focus, and geographical distribution of Al
implementations in real-world settings.

e To identify key limitations, ethical concerns, and technical gaps that hinder the sustainable and
trustworthy deployment of AT systems

Research Questions:
e What continuous validation methods are most commonly used in Al systems, and how do they vary

across sectors?
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e How are continuous improvement strategies such as feedback loops, AutoML, or manual refinement
being applied to maintain or enhance Al performance?

e Inwhich domains and regions are continuous validation and improvement practices most frequently
implemented, and where are the major gaps?

e What are the critical barriers (e.g., drift, bias, legal concerns) affecting long-term AI system
reliability and scalability, as reported in existing studies?

Search Strategy:

The search strategy for this systematic literature review (SLR) on continuous validation and
improvement methods for AI systems involved a comprehensive search across multiple academic
databases, including IEEE Xplore, Scopus, Web of Science (WOS), and ACM Digital Library. The search
was conducted using a combination of keywords such as (Artificial Intelligence OR Machine Learning
OR "autonomous system" OR "Deep Learning" OR "self-adaptive system" OR "autonomous vehicle"
OR "self-driving car" OR "autonomous car" OR "self-driving vehicle” OR robot OR "intelligent
system") AND (validation OR wverification OR testing OR "continuous validation" OR "model
monitoring"” OR "performance evaluation” OR "v-model") AND (user OR customer OR industrial OR
industry OR "Healthcare AI"). The review focused on studies published between 2018 and 2025 to
ensure the inclusion of recent advancements in the field. The search aimed to capture a wide range of
literature, covering theoretical frameworks to empirical investigations, focusing on those relating to
application-based evaluation, performance assessment, and adaptive learning frameworks. After
deduplication, relevant papers were filtered based on their titles and abstracts, after which inclusion
and exclusion criteria were applied to identify papers that emphasized core themes of validation and
continuous improvement of Al systems.

Inclusion and Exclusion Criteria:
i). Inclusion:

This systematic literature review (SLR) incorporated literature spanning from 2018 to 2025 that
centered on the continuous validation and improvement of frameworks pertaining to artificial
intelligence (AI) systems. Only peer-reviewed periodicals, conference proceedings, white papers, and
research reports were included. The review focuses on primary literature describing performance
evaluation, validation, and techniques aimed at the continuous improvement of AI models in diverse
areas like natural language processing, computer vision, robotics, and reinforcement learning.
Furthermore, the studies must document implementation frameworks that substantially improve the
scalability, reliability, and robustness of Al systems operating in dynamic environments, especially
those based on supervised, unsupervised, and reinforcement learning models.

ii). Exclusion:

The exclusion criteria were based on whether the studies focused on the continuous improvement
processes of the Al systems, specifically on the practical application of the concepts, as well as on the
systems’ real-world validation and improvement application. Additionally, publications preceding the
year 2018 were irrelevant to modern practices and did not meet the criterion. Papers that discussed
autonomous Al systems or specialized within narrow fields that lacked generalizable applications were
disregarded. Moreover, the review excluded studies that focused solely on static validation or
improvement methodologies, controlled testing environments, and those written in languages other
than English to ensure cohesiveness and comprehensibility.
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Study Selection and Screening:

The study selection and screening process for this SLR is presented in Figure 1. The search was
conducted across four major academic databases: Web of Science (WOS) (155 records), Scopus (7,027
records), IEEE Xplore (67,194 records), and ACM Digital Library (150 records), with a focus on
publications from 2018 to 2025, resulting in a total of 57,294 records. Duplicate records (96) were
removed, leaving 57,294 records for further screening. During the screening phase, 15,046 records were
evaluated based on titles and abstracts. Following the application of exclusion criteria, 13,320 records
were discarded for being irrelevant, 1,726 records were excluded for focusing solely on AI and
autonomous systems, and 174 records were removed for discussing only Al system testing. After
assessing eligibility, 68 records were deemed suitable for further evaluation, ultimately leading to the
inclusion of 51 [16—66] studies in the review, all of which contribute valuable insights into the
continuous validation and improvement methods for Al systems.

Saaran Conducted in ’Q
J L 1- WOS (155) B

2- Scopus (T027) 2018-2025 (n = 57294)
3- IEEE (67194) Duplicates records removed (n = 96)

4-ACM (150)

¥ 4 Records excluded

( ) R Reason 1: (n = 13320)
Not relevant by title/abstract
Screening —* Rec(?'risfé%'f:; ed |, Reason 2: (n = 1726)
Al and Autonomous Systems Only

| Reason 3: (n =174)
4, Only Discusses Al System Testing

Record eligible for
Eligibility [ assessment e
(n=68)

Included studies in SLR
(n=51)

Figure 1. Search and selection process
Data Extraction and Synthesis:

A structured framework was applied to extract key attributes from each included study, including
Author(s), Title, Year of publication, continuous validation techniques, improvement strategies, Al
application domains, implementation scope, and reported challenges. This information was
systematically organized to facilitate cross-study comparison and thematic synthesis. The approach
enabled the identification of common practices, emerging trends, and research gaps in how Al systems
are continuously validated and improved across various real-world contexts.

Quality Assessment:

To assess the quality of the final papers, we adopted the rigour and relevance framework proposed by
Ivarsson and Gorschek (2011) [67], which evaluates research quality along two orthogonal dimensions.
Relevance refers to the realism of the study setting, such as the use of industrial contexts, real-world
data, and practitioner involvement. Instead of applying relevance strictly as defined in the original
framework, we assessed it based on contextual realism observed during the study selection process,
which closely aligns with the framework’s intent. As relevance was implicitly considered during
inclusion, only papers with moderate to high relevance (scores 2-4 on a 4-point scale) were retained.
Rigour was assessed by summing three core concerns: context description, study design, and validity
discussion, each rated on a 0-1 scale, yielding a maximum score of 3. Among the 51 included studies, 11
(21.6%) were categorized as high rigour (rigour score > 2.0), and 24 (47.1%) exhibited high relevance
(relevance score = 4.0). Only one study Kim et al. 2023 [63] achieved the maximum rigour score of 3.0.
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These results highlight that while nearly half of the included studies are highly relevant to the practical
context, fewer demonstrate strong methodological rigour. This finding underscores a need for more
robust research designs to support evidence-based practices in this domain.

Table 1. Quality assessment

Study Context | Design | Validity | Rigour | Relevance
Cruz-Benito et al. 2017 [16] 1 1 0 2 4
Alvares et al. 2020 [17] 1 1 0 2 4
Skrede et al. 2024 [18] 0.5 1 o) 2 4
Liu et al. 2023 [19] 1 0.5 1 1.5 4
Kaminwar et al. 2023 [20] 1 0 1 2 4
Nam et al. 2022 [21] 1 1 1 1 4
Semjon et al. 2024 [22] 1 1 0 2 5
Yoon et al. 2024 [23] 1 1 1 3 4
Wan et al. 2024 [24] 1 1 0 2 3
Higgins et al. 2023 [25] 1 1 1 1 3
Soltan et al. 2023 [26] 1 1 0 2 4
Hussain et al. 2024 [27] 0.5 0.5 o) 1 4
Khaliq et al. 2022 [28] 0.5 1 o) 1.5 5
Biro et al. 2020 [29] 0.5 0.5 o) 1 4
Kuts et al. 2022 [30] 1 0.5 1 1.5 3
Dashti et al. 2023 [31] 1 1 o) 2 3
Ketcham et al. 2025 [32] 1 1 0.5 1.5 5
Chen et al. 2025 [33] 1 0.5 1 1.5 4
Leong et al. 2021 [34] 1 0.5 0.5 2 4
Yoo et al. 2020 [35] 1 1 0.5 1.5 3
Sukarti et al. 2025 [36] 0.5 0.5 0 1 3
Ramos-Rojas et al. 2024 [37] 0.5 1 0.5 1 4
Ozkan et al. 2023 [38] 1 1 1 2 5
Gartziandia et al. 2022 [39] 1 1 0.5 1.5 3
Hislop et al. 2021 [40] 0.5 1 0.5 1 3
Davis et al. 2022 [41] 1 0.5 1 1.5 4
Freire-Obregon et al. 2021 [42] | 1 0.5 0.5 1 5
Arriba-Perez et al. 2024 [43] 1 1 0 1 3
Wang et al. 2025 [44] 0.5 1 1 2.5 5
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Urrea et al. 2021 [45] 1 0.5 0 1.5 3
Khan et al. 2025 [46] 0.5 1 1 1.5 4
Tang et al. 2020 [47] 0.5 0.5 0.5 1.5 3
Widodo et al. 2023 [48] 0.5 1 0.5 1 5
Sekaran et al. 2023 [49] 1 1 0.5 1.5 4
XUE et al. 2024 [50] 1 1 1 2 5
Capy et al. 2022 [51] 0.5 0.5 1 1 4
Moreira et al. 2023 [52] 0.5 1 1 1.5 3
Placzek et al. 2018 [53] 1 0.5 1 1.5 3
Ye et al. 2021 [54] 1 1 0.5 1.5 5
Kong et al. 2025 [55] 1 0.5 o) 1 4
Zhou et al. 2022 [56] 0.5 1 1 1.5 3
Bairagi 2022 [57] 1 1 0 1 5
Wang et al. 2024 [58] 1 0.5 1 1.5 4
Pinto et al. 2025 [59] 1 1 o) 1 3
Yang et al. 2023 [60] 1 1 0.5 1.5 4
Nguyen et al. 2024 [61] 0.5 1 1 1.5 5
Chen et al. 2024 [62] 1 1 0.5 1.5 4
Kim et al. 2023 [63] 1 1 o) 1 4
Lwakatare et al. 2021 [64] 1 0.5 1 1.5 4
Vitui et al. 2024 [65] 0.5 1 0.5 1 4
Wang et al. 2024 [66] 1 1 1 2 5
RESULTS

Figure 2 illustrates the distribution of the 51 included studies across five core themes. Most studies
addressed Continuous Validation Methods and Improvement Techniques, followed by AI System Focus.
Fewer studies focused on Scope of Implementation and Real-World Utility, highlighting a research gap
in deployment challenges and contextual applicability.
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Figure 2. Distribution of 51 included studies across five core themes: Continuous Validation
Methods, Continuous Improvement Techniques, AI System Focus, Scope of Implementation, and
Evaluation of Real-World Utility and Gaps

Table 2 presents the distribution of continuous validation techniques identified across 51 studies in the
systematic review. Cross-validation methods, including K-fold and stratified variants, were the most
commonly employed (25.49%), followed closely by online retraining or incremental learning
approaches (23.53%). Performance monitoring dashboards appeared in 15.69% of studies, while drift
detection mechanisms, targeting model or concept drift, were used in 13.73%. Ensemble or hybrid
validation strategies accounted for 11.76%, and A/B testing was applied in 9.80% of cases. These
findings highlight a diverse yet focused landscape of validation techniques aimed at ensuring reliability
and adaptability of AI systems in dynamic settings

Table 2. Continuous Validation Techniques Used in Included Studies

Continuous Validation No. of Studies % of .
. . Studies References
Technique (n=51) Studies
Cross-Validation (K-fold, Stratified) 13 25.49 [16,18,20,21,23,26,28,30,32,37,
’ ' 42,50,63]
Online Retraining / Incremental [17,19,22,24,25,27,29,33,36,40,4
. 12 23.53
Learning 5,48]
Drift Detection (Model/Concept Drift) | 7 13.73 [31,41,49,51,55,60,66]
Performance Monitoring Dashboards | 8 15.69 [34,38,43,44,52,54,58,62]
A/B Testing 5 9.80 [35,46,57,59,61]
Ensemble/Hybrid Validation
Approaches 6 11.76 [39,47,53,56,64,65]

Table 3 presents a quantitative breakdown of continuous improvement techniques across 51 studies.
Iterative model refinement was the most prevalent method, employed in 11 studies (21.57%),
emphasizing the role of ongoing tuning and updates. Integration with real-world feedback and industry
workflow integration were each utilized in 8 studies (15.69%), reflecting the growing emphasis on
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practical applicability and user-informed development. Adaptive learning or meta-learning and Auto
ML or optimization algorithms were each reported in 5 studies (9.80%), indicating a moderate focus on
automation and dynamic learning enhancements. Community or open-source contributions and
proactive error correction mechanisms appeared in 4 studies each (7.84%), showcasing collaborative
and preventative strategies. Longitudinal deployment monitoring was noted in 6 studies (11.76%),
underlining the need for sustained post-deployment evaluation. These findings highlight a diversified
approach to continuous improvement, with over 60% of studies incorporating at least one feedback or
refinement mechanism to maintain and boost Al performance over time.

Table 3. Continuous Improvement Techniques Identified Across Included Studies

Continuous Il.nprovement No. of Studies % o.f Studies References
Techniques (n=51) Studies
Iterative Model Refinement 11 21.57 [16,18,22,25,27,29,31,33,36,40,43]
Integration with Real-World Feedback 8 15.69 [17,19,24,26,32,38,41,47]
Industry Workflow Integration 8 15.69 [20,21,28,35,37,39,44,50]
Adaptive Learning / Meta-Learning 5 9.80 [23,30,34,42,51]
Use of AutoML or Optimization Algorithms | 5 9.80 [45,46,48,49,52]
Community or Open-Source Contributions | 4 7.84 [53—56]
Proactive Error Correction Mechanisms 4 7.84 [57—-60]
Longitudinal Deployment Monitoring 6 11.76 [61—66]

Table 4 outlines the distribution of AI system domains, techniques, and data types across the 51
included studies. Smart manufacturing and industrial AI and robotics (industrial, medical, service)
were the leading application domains, each represented in 14 studies (27.45%), using techniques like
machine learning (RF, SVM, CNN), digital twins, and trajectory tracking with data from sensors, quality
inspections, and force-feedback systems. Healthcare and biomedicine accounted for 7 studies (13.73%),
applying CNNs, NLP, and diagnostic tools to patient records and clinical data. Environmental and
energy systems were explored in 6 studies (11.76%), leveraging deep learning models like CNN, LSTM,
and XGBoost on climate, SCADA, and smart meter data. UI/UX and human-computer interaction
comprised 4 studies (7.84%), employing explainable AI and object detection on interface and
interaction data. Regulatory and life sciences (5.88%), cyber-physical systems, agriculture, and decision
modeling domains (each 1.96%) used specialized models with domain-specific datasets. This reflects a
broad yet industrial-heavy focus in Al system applications.

Table 4. Al System Domains, Techniques, and Data Types Across Included Studies

c . .of . .
AT Application No 2 % of Common AI Typical Data Studies
. Studies . .

Domain ( = 51) Studies Techniques Used Types References
Smart ML (RF, SVM, CNN), | Sensor data, | [17,20,23,26,33,3
Manufacturing & | 14 27.45 Digital Twin, Fault | operational data, | 8,40,46,51,56,57,
Industrial Al Detection quality inspection 61,63,66]
Robotics Robot control, | Positional,  force- | [18,22,24,29,30,3
(Industrial, 14 27.45 calibration, trajectory | torque, sensor | 5,37,41,43,47,53,
Medical, Service) tracking feedback 58,64,65]
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< e No. of . .
AT Application . % of Common Al Typical Data Studies
. Studies . .
Domain (0 = 51) Studies Techniques Used Types References
ML (CNN, ANN), NLP, | Patient records,
Healthcare & : [21,32,34,42,52,5
Biomedicine 7 13.73 Conversational Al, | mammograms, 9.62]
Diagnostic tools speech/text data ’
CNN, LSTM, Hybrid .
. ) ) 1 ,
Environmental & DL, XGBoost, Al | Clmate data, | 1 57 31,36,55,6
6 11.76 SCADA, smart
Energy Systems based anomaly I 0]
. meters, grid signals
detection
Object detection, | UI screenshots,
UI/UX & HCI 4 7.84 Explainable AI, Deep | interaction logs, test | [16,28,48,49]
Learning (CNN) cases
. AutoML, Medical | Simulation data,
Regulatory & Life 1o . ..
. 3 5.88 validation, AI  in | clinical records, | [25,44,45]
Sciences .
pharma/devices reports
Cyber-Physical Regression, Slmulatf')d Simulated data,
Systems & |1 1.96 Al  systems, Twin . [39]
. . synthetic logs
Simulation models
S data (t
Agriculture 1 1.96 il hirrlr??;iwa : (el:orii [50]
5 9 environmental control . ! 5
moisture)
Decision Models Fuzzy logic, Al-based | Benchmark
& Theoretical | 1 1.96 decision matrix | datasets, synthetic | [54]
Systems evaluation input

Table 5 provides an overview of the geographical scope, target audiences, contextual factors, and
application areas addressed in the 51 included studies. Industry-focused implementations were the
most common, appearing in 10 studies (19.61%), primarily covering smart factories, automation, and
manufacturing control systems. Localized or regional implementations were reported in 8 studies
(15.69%), often focused on country-specific deployments in China, the EU, India, and the USA.
Healthcare-specific deployments appeared in 7 studies (13.73%), targeting hospitals and diagnostic
centers. Academic and research settings were represented in 6 studies (11.76%), leveraging simulated
environments or curated datasets for model evaluation. Another 6 studies (11.76%) emphasized ethical
and socio-technical factors, including data privacy, bias mitigation, and regulatory constraints. Global
or cross-regional implementations and human-AI interaction contexts were each found in 5 studies
(9.80%), while cyber-physical systems and agricultural/environmental applications each appeared in 2
studies (3.92%), demonstrating a relatively diverse but industry-heavy implementation landscape
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Table 5. Geographical Scope, Target Audience, Contextual Factors, and Application Areas Across

Included Studies
No. of o
Scope of . Studies % o.f Common Elements Studies References
Implementation Studies
(n =51)
Global or Cross- Multl-cqntlnent deployment,
Regional Scope 5 9.80 international data  sources, | [16,24,34,44,48]
& collaborative Al validation
Industry-Focused 10 10.61 Manufacturing, automation, | [19,21,25,37,39,41,42,4
Implementation 9 process control, smart factories | 9,50,59]
Healthcare-Specific L Hospitals, diagnostic centers, [17,02 2.53.66]
Deployment 7 373 biomedical testing facilities 7,22,33,45:52:53
Academic & Research Model evaluation via gcademlc
. 6 11.76 datasets, simulated | [23,27,30,40,47,64]
Settings .
environments
Localized/Regional 3 =6 Country-specific Al  models | [20,29,32,43,51,55,57,
Implementations 509 (e.g., China, EU, India, USA) 63]
Human-Interaction & Al in user interfaces, testing
UI Contexts 5 9-80 human-AI interaction [18,26,28,46,60]
Ethical & Socio- Data privacy, bias, regulatory
Technical Emphasis 6 11.76 constraints, human oversight [31,35,38,54,56,621
) Smart infrastructure, embedded
Cyber-Physical Systems | 2 3.92 systems [36,58]
Agrl.cultural & 5 3.02 Climate mod'els,' energy grid, [61,65]
Environmental Focus resource monitoring

Table 6 summarizes the key challenges, limitations, ethical concerns, and practical gaps identified
across the 51 included studies. The most frequently reported issue was model drift and data distribution
shifts, appearing in 7 studies (13.73%), highlighting concerns about performance degradation over time
and the need for adaptive retraining strategies. Generalizability and dataset bias were identified in 6
studies (11.76%), often due to narrow or unrepresentative training data. Similarly, ethical and legal
concerns including privacy, fairness, and explainability were discussed in 6 studies (11.76%).
Computational and resource constraints and poor human-AI interpretability were each noted in 5
studies (9.80%), reflecting barriers to scalability and real-world usability. Less frequently reported but
still significant were challenges related to scalability (5.88%), regulatory guidance (5.88%), security and
adversarial risks (5.88%), and inconsistent recommendations (5.88%). A smaller subset of studies
highlighted gaps in evaluation metrics (3.92%), continuous feedback loops (5.88%), and the over-
reliance on retrospective data (3.92%), pointing to the need for more robust, forward-looking validation
approaches.
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Table 6. Challenges, Limitations, Ethical Factors, and Practical Gaps in Included Studies

No. of
Evaluation of Real- . % of .
World Utility and Gaps Studies Studies Common Elements Studies References
(n =51)
Distribution Shifts 7 373 rratning triggers, P 22,29,30,39,40,04
mitigation
Generalizability & Dataset 6 176 Limited external validation, non- [17,24.27.38.41,51]
Bias 7 representative training data 7:24,27:35,41:5
Computational & Resource S0 High compute costs, model [20 2.52.62]
Constraints 5 o scalability, energy demands »33:42,52,
Data privacy, fairness,
Ethical and Legal Concerns | 6 11.76 accountability frameworks, | [21,25,29,47,53,56]
explainability
Poor Human-Al La'ck of explalna'b'lhty, 'end—user
. 5 9.80 mistrust, usability in real | [18,32,40,50,58]
Interpretability .
settings
- Deployment at national or
Scalability to Industry or . .
Population Level 3 5.88 enterprlse.level hlr.lderedb.y cost, | [26,34,44]
access, or integration barriers
Lack of Regulatory or Al deployment without policy
Ethical Guidance 3 5-88 standards [23,35,48]
Limited Evaluation Overuse of accura<.:y/ F1 without
. 2 3.92 robustness, fairness, or | [19,30]
Metrics . -
uncertainty quantification
Security & Adversarial 38 Vulnerability to model [31 1
Risks 3 5 poisoning, adversarial examples 31,49,54
Inconsistent 38 Studies provided vague or [ 1
Recommendations 3 5 conflicting deployment advice 37:43:57
Under-addressed _Socio- 58 | workilows, contentual settngs | 455,63
Technical Dimensions 3 5 - ’ e LNgs | 145:55:03
missing from validation design
No Clear Strategy for Feedback loops lacking or poorly
Continuous Feedback 3 5-88 implemented [59-61]
Over-reliance on Absence of prospective
Retrospective Data 2 392 evaluation or field deployment [65,66]
DISCUSSION

This review highlights that AI systems predominantly rely on internal mechanisms to maintain
performance, with cross-validation (25.49%) and online retraining (23.53%) being the most frequently
employed techniques. These methods demonstrate a continued preference for data-driven fine-tuning
within controlled settings. However, the relatively limited use of drift detection (13.73%) and A/B
testing (9.80%) points to a persistent gap in real-time performance evaluation. This imbalance suggests
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that while internal validation is well-developed, operational and external validation remains
underemphasized. Addressing this requires the integration of drift detection tools and hybrid
evaluation frameworks to bolster system robustness under dynamic conditions. These findings align
with recent studies advocating for advanced cross-validation strategies that ensure robustness across
diverse datasets [68]. Despite widespread recognition of its importance, drift detection continues to
face challenges in deployment due to complexity, as documented in systematic reviews emphasizing
gaps in operational validation under real-world constraints [69]. Since 2017, there has been growing
advocacy for hybrid validation systems combining internal checks with external, real-time monitoring,
particularly in policy and governance literature [70]. In terms of continuous improvement strategies,
Al development remains heavily reliant on manual iterative model refinement (21.57%), underscoring
a developer-centric evolution model. Nonetheless, increasing incorporation of real-world feedback and
workflow integration (15.69% each) reflects rising industry engagement and responsiveness to
operational contexts. The limited use of AutoML and adaptive learning (9.80% each), however, reveals
missed opportunities for scalable self-improving systems. Additionally, community-driven
improvements and proactive error correction remain peripheral (7.84%). These trends mirror
observations from Microsoft Research, which noted that developers and data scientists still favor
human-in-the-loop workflows due to their control, interpretability, and trust benefits [71]. Ahmed and
Lin (2021) similarly observed that manual model tuning and data pipeline adjustments are persistent
sources of technical debt in Al system maintenance [72]. These patterns demonstrate that despite
advances in automation technologies, the field continues to rely heavily on expert oversight. Other
studies from the late 2010s and early 2020s also emphasized expert-driven tuning as central to
managing drift and data variability in deployed systems [73].

Current study shows a heavy concentration of continuous validation and improvement research in
industrial AI domains, particularly smart manufacturing and robotics (27.45% each), driven by
structured data and well-defined outcomes. The study further reveals a domain imbalance in the
application of continuous validation and improvement strategies. Industrial sectors particularly smart
manufacturing and robotics dominate the landscape (27.45% each), benefitting from structured data
and clearly defined performance goals. Conversely, complex and sensitive domains like healthcare
(13.73%) and environmental systems (11.76%) are underrepresented, largely due to data heterogeneity
and ethical concerns. Minimal representation in agriculture, regulatory science, and cyber-physical
systems further signals an uneven focus across sectors. The readiness of manufacturing environments
for continuous Al adaptation can be attributed to high-frequency sensor data and structured workflows,
as noted in Industry 4.0 frameworks [74]. Similarly, intelligent robotics excels in structured industrial
contexts that support iterative validation and learning cycles [75]. Broader industrial transformation
under Industry 5.0 further emphasizes ethical deployment, human-machine collaboration, and
sustainable innovation [76]. A recent review also confirmed that AI integration with Industry 4.0
technologies such as CPS, 10T, and big data improves predictive maintenance and process optimization,
although system integration remains a challenge [77]. Implementation scope across studies shows
fragmentation. Nearly one-fifth (19.61%) of studies target industry-specific use cases, and 15.69% focus
on regional applications. While healthcare (13.73%) and academic settings (11.76%) often demonstrate
high theoretical rigor, their scalability outside controlled environments is limited. Only a small
proportion (9.80%) of studies reflect global or cross-contextual implementations. Furthermore, socio-
technical and human-centric dimensions are underexplored. This disconnects between experimental
development and real-world adaptability emphasizes the need for context-aware frameworks that
integrate regulatory diversity, cultural variability, and stakeholder engagement. According to Baytech
Consulting’s 2025 report, Al integration in enterprises surged in 2024, but regional disparities and
policy environments continue to shape deployment outcomes [78]. A recent Science Direct review also
points to ongoing fragmentation, calling for more holistic frameworks that account for socio-technical
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complexity [79]. Meanwhile, recent advances in autonomous AI agents demonstrate increasing
technical capabilities in planning and reasoning, yet also underscore the importance of balancing
performance gains with contextual sensitivity [80].

Critical barriers to sustainable AI performance remain. Model drift (13.73%) emerged as the most
frequently cited challenge, followed by dataset bias and ethical or legal issues (11.76% each). These
concerns represent foundational vulnerabilities that can erode trust and degrade performance if
unaddressed. Additionally, limited interpretability and high computational demands (10%) hinder
deployment in sensitive domains. Less frequently discussed but equally vital challenges include weak
feedback loops, adversarial risks, and immature evaluation metrics. The low reliance on prospective,
continuous assessment methods (3.92%) further illustrates a reactive approach to validation. Building
adaptive and trustworthy AT systems will require both institutional innovation and technical advances.
For example, Kirichenko et al. (2023) warned about feedback loops that reinforce model bias, urging
the development of adaptive monitoring mechanisms [81]. Papernot et al. (2022) highlighted the need
for adversarial robustness and continuous training to counter evolving threats [82]. Similarly, drift
detection remains essential, as recent findings confirm reliability issues in systems lacking ongoing
performance checks [83] The 2025 Artificial Intelligence Index Report also identifies the
interpretability gap and high resource consumption as major deployment hurdles, noting that while
hardware costs are declining, training large models remains costly and centralized [84]. In sum,
advancing Al systems toward sustainable, trustworthy, and context-aware performance will require a
deliberate shift from isolated technical optimization to holistic frameworks that integrate continuous
validation, adaptive improvement, domain diversity, and socio-technical resilience.

CONCLUSION

This systematic literature review analyzed 51 studies to map the landscape of continuous validation and
improvement strategies for Al systems. Findings indicate a robust foundation in technical validation
methods particularly cross-validation and online retraining yet reveal a lack of comprehensive
integration of real-world monitoring tools like drift detection and A/B testing. Improvement strategies
are varied, but predominantly manual, with iterative refinement, feedback incorporation, and workflow
alignment taking precedence. Automation-oriented approaches, such as Auto ML and adaptive
learning, are underutilized, limiting scalability. The application landscape is heavily skewed toward
industrial domains, particularly manufacturing and robotics, with healthcare and environmental
applications emerging but less prevalent. In terms of scope, most studies target localized or sector-
specific implementations, with few addressing global or cross-context interoperability. Alarmingly,
critical dimensions such as ethical considerations, regulatory frameworks, interpretability, and user
engagement remain inconsistently addressed. Furthermore, key challenges including model drift, data
bias, and limited evaluation metrics suggest that Al systems are not yet fully equipped for adaptive,
context-sensitive deployment in dynamic environments. Future research should prioritize cross-sector
integration, longitudinal deployment monitoring, and inclusive validation frameworks that incorporate
socio-technical factors. A shift toward collaborative, adaptive, and ethically anchored AI development
will be essential for real-world sustainability and trust.
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