Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Distributed Systems Architecture for Large-Scale Affiliate
Retail Catalog and Inventory Management: Scalability,
Consistency, and Performance Optimization

Srinivas Vallabhaneni
Arizona State University, USA

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024 Modern affiliate retail ecosystems face unprecedented challenges managing massive product
catalogs that span millions of items across multiple channels while maintaining real-time
inventory accuracy. Distributed architectures employing sharded databases and microservices
decomposition enable horizontal scaling of catalog operations, addressing the computational
and storage demands of high-volume retail environments. Event-driven synchronization
mechanisms, coupled with multi-tier caching strategies, facilitate immediate propagation of
inventory changes across affiliate networks, ensuring data freshness and reducing query latency.
Flash sales and sudden traffic spikes present significant challenges to system stability,
necessitating robust fault-tolerance designs including circuit breaker patterns and eventual
consistency models. The implementation of sophisticated message queuing systems and publish-
subscribe architectures enables seamless handling of frequent product updates while mitigating
data inconsistency risks. Cache invalidation protocols and conflict resolution strategies maintain
catalog accuracy across distributed nodes, directly impacting customer experience and affiliate
credibility. Performance optimization through strategic data partitioning and load balancing
mechanisms ensures responsive catalog queries and inventory checks. These distributed system
principles collectively create resilient, scalable infrastructures capable of supporting the dynamic
requirements of contemporary affiliate retail operations while delivering consistent, accurate
product information to end customers.

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

Keywords: distributed systems, affiliate retail, catalog management, inventory
synchronization, microservices.

1. INTRODUCTION: THE SCALE AND COMPLEXITY CHALLENGE
1.1 Evolution of Affiliate Retail Ecosystems and Catalog Magnitude

The contemporary landscape of affiliate retail has undergone a fundamental transformation, evolving from simple
product recommendation networks into sophisticated ecosystems that manage vast product catalogs spanning
millions of items across diverse vendor partnerships. This evolution mirrors broader trends in software ecosystem
development, where applications and their vendors play pivotal roles in shaping technological architectures and
operational paradigms [1]. Modern affiliate platforms must orchestrate complex relationships between retailers,
manufacturers, and distribution channels while maintaining coherent product information across all touchpoints,
creating unprecedented challenges in data management and system architecture design.

Technical
Evoluti h ist 1 1 .
volution Stage Characteristics Catalog Scale Architecture
Traditional Simpl duct . .
raditiona 1mpie bro u(3 Thousands of items | Monolithic databases
Networks recommendations

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 194

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(61S8)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Multi-Channel Cross-platform integration Hundreds of Centralized systems
Platforms P & thousands Y
Ecosystem . e . . .
. Vendor partnerships Millions of items Hybrid architectures

Integration
Distributed . . - -

! Real-time synchronization Tens of millions Distributed systems
Commerce

Table 1: Evolution Stages of Affiliate Retail Ecosystems [1]
1.2 Real-Time Inventory Synchronization Requirements Across Multiple Channels

Real-time inventory synchronization has emerged as a critical requirement for maintaining competitive advantage in
multi-channel retail environments. The challenge extends beyond simple stock level updates to encompass dynamic
pricing changes, product attribute modifications, promotional campaigns, and seasonal availability fluctuations.
Contemporary retail operations demand instantaneous propagation of inventory changes across affiliate networks to
prevent overselling, maintain customer satisfaction, and preserve brand credibility. The integration of enterprise
resource planning systems with third-party warehouse management solutions has become essential for achieving
comprehensive inventory visibility and operational efficiency [2].

1.3 Core Distributed Systems Principles Applied to Retail Data Management

Core distributed systems principles provide the foundational framework for addressing these retail data management
challenges. Horizontal scalability through data partitioning, eventual consistency models for managing distributed
state, and fault-tolerant architectures for handling system failures represent fundamental concepts that enable robust
catalog management at scale. Event-driven architectures facilitate loose coupling between system components while
ensuring rapid propagation of state changes across distributed infrastructure, creating resilient systems capable of
handling the dynamic nature of modern retail operations.

1.4 Research Scope and Methodology Overview

The magnitude of data processing requirements in modern affiliate retail necessitates sophisticated distributed
computing approaches that can handle concurrent read and write operations, manage cache coherency across
multiple tiers, and maintain data integrity despite network partitions and service failures. This examination focuses
on the architectural patterns, synchronization mechanisms, and performance optimization strategies that enable
large-scale catalog management while maintaining data consistency and system reliability across distributed affiliate
networks.

2, DISTRIBUTED ARCHITECTURE FOUNDATIONS FOR CATALOG MANAGEMENT
2.1 Sharded Database Strategies for Horizontal Scaling of Product Data

Sharded database architectures represent a fundamental approach to achieving horizontal scalability in large-scale
catalog management systems. The distribution of product data across multiple database instances enables
organizations to overcome the storage and performance limitations inherent in monolithic database designs [3].
Contemporary sharding implementations leverage sophisticated partitioning algorithms that distribute catalog data
based on product categories, vendor relationships, or geographic regions, ensuring balanced load distribution while
maintaining query performance. These architectures facilitate independent scaling of database resources based on
specific catalog segments, allowing retailers to allocate computational resources according to product popularity and
access patterns.

Sharding Partitioning Scalability Implementation Query
Strategy Criteria Benefits Complexity Performance
Hash-based Product ID hash 'Un}forl.n Low ngh. for single-key

distribution queries

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 195

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management

2025, 10(61S8)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Range-based Product‘ Natural' data Medium Optimized 'for
categories locality range queries
Directory- Custom routing Flexible . Configurable
e e . High .o
based table distribution optimization
. . _— Balanced . Adaptable to
Hybrid Multiple criteria performance Very High workload

Table 2: Database Sharding Strategies Comparison [3]
2.2 Microservices Decomposition for Catalog Operations and Inventory Tracking

Microservices architecture provides the structural foundation for decomposing complex catalog management
operations into discrete, independently deployable services. This architectural pattern enables specialized services
for product information management, inventory tracking, pricing updates, and catalog synchronization, each
optimized for specific operational requirements. The decomposition facilitates independent development cycles,
technology stack selection, and scaling decisions for different catalog management functions. Service boundaries
align with business capabilities, creating clear ownership models for product data lifecycle management while
enabling rapid adaptation to changing business requirements and integration with external vendor systems.

2.3 Data Partitioning Schemes: Product-Based, Geography-Based, and Hybrid Approaches

Effective data partitioning schemes form the cornerstone of scalable catalog architectures, with product-based,
geography-based, and hybrid approaches each offering distinct advantages for different operational scenarios.
Product-based partitioning organizes catalog data according to product categories, brands, or pricing tiers, enabling
specialized optimization for different product types and customer segments. Geography-based partitioning aligns
data distribution with regional markets, facilitating compliance with local regulations and reducing latency for
geographically distributed customer bases. Hybrid approaches combine multiple partitioning strategies to address
complex business requirements while maintaining system performance and data locality.

2.4 Load Balancing and Service Discovery Mechanisms in Catalog Architectures

Load balancing mechanisms ensure optimal resource utilization across the distributed catalog infrastructure while
managing the inherent challenges of sharded systems, including load imbalance and caching performance
optimization [4]. Service discovery protocols enable dynamic routing of catalog requests to appropriate service
instances, supporting elastic scaling and fault tolerance in microservices environments. These mechanisms
incorporate health monitoring, circuit breaker patterns, and adaptive routing algorithms that respond to changing
system conditions and traffic patterns. The integration of service mesh technologies provides comprehensive
observability and traffic management capabilities essential for maintaining the catalog system's reliability and
performance.

3. REAL-TIME SYNCHRONIZATION AND CACHING MECHANISMS
3.1 Multi-Tier Caching Strategies: CDN, Application-Level, and Database Caching

Multi-tier caching architectures provide essential performance optimization for large-scale catalog management
systems by strategically positioning data at multiple levels of the infrastructure stack. Content delivery networks form
the outermost caching layer, distributing frequently accessed product images, descriptions, and static catalog content
across geographically distributed edge servers to minimize latency for global customer bases. Application-level
caching maintains frequently queried product information and inventory data in high-speed memory stores, reducing
database load while providing rapid response times for catalog queries. Database caching mechanisms optimize data
retrieval performance through intelligent buffering strategies that account for access patterns and data locality
requirements [5].

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 196

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Data Geographic

Cache Ti St A Lat Cache Si . el ae
ache Tier orage Type |Access Latency | Cache Size Persistence | Distribution

CDN Edge SSD/Memory | Sub-millisecond | Gigabytes Temporary Global

Application Memory Microseconds Gigabytes | Session-based Regional

Database Memory/SSD Milliseconds Terabytes Persistent Data center
Tens of

Disk Storage HDD/SSD Petabytes Permanent Centralized

milliseconds

Table 3: Multi-Tier Caching Performance Characteristics [5]
3.2 Event-Driven Architecture for Immediate Inventory Updates

Event-driven architectures enable immediate propagation of inventory changes across distributed catalog systems
through asynchronous message processing and reactive programming paradigms. These architectures decouple
inventory update producers from consumers, allowing multiple downstream services to respond independently to
inventory state changes without creating tight coupling between system components. Event sourcing patterns capture
the complete history of inventory modifications, enabling audit trails, rollback capabilities, and temporal queries that
support complex business requirements. The implementation of event-driven microservices facilitates scalable
distributed applications that can adapt to evolving business demands while maintaining system responsiveness [6].

3.3 Message Queuing Systems and Publish-Subscribe Patterns for Catalog Changes

Message queuing systems provide reliable, ordered delivery of catalog change notifications across distributed service
landscapes, ensuring that product updates, pricing modifications, and inventory adjustments reach all dependent
systems consistently. Publish-subscribe patterns enable loose coupling between catalog update publishers and
subscribing services, supporting flexible system architectures that can accommodate new integration requirements
without modifying existing components. These messaging patterns incorporate durability guarantees, message
routing capabilities, and dead letter queue mechanisms that ensure catalog synchronization reliability even during
system failures or network partitions.

3.4 Cache Invalidation Strategies and Consistency Maintenance Protocols

Cache invalidation strategies coordinate the removal of stale catalog data across multi-tier caching hierarchies,
ensuring that product information remains accurate and consistent throughout the system. Time-based expiration
policies, event-triggered invalidation, and dependency-based cache clearing mechanisms provide different
approaches to maintaining cache freshness while balancing performance and consistency requirements. Consistency
maintenance protocols implement eventual consistency models that allow temporary divergence between cached and
authoritative data sources while guaranteeing convergence within acceptable time bounds, enabling high availability
and partition tolerance in distributed catalog systems.

4. FAULT TOLERANCE AND DATA CONSISTENCY CHALLENGES
4.1 Handling Frequent Item Updates and Concurrent Modification Conflicts

Frequent item updates in large-scale catalog systems create complex concurrency challenges that require
sophisticated conflict resolution mechanisms to maintain data integrity. Concurrent modification conflicts arise
when multiple processes attempt to update the same product information simultaneously, potentially leading to lost
updates or inconsistent state across distributed system components. Optimistic concurrency control strategies
employ versioning mechanisms and conflict detection algorithms that identify simultaneous modifications and
provide resolution pathways that preserve data consistency. These approaches incorporate timestamp-based
ordering, vector clocks, and transaction isolation levels that enable safe concurrent access to catalog data while
maintaining system performance under high update frequencies.

4.2 Flash Sale Scenarios and Sudden Traffic Spikes Management

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 197

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Flash sale scenarios present extraordinary challenges for distributed catalog systems, generating sudden traffic spikes
that can overwhelm infrastructure capacity and compromise system availability. These events require elastic scaling
mechanisms that rapidly provision additional computational resources while maintaining consistent inventory
tracking across all system components. Load shedding strategies and request prioritization algorithms ensure that
critical catalog operations continue functioning during peak demand periods, while queue management systems
buffer excess requests to prevent system overload. Distributed system fault tolerance principles provide the
foundation for maintaining service availability during these high-stress operational scenarios [7].

4.3 CAP Theorem Implications in Distributed Catalog Systems

The CAP theorem fundamentally constrains the design choices available for distributed catalog architectures, forcing
trade-offs between consistency, availability, and partition tolerance that directly impact system behavior during
network failures and high-load conditions. Distributed catalog systems must carefully balance these competing
requirements based on business priorities and operational constraints, often favoring availability and partition
tolerance over strict consistency to maintain customer-facing services during system disruptions [8]. These
architectural decisions influence cache coherency protocols, replication strategies, and failover mechanisms that
determine system behavior under various failure scenarios.

System Consistency Availability Partition Use Case

Configuration Level Tolerance Suitability
Stron.g Immediate leltec'l 'durmg Low FlnanC}al
Consistency partitions transactions
Even.tual Delayed High High Product catalogs
Consistency convergence
Weak Consistenc Best effort Very High Very High Recommendation

Y Yy g Yy g systems

Causal Ordered . . .
Consistency updates High Medium Inventory tracking

Table 4: CAP Theorem Trade-offs in Catalog Systems [8]
4.4 Eventual Consistency Models and Conflict Resolution Strategies

Eventual consistency models provide practical approaches for managing data consistency in distributed catalog
systems while maintaining high availability and partition tolerance. These models allow temporary inconsistencies
between system replicas while guaranteeing convergence to a consistent state within bounded time periods, enabling
continued operation during network partitions and service failures. Conflict resolution strategies employ application-
specific business logic, last-writer-wins semantics, or multi-value reconciliation algorithms that automatically resolve
conflicting updates based on predetermined criteria and maintain catalog data integrity across distributed
infrastructure.

4.5 Circuit Breaker Patterns and Graceful Degradation Mechanisms

Circuit breaker patterns provide essential fault isolation capabilities that prevent cascading failures in distributed
catalog architectures by automatically detecting service degradation and redirecting traffic away from failing
components. These mechanisms monitor service health metrics, response times, and error rates to make intelligent
routing decisions that maintain overall system stability during partial failures. Graceful degradation strategies enable
catalog systems to continue providing reduced functionality when dependent services become unavailable, serving
cached data or default responses rather than complete service failure, thereby preserving customer experience during
system stress conditions.

5. PERFORMANCE OPTIMIZATION AND CUSTOMER EXPERIENCE IMPACT
5.1 Latency Reduction Techniques for Catalog Queries and Inventory Checks

198

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(61S8)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Latency reduction techniques form the cornerstone of responsive catalog management systems, directly impacting
customer satisfaction and conversion rates in affiliate retail environments. Advanced caching hierarchies, query
optimization algorithms, and connection pooling strategies minimize response times for catalog queries and
inventory checks across a distributed infrastructure. These techniques incorporate predictive prefetching
mechanisms that anticipate user behavior patterns and proactively load relevant product information, reducing
perceived latency during catalog browsing sessions. Network-level optimizations, including content delivery network
placement and protocol-level enhancements, further reduce communication overhead between distributed system
components [9].

5.2 Search and Filtering Optimization in Distributed Environments

Search and filtering optimization in distributed catalog architectures requires sophisticated indexing strategies and
query distribution mechanisms that maintain performance across large product datasets. Distributed search engines
employ sharded index structures that parallelize query processing while maintaining result relevance and
completeness across multiple data partitions. Faceted search implementations leverage pre-computed aggregations
and distributed filtering pipelines that enable real-time refinement of product catalogs based on multiple criteria
simultaneously. These optimizations incorporate machine learning algorithms that personalize search results and
improve filtering accuracy based on user behavior patterns and historical interaction data.

5.3 Affiliate Credibility Through Data Accuracy and System Reliability

Affiliate credibility directly correlates with data accuracy and system reliability, as inconsistent product information
or service outages immediately impact partner relationships and customer trust. Comprehensive data validation
frameworks ensure product information consistency across all affiliate channels while automated quality assurance
processes detect and correct catalog discrepancies before they affect customer-facing systems. System reliability
monitoring incorporates service level agreements, uptime tracking, and performance benchmarking that
demonstrate operational excellence to affiliate partners. Low-latency networking principles provide the foundation
for maintaining consistent system performance that supports affiliate partner confidence [10].

5.4 Measuring and Monitoring Catalog Synchronization Effectiveness

Measuring and monitoring catalog synchronization effectiveness requires comprehensive observability frameworks
that track data consistency, propagation delays, and system performance across the distributed infrastructure. Real-
time monitoring dashboards provide visibility into synchronization lag times, error rates, and data quality metrics
that enable proactive identification of system issues before they impact customer experience. Performance metrics
encompass end-to-end catalog update latency, cache hit rates, and query response times that collectively indicate
system health and optimization opportunities. These monitoring systems incorporate alerting mechanisms and
automated remediation capabilities that maintain catalog synchronization quality without manual intervention.

5.5 Case Studies of Successful Large-Scale Implementations

Successful large-scale catalog management implementations demonstrate the practical application of distributed
systems principles in high-volume retail environments. These implementations showcase innovative approaches to
data partitioning, caching strategies, and synchronization mechanisms that achieve both performance and
consistency requirements at massive scale. Real-world deployments illustrate the importance of gradual migration
strategies, comprehensive testing frameworks, and operational monitoring that ensure system reliability during the
transition from monolithic to distributed architectures. Performance benchmarking results from these
implementations provide empirical evidence of the effectiveness of various optimization techniques and architectural
patterns in production environments.

CONCLUSION

The distributed systems principles examined throughout this discourse demonstrate the critical importance of
scalable architectures in managing large-scale affiliate retail catalogs and inventory synchronization. Sharded
database strategies, microservices decomposition, and multi-tier caching mechanisms collectively enable horizontal
scaling while maintaining data consistency across distributed infrastructure. Event-driven architectures and message

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 199

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

queuing systems provide the foundation for real-time inventory updates and catalog synchronization, ensuring
accurate product information propagation across affiliate networks. Fault tolerance mechanisms, including circuit
breaker patterns and eventual consistency models, maintain system reliability during high-traffic scenarios and
network partitions. Performance optimization techniques, particularly latency reduction strategies and distributed
search capabilities, directly enhance customer experience while strengthening affiliate credibility through consistent
data accuracy. The successful implementation of these distributed systems principles requires careful consideration
of CAP theorem trade-offs, comprehensive monitoring frameworks, and graceful degradation mechanisms that
preserve service availability during system stress. Contemporary affiliate retail environments demand sophisticated
technical architectures that balance scalability, consistency, and performance requirements while supporting the
dynamic nature of modern commerce ecosystems. These distributed computing approaches enable retailers to
manage massive product catalogs effectively while delivering responsive, reliable services that meet the expectations
of both affiliate partners and end customers in increasingly competitive digital marketplaces.

REFERENCES

[1] Sami Hyrynsalmi and Petri Linna, "The Role of Applications and Their Vendors in Evolution of Software
Ecosystems," in 2017 40th International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), IEEE, 13 July 2017. https://ieeexplore.ieee.org/document/7973648

[2] Manykandaprebou Vaitinadin, "Driving Real-Time Inventory Insights Through SAP S/4HANA and Third-Party
Warehouse Integration," International Journal of Leading Research Publication (IJLRP), February 2022.
https://www.ijlrp.com/papers/2022/2/1296.pdf

[3] Bahaa Mahmoud Abdelhafiz, "Distributed Database Using Sharding Database Architecture," in 2020 IEEE Asia-
Pacific Conference on Computer Science and Data Engineering (CSDE), IEEE, 28 April 2021.
https://ieeexplore.ieee.org/document/9411547/citations#citations

[4] Lorenzo Saino, et al., "Load Imbalance and Caching Performance of Sharded Systems," IEEE/ACM Transactions
on Networking, 2020. https://www.ee.ucl.ac.uk/~uceegpo/Publications/Journal-papers/Saino-20a.pdf

[5] Kunlun Wang, et al., "Energy-Efficient Multi-Tier Caching and Node Association in Heterogeneous Fog
Networks," in 2020 IEEE 92nd Vehicular Technology Conference (VITC2020-Fall), IEEE, 15 February 2021.
https://ieeexplore.ieee.org/abstract/document/9348651

[6] Donovan Brown, et al., "Implementing Event-Driven Microservices Architecture in .NET 77: Develop event-based
distributed apps that can scale with ever-changing business demands using C# 11 and .NET 7," Packt Publishing,
2023. https://ieeexplore.ieee.org/book/10163634

[7] Abdeldjalil Ledmi, et al., "Fault Tolerance in Distributed Systems: A Survey," in 2018 3rd International
Conference on Pattern Analysis and Intelligent Systems (PAIS), IEEE, 03 January 2019.
https://ieeexplore.ieee.org/abstract/document/8598484/references#references

[8] David Alan Grier, "Reflecting on CAP," IEEE Computer, Volume 53, Issue 2, IEEE Computer Society, 12 February
2020. https://ieeexplore.ieee.org/document/8996105/references#references

[9] Kofi Atta Nsiah, et al., "Latency Reduction Techniques for NB-IoT Networks," in 2019 10th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), IEEE, 05 December
2019. https://ieeexplore.ieee.org/document/8924238

[10] Xiaolin Jiang, et al., "Low-latency Networking: Where Latency Lurks and How to Tame It," arXiv preprint,
August 2018. https://arxiv.org/pdf/1808.02079

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 200

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://ieeexplore.ieee.org/document/7973648
https://ieeexplore.ieee.org/document/7973648
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://www.ee.ucl.ac.uk/~uceegp0/Publications/Journal-papers/Saino-20a.pdf
https://www.ee.ucl.ac.uk/~uceegp0/Publications/Journal-papers/Saino-20a.pdf
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/book/10163634
https://ieeexplore.ieee.org/book/10163634
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/document/8996105/references#references
https://ieeexplore.ieee.org/document/8996105/references#references
https://ieeexplore.ieee.org/document/8924238
https://ieeexplore.ieee.org/document/8924238
https://arxiv.org/pdf/1808.02079
https://arxiv.org/pdf/1808.02079

