
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 194 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed Systems Architecture for Large-Scale Affiliate

Retail Catalog and Inventory Management: Scalability,

Consistency, and Performance Optimization

Srinivas Vallabhaneni

Arizona State University, USA

ARTICLE INFO ABSTRACT

Received: 18 Dec 2024

Revised: 10 Feb 2025

Accepted: 28 Feb 2025

Modern affiliate retail ecosystems face unprecedented challenges managing massive product

catalogs that span millions of items across multiple channels while maintaining real-time

inventory accuracy. Distributed architectures employing sharded databases and microservices

decomposition enable horizontal scaling of catalog operations, addressing the computational

and storage demands of high-volume retail environments. Event-driven synchronization

mechanisms, coupled with multi-tier caching strategies, facilitate immediate propagation of

inventory changes across affiliate networks, ensuring data freshness and reducing query latency.

Flash sales and sudden traffic spikes present significant challenges to system stability,

necessitating robust fault-tolerance designs including circuit breaker patterns and eventual

consistency models. The implementation of sophisticated message queuing systems and publish-

subscribe architectures enables seamless handling of frequent product updates while mitigating

data inconsistency risks. Cache invalidation protocols and conflict resolution strategies maintain

catalog accuracy across distributed nodes, directly impacting customer experience and affiliate

credibility. Performance optimization through strategic data partitioning and load balancing

mechanisms ensures responsive catalog queries and inventory checks. These distributed system

principles collectively create resilient, scalable infrastructures capable of supporting the dynamic

requirements of contemporary affiliate retail operations while delivering consistent, accurate

product information to end customers.

Keywords: distributed systems, affiliate retail, catalog management, inventory
synchronization, microservices.

1. INTRODUCTION: THE SCALE AND COMPLEXITY CHALLENGE

1.1 Evolution of Affiliate Retail Ecosystems and Catalog Magnitude

The contemporary landscape of affiliate retail has undergone a fundamental transformation, evolving from simple

product recommendation networks into sophisticated ecosystems that manage vast product catalogs spanning

millions of items across diverse vendor partnerships. This evolution mirrors broader trends in software ecosystem

development, where applications and their vendors play pivotal roles in shaping technological architectures and

operational paradigms [1]. Modern affiliate platforms must orchestrate complex relationships between retailers,

manufacturers, and distribution channels while maintaining coherent product information across all touchpoints,

creating unprecedented challenges in data management and system architecture design.

Evolution Stage Characteristics Catalog Scale
Technical

Architecture

Traditional

Networks

Simple product

recommendations
Thousands of items Monolithic databases

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 195 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multi-Channel

Platforms
Cross-platform integration

Hundreds of

thousands
Centralized systems

Ecosystem

Integration
Vendor partnerships Millions of items Hybrid architectures

Distributed

Commerce
Real-time synchronization Tens of millions Distributed systems

Table 1: Evolution Stages of Affiliate Retail Ecosystems [1]

1.2 Real-Time Inventory Synchronization Requirements Across Multiple Channels

Real-time inventory synchronization has emerged as a critical requirement for maintaining competitive advantage in

multi-channel retail environments. The challenge extends beyond simple stock level updates to encompass dynamic

pricing changes, product attribute modifications, promotional campaigns, and seasonal availability fluctuations.

Contemporary retail operations demand instantaneous propagation of inventory changes across affiliate networks to

prevent overselling, maintain customer satisfaction, and preserve brand credibility. The integration of enterprise

resource planning systems with third-party warehouse management solutions has become essential for achieving

comprehensive inventory visibility and operational efficiency [2].

1.3 Core Distributed Systems Principles Applied to Retail Data Management

Core distributed systems principles provide the foundational framework for addressing these retail data management

challenges. Horizontal scalability through data partitioning, eventual consistency models for managing distributed

state, and fault-tolerant architectures for handling system failures represent fundamental concepts that enable robust

catalog management at scale. Event-driven architectures facilitate loose coupling between system components while

ensuring rapid propagation of state changes across distributed infrastructure, creating resilient systems capable of

handling the dynamic nature of modern retail operations.

1.4 Research Scope and Methodology Overview

The magnitude of data processing requirements in modern affiliate retail necessitates sophisticated distributed

computing approaches that can handle concurrent read and write operations, manage cache coherency across

multiple tiers, and maintain data integrity despite network partitions and service failures. This examination focuses

on the architectural patterns, synchronization mechanisms, and performance optimization strategies that enable

large-scale catalog management while maintaining data consistency and system reliability across distributed affiliate

networks.

2. DISTRIBUTED ARCHITECTURE FOUNDATIONS FOR CATALOG MANAGEMENT

2.1 Sharded Database Strategies for Horizontal Scaling of Product Data

Sharded database architectures represent a fundamental approach to achieving horizontal scalability in large-scale

catalog management systems. The distribution of product data across multiple database instances enables

organizations to overcome the storage and performance limitations inherent in monolithic database designs [3].

Contemporary sharding implementations leverage sophisticated partitioning algorithms that distribute catalog data

based on product categories, vendor relationships, or geographic regions, ensuring balanced load distribution while

maintaining query performance. These architectures facilitate independent scaling of database resources based on

specific catalog segments, allowing retailers to allocate computational resources according to product popularity and

access patterns.

Sharding

Strategy

Partitioning

Criteria

Scalability

Benefits

Implementation

Complexity

Query

Performance

Hash-based Product ID hash
Uniform

distribution
Low

High for single-key

queries

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 196 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Range-based
Product

categories

Natural data

locality
Medium

Optimized for

range queries

Directory-

based

Custom routing

table

Flexible

distribution
High

Configurable

optimization

Hybrid Multiple criteria
Balanced

performance
Very High

Adaptable to

workload

Table 2: Database Sharding Strategies Comparison [3]

2.2 Microservices Decomposition for Catalog Operations and Inventory Tracking

Microservices architecture provides the structural foundation for decomposing complex catalog management

operations into discrete, independently deployable services. This architectural pattern enables specialized services

for product information management, inventory tracking, pricing updates, and catalog synchronization, each

optimized for specific operational requirements. The decomposition facilitates independent development cycles,

technology stack selection, and scaling decisions for different catalog management functions. Service boundaries

align with business capabilities, creating clear ownership models for product data lifecycle management while

enabling rapid adaptation to changing business requirements and integration with external vendor systems.

2.3 Data Partitioning Schemes: Product-Based, Geography-Based, and Hybrid Approaches

Effective data partitioning schemes form the cornerstone of scalable catalog architectures, with product-based,

geography-based, and hybrid approaches each offering distinct advantages for different operational scenarios.

Product-based partitioning organizes catalog data according to product categories, brands, or pricing tiers, enabling

specialized optimization for different product types and customer segments. Geography-based partitioning aligns

data distribution with regional markets, facilitating compliance with local regulations and reducing latency for

geographically distributed customer bases. Hybrid approaches combine multiple partitioning strategies to address

complex business requirements while maintaining system performance and data locality.

2.4 Load Balancing and Service Discovery Mechanisms in Catalog Architectures

Load balancing mechanisms ensure optimal resource utilization across the distributed catalog infrastructure while

managing the inherent challenges of sharded systems, including load imbalance and caching performance

optimization [4]. Service discovery protocols enable dynamic routing of catalog requests to appropriate service

instances, supporting elastic scaling and fault tolerance in microservices environments. These mechanisms

incorporate health monitoring, circuit breaker patterns, and adaptive routing algorithms that respond to changing

system conditions and traffic patterns. The integration of service mesh technologies provides comprehensive

observability and traffic management capabilities essential for maintaining the catalog system's reliability and

performance.

3. REAL-TIME SYNCHRONIZATION AND CACHING MECHANISMS

3.1 Multi-Tier Caching Strategies: CDN, Application-Level, and Database Caching

Multi-tier caching architectures provide essential performance optimization for large-scale catalog management

systems by strategically positioning data at multiple levels of the infrastructure stack. Content delivery networks form

the outermost caching layer, distributing frequently accessed product images, descriptions, and static catalog content

across geographically distributed edge servers to minimize latency for global customer bases. Application-level

caching maintains frequently queried product information and inventory data in high-speed memory stores, reducing

database load while providing rapid response times for catalog queries. Database caching mechanisms optimize data

retrieval performance through intelligent buffering strategies that account for access patterns and data locality

requirements [5].

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 197 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cache Tier Storage Type Access Latency Cache Size
Data

Persistence

Geographic

Distribution

CDN Edge SSD/Memory Sub-millisecond Gigabytes Temporary Global

Application Memory Microseconds Gigabytes Session-based Regional

Database Memory/SSD Milliseconds Terabytes Persistent Data center

Disk Storage HDD/SSD
Tens of

milliseconds
Petabytes Permanent Centralized

Table 3: Multi-Tier Caching Performance Characteristics [5]

3.2 Event-Driven Architecture for Immediate Inventory Updates

Event-driven architectures enable immediate propagation of inventory changes across distributed catalog systems

through asynchronous message processing and reactive programming paradigms. These architectures decouple

inventory update producers from consumers, allowing multiple downstream services to respond independently to

inventory state changes without creating tight coupling between system components. Event sourcing patterns capture

the complete history of inventory modifications, enabling audit trails, rollback capabilities, and temporal queries that

support complex business requirements. The implementation of event-driven microservices facilitates scalable

distributed applications that can adapt to evolving business demands while maintaining system responsiveness [6].

3.3 Message Queuing Systems and Publish-Subscribe Patterns for Catalog Changes

Message queuing systems provide reliable, ordered delivery of catalog change notifications across distributed service

landscapes, ensuring that product updates, pricing modifications, and inventory adjustments reach all dependent

systems consistently. Publish-subscribe patterns enable loose coupling between catalog update publishers and

subscribing services, supporting flexible system architectures that can accommodate new integration requirements

without modifying existing components. These messaging patterns incorporate durability guarantees, message

routing capabilities, and dead letter queue mechanisms that ensure catalog synchronization reliability even during

system failures or network partitions.

3.4 Cache Invalidation Strategies and Consistency Maintenance Protocols

Cache invalidation strategies coordinate the removal of stale catalog data across multi-tier caching hierarchies,

ensuring that product information remains accurate and consistent throughout the system. Time-based expiration

policies, event-triggered invalidation, and dependency-based cache clearing mechanisms provide different

approaches to maintaining cache freshness while balancing performance and consistency requirements. Consistency

maintenance protocols implement eventual consistency models that allow temporary divergence between cached and

authoritative data sources while guaranteeing convergence within acceptable time bounds, enabling high availability

and partition tolerance in distributed catalog systems.

4. FAULT TOLERANCE AND DATA CONSISTENCY CHALLENGES

4.1 Handling Frequent Item Updates and Concurrent Modification Conflicts

Frequent item updates in large-scale catalog systems create complex concurrency challenges that require

sophisticated conflict resolution mechanisms to maintain data integrity. Concurrent modification conflicts arise

when multiple processes attempt to update the same product information simultaneously, potentially leading to lost

updates or inconsistent state across distributed system components. Optimistic concurrency control strategies

employ versioning mechanisms and conflict detection algorithms that identify simultaneous modifications and

provide resolution pathways that preserve data consistency. These approaches incorporate timestamp-based

ordering, vector clocks, and transaction isolation levels that enable safe concurrent access to catalog data while

maintaining system performance under high update frequencies.

4.2 Flash Sale Scenarios and Sudden Traffic Spikes Management

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 198 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Flash sale scenarios present extraordinary challenges for distributed catalog systems, generating sudden traffic spikes

that can overwhelm infrastructure capacity and compromise system availability. These events require elastic scaling

mechanisms that rapidly provision additional computational resources while maintaining consistent inventory

tracking across all system components. Load shedding strategies and request prioritization algorithms ensure that

critical catalog operations continue functioning during peak demand periods, while queue management systems

buffer excess requests to prevent system overload. Distributed system fault tolerance principles provide the

foundation for maintaining service availability during these high-stress operational scenarios [7].

4.3 CAP Theorem Implications in Distributed Catalog Systems

The CAP theorem fundamentally constrains the design choices available for distributed catalog architectures, forcing

trade-offs between consistency, availability, and partition tolerance that directly impact system behavior during

network failures and high-load conditions. Distributed catalog systems must carefully balance these competing

requirements based on business priorities and operational constraints, often favoring availability and partition

tolerance over strict consistency to maintain customer-facing services during system disruptions [8]. These

architectural decisions influence cache coherency protocols, replication strategies, and failover mechanisms that

determine system behavior under various failure scenarios.

System

Configuration

Consistency

Level
Availability

Partition

Tolerance

Use Case

Suitability

Strong

Consistency
Immediate

Limited during

partitions
Low

Financial

transactions

Eventual

Consistency

Delayed

convergence
High High Product catalogs

Weak Consistency Best effort Very High Very High
Recommendation

systems

Causal

Consistency

Ordered

updates
High Medium Inventory tracking

Table 4: CAP Theorem Trade-offs in Catalog Systems [8]

4.4 Eventual Consistency Models and Conflict Resolution Strategies

Eventual consistency models provide practical approaches for managing data consistency in distributed catalog

systems while maintaining high availability and partition tolerance. These models allow temporary inconsistencies

between system replicas while guaranteeing convergence to a consistent state within bounded time periods, enabling

continued operation during network partitions and service failures. Conflict resolution strategies employ application-

specific business logic, last-writer-wins semantics, or multi-value reconciliation algorithms that automatically resolve

conflicting updates based on predetermined criteria and maintain catalog data integrity across distributed

infrastructure.

4.5 Circuit Breaker Patterns and Graceful Degradation Mechanisms

Circuit breaker patterns provide essential fault isolation capabilities that prevent cascading failures in distributed

catalog architectures by automatically detecting service degradation and redirecting traffic away from failing

components. These mechanisms monitor service health metrics, response times, and error rates to make intelligent

routing decisions that maintain overall system stability during partial failures. Graceful degradation strategies enable

catalog systems to continue providing reduced functionality when dependent services become unavailable, serving

cached data or default responses rather than complete service failure, thereby preserving customer experience during

system stress conditions.

5. PERFORMANCE OPTIMIZATION AND CUSTOMER EXPERIENCE IMPACT

5.1 Latency Reduction Techniques for Catalog Queries and Inventory Checks

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 199 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Latency reduction techniques form the cornerstone of responsive catalog management systems, directly impacting

customer satisfaction and conversion rates in affiliate retail environments. Advanced caching hierarchies, query

optimization algorithms, and connection pooling strategies minimize response times for catalog queries and

inventory checks across a distributed infrastructure. These techniques incorporate predictive prefetching

mechanisms that anticipate user behavior patterns and proactively load relevant product information, reducing

perceived latency during catalog browsing sessions. Network-level optimizations, including content delivery network

placement and protocol-level enhancements, further reduce communication overhead between distributed system

components [9].

5.2 Search and Filtering Optimization in Distributed Environments

Search and filtering optimization in distributed catalog architectures requires sophisticated indexing strategies and

query distribution mechanisms that maintain performance across large product datasets. Distributed search engines

employ sharded index structures that parallelize query processing while maintaining result relevance and

completeness across multiple data partitions. Faceted search implementations leverage pre-computed aggregations

and distributed filtering pipelines that enable real-time refinement of product catalogs based on multiple criteria

simultaneously. These optimizations incorporate machine learning algorithms that personalize search results and

improve filtering accuracy based on user behavior patterns and historical interaction data.

5.3 Affiliate Credibility Through Data Accuracy and System Reliability

Affiliate credibility directly correlates with data accuracy and system reliability, as inconsistent product information

or service outages immediately impact partner relationships and customer trust. Comprehensive data validation

frameworks ensure product information consistency across all affiliate channels while automated quality assurance

processes detect and correct catalog discrepancies before they affect customer-facing systems. System reliability

monitoring incorporates service level agreements, uptime tracking, and performance benchmarking that

demonstrate operational excellence to affiliate partners. Low-latency networking principles provide the foundation

for maintaining consistent system performance that supports affiliate partner confidence [10].

5.4 Measuring and Monitoring Catalog Synchronization Effectiveness

Measuring and monitoring catalog synchronization effectiveness requires comprehensive observability frameworks

that track data consistency, propagation delays, and system performance across the distributed infrastructure. Real-

time monitoring dashboards provide visibility into synchronization lag times, error rates, and data quality metrics

that enable proactive identification of system issues before they impact customer experience. Performance metrics

encompass end-to-end catalog update latency, cache hit rates, and query response times that collectively indicate

system health and optimization opportunities. These monitoring systems incorporate alerting mechanisms and

automated remediation capabilities that maintain catalog synchronization quality without manual intervention.

5.5 Case Studies of Successful Large-Scale Implementations

Successful large-scale catalog management implementations demonstrate the practical application of distributed

systems principles in high-volume retail environments. These implementations showcase innovative approaches to

data partitioning, caching strategies, and synchronization mechanisms that achieve both performance and

consistency requirements at massive scale. Real-world deployments illustrate the importance of gradual migration

strategies, comprehensive testing frameworks, and operational monitoring that ensure system reliability during the

transition from monolithic to distributed architectures. Performance benchmarking results from these

implementations provide empirical evidence of the effectiveness of various optimization techniques and architectural

patterns in production environments.

CONCLUSION

The distributed systems principles examined throughout this discourse demonstrate the critical importance of

scalable architectures in managing large-scale affiliate retail catalogs and inventory synchronization. Sharded

database strategies, microservices decomposition, and multi-tier caching mechanisms collectively enable horizontal

scaling while maintaining data consistency across distributed infrastructure. Event-driven architectures and message

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 200 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

queuing systems provide the foundation for real-time inventory updates and catalog synchronization, ensuring

accurate product information propagation across affiliate networks. Fault tolerance mechanisms, including circuit

breaker patterns and eventual consistency models, maintain system reliability during high-traffic scenarios and

network partitions. Performance optimization techniques, particularly latency reduction strategies and distributed

search capabilities, directly enhance customer experience while strengthening affiliate credibility through consistent

data accuracy. The successful implementation of these distributed systems principles requires careful consideration

of CAP theorem trade-offs, comprehensive monitoring frameworks, and graceful degradation mechanisms that

preserve service availability during system stress. Contemporary affiliate retail environments demand sophisticated

technical architectures that balance scalability, consistency, and performance requirements while supporting the

dynamic nature of modern commerce ecosystems. These distributed computing approaches enable retailers to

manage massive product catalogs effectively while delivering responsive, reliable services that meet the expectations

of both affiliate partners and end customers in increasingly competitive digital marketplaces.

REFERENCES

[1] Sami Hyrynsalmi and Petri Linna, "The Role of Applications and Their Vendors in Evolution of Software

Ecosystems," in 2017 40th International Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO), IEEE, 13 July 2017. https://ieeexplore.ieee.org/document/7973648

[2] Manykandaprebou Vaitinadin, "Driving Real-Time Inventory Insights Through SAP S/4HANA and Third-Party

Warehouse Integration," International Journal of Leading Research Publication (IJLRP), February 2022.

https://www.ijlrp.com/papers/2022/2/1296.pdf

[3] Bahaa Mahmoud Abdelhafiz, "Distributed Database Using Sharding Database Architecture," in 2020 IEEE Asia-

Pacific Conference on Computer Science and Data Engineering (CSDE), IEEE, 28 April 2021.

https://ieeexplore.ieee.org/document/9411547/citations#citations

[4] Lorenzo Saino, et al., "Load Imbalance and Caching Performance of Sharded Systems," IEEE/ACM Transactions

on Networking, 2020. https://www.ee.ucl.ac.uk/~uceegp0/Publications/Journal-papers/Saino-20a.pdf

[5] Kunlun Wang, et al., "Energy-Efficient Multi-Tier Caching and Node Association in Heterogeneous Fog

Networks," in 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), IEEE, 15 February 2021.

https://ieeexplore.ieee.org/abstract/document/9348651

[6] Donovan Brown, et al., "Implementing Event-Driven Microservices Architecture in .NET 7: Develop event-based

distributed apps that can scale with ever-changing business demands using C# 11 and .NET 7," Packt Publishing,

2023. https://ieeexplore.ieee.org/book/10163634

[7] Abdeldjalil Ledmi, et al., "Fault Tolerance in Distributed Systems: A Survey," in 2018 3rd International

Conference on Pattern Analysis and Intelligent Systems (PAIS), IEEE, 03 January 2019.

https://ieeexplore.ieee.org/abstract/document/8598484/references#references

[8] David Alan Grier, "Reflecting on CAP," IEEE Computer, Volume 53, Issue 2, IEEE Computer Society, 12 February

2020. https://ieeexplore.ieee.org/document/8996105/references#references

[9] Kofi Atta Nsiah, et al., "Latency Reduction Techniques for NB-IoT Networks," in 2019 10th IEEE International

Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), IEEE, 05 December

2019. https://ieeexplore.ieee.org/document/8924238

[10] Xiaolin Jiang, et al., "Low-latency Networking: Where Latency Lurks and How to Tame It," arXiv preprint,

August 2018. https://arxiv.org/pdf/1808.02079

https://ieeexplore.ieee.org/document/7973648
https://ieeexplore.ieee.org/document/7973648
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://www.ijlrp.com/papers/2022/2/1296.pdf
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://ieeexplore.ieee.org/document/9411547/citations#citations
https://www.ee.ucl.ac.uk/~uceegp0/Publications/Journal-papers/Saino-20a.pdf
https://www.ee.ucl.ac.uk/~uceegp0/Publications/Journal-papers/Saino-20a.pdf
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/abstract/document/9348651
https://ieeexplore.ieee.org/book/10163634
https://ieeexplore.ieee.org/book/10163634
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/abstract/document/8598484/references#references
https://ieeexplore.ieee.org/document/8996105/references#references
https://ieeexplore.ieee.org/document/8996105/references#references
https://ieeexplore.ieee.org/document/8924238
https://ieeexplore.ieee.org/document/8924238
https://arxiv.org/pdf/1808.02079
https://arxiv.org/pdf/1808.02079

