
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 167 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Automating Malicious Code Detection Through Ml and

Behavioral Analysis

Radhika Singh1, Priyank sirohi2
1Research Scholar, M.Tech (CSE), SCRIET, Chaudhary Charan Singh University, Meerut, U.P, India

2Research Supervisor, M.Tech (CSE) Assistant Professor, Information technology Department, SCRIET, Chaudhary Charan Singh University,

Meerut, U.P, India

ARTICLE INFO ABSTRACT

Received: 24 Dec 2024

Revised: 12 Feb 2025

Accepted: 26 Feb 2025

Malicious programs that intentionally carry out damaging actions are known as

malware. Over the past ten years, there has been an observed increase in the creation

of malware. Malware's exponential development and sophistication pose a major threat

to network and computer security. Malware is becoming a common tool used by

hackers and attackers to carry out assaults on computer systems in order to achieve

their harmful goals. The primary means of launching a malware assault on computer

systems is the internet, which is used to send malicious emails, drive-by downloads of

software, and malicious websites. Computer systems are penetrated for a variety of

purposes, including financial gain, the theft of private or sensitive information, the

creation of bots inside the system, the inaccessibility of services within the system, etc.

The effectiveness of the analytic methodologies used to extract discriminative malware

characteristics determines the malware detection system's efficacy. The primary goal

of this research project was to identify discriminative characteristics that may be

malware and utilise that knowledge to identify it with accuracy.

Supervised machine learning techniques have been used to suggest a behavior-based

malware detection method. The Cuckoo sandbox was used to execute both the

malicious and safe samples in the dynamic analysis environment. When all four

machine-learning algorithms were applied concurrently, the empirical data shows that

the model identified malware in real-world apps with a higher detection rate. This

method works quite well in identifying malware from unidentified families. All things

considered, the web-based architecture offers a practical and fast way to identify

malware on Android devices, making it a crucial tool in the battle against malware. The

goal is to create a system that can automatically determine if a given application or file

is malicious or not. This calls for the development of an algorithm or model that can

analyse file attributes and differentiate between files that contain malicious code or

activity and those that are clean.

Keywords: Machine learning, Web based detection methods, Behavioral analysis

INTRODUCTION

Apps for smartphones have become indispensable in today's world. This reliance on smartphone applications,

meanwhile, also comes with a big danger because malware-infected apps are often created by hackers. Researchers

and academics have made it their top priority to create workable methods to prevent malware from infecting Android

smartphones. This project uses a web-based framework with unique machine-learning algorithms and feature

selection techniques to identify malware. The system takes into account two methods for choosing the appropriate

features for training: feature subset selection and feature rating. Several machine learning algorithms that operate

on the principles of supervised, semisupervised, unsupervised, and hybrid techniques are used to train the

framework. The Drebin data set is one of the many data sets in which the framework has demonstrated excellent

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 168 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

accuracy in identifying malware. The framework makes use of the Random Forest and Naive Bayes algorithms. The

accuracy and effectiveness of the Naive Bayes approach in training and effectively generalising from little amounts of

data make it noteworthy. It increases the accuracy and efficacy of detecting malware linked to unknown families and

practical applications. All things considered, this framework offers a dependable way to identify malware on Android

devices and is a useful weapon in the battle against spyware.

OBJECTIVES

The following goals guide this study's development of a reliable, efficient malware detection and categorisation

system.

1. To create a technique for creating a cutting-edge malware detection model, that

 has a wide range of characteristics from static analysis for efficacy and efficiency, and is able to learn from a huge

number of malware samples created over an extended period of time.

2. To conduct a comprehensive empirical evaluation to achieve the above describe objectives and reduce overfitting

through the application of ensemble boosting and bagging techniques.

METHODS

Instead of using a single strategy, machine learning employs a wide range of ways to find a solution. These methods

are suitable for a variety of jobs and have varying capabilities.

Unsupervised learning: Unsupervised learning is one method of machine learning. In this scenario, we are simply

provided with a data set and not the task's correct solutions. Finding the data's structure or the rule of data production

is the aim. Clustering is a significant illustration. Partitioning a data collection into groups of related items is known

as clustering. Building an informative feature set for objects based on their low-level description (e.g., an autoencoder

model) is another challenge in representation learning.

Supervised learning: There are two phases to supervised learning:

• Model training and model fitting to available training data.

 • Making predictions by using the trained model on fresh samples. We must choose a family of models, such as

decision trees or neural networks, for the training phase.

 Typically, the parameters of each model in a family define it. Training entails finding the model from the chosen

family with a certain set of parameters that, based on a given measure, provides the trained model with the best

correct responses over the collection of reference objects. Stated differently, we "learn" the ideal characteristics that

characterise a legitimate mapping from X to Y. The next step is to apply the model to new objects once it has been

trained and its quality has been confirmed. The model's type and parameters remain unchanged during this phase.

Only predictions are generated by the model. A. Feature Extraction Although PE files contain many format features,

most of them are ineffective at distinguishing between safe and malicious software. We were able to extract 54

elements from the provided files that may be utilised to distinguish between safe software and malware based on our

empirical research and careful analysis of the format attributes of the PE files.These characteristics are enumerated

in. We provided a brief explanation of the retrieved characteristics in the discussion that follows.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 169 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Fig. 1 PE File Feature

B. ALGORITHM

Random forest When it comes to classification jobs, random forests work well since they use trees with random

characteristics and rigid architecture. An readily parallelizable collection of independent decision trees is produced

by the method. Every tree starts out as a whole binary tree and is branching using randomly chosen characteristics,

frequently with replacement. Training data is used to complete the tree's leaves. Through a voting process, the

resultant classifier aggregates the predictions from each tree. Because each tree only chooses a small number of

features, this method works best when all the features are significant. Because certain trees may generate arbitrary

predictions based on extraneous characteristics, random forests are strong because other trees will query significant

features and produce precise forecasts based on the training set.

 AdaBoost Freund and Schapire introduced AdaBoost, commonly referred to as Adaptive Boosting, as an ensemble

boosting classifier in 1996. Its goal is to increase accuracy by the integration of many classifiers. AdaBoost uses an

iterative process to combine weaker classifiers to create a stronger one. To guarantee accurate predictions, the

weights of classifiers and training data samples are modified at each iteration. Higher weights are given to

observations that were mistakenly categorised in the training process, which entails the iterative selection of training

data subsets depending on the accuracy of the prior iteration. Each classifier's weight is changed in direct proportion

to how accurate it is. Until the maximum number of iterations is achieved or the training data is properly identified,

this iterative procedure is carried out.

Gradient descent Gradient boosting is a method of making several adjustments to a poor learner or learning

algorithm in order to increase its power. It explores the complexity of machine learning issues and is based on the

idea of Probability Approximately Correct Learning (PAC). A differentiable loss function, like squared errors for

regression or logarithmic loss for classification, is what the Gradient Boosting Classifier uses.

Decision tree Decision trees are hierarchical structures in which nodes stand in for characteristics, branches for

decision rules, and leaf nodes for outcomes. The tree divides itself recursively according to attribute values, with the

top node being referred to as the root node. Decision trees mirror human thought processes because of their visual

aspect, which makesthem easier to understand and analyse. They resemble flowcharts. Since decision trees are non-

parametric, no assumptions on probability distributions are necessary. Decision trees are capable of handling high-

dimensional data with excellent accuracy.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 170 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Naïve Bayes Based on Bayes' theorem, Naive Bayes is a straightforward yet effective classification technique. The

class with the highest probability is chosen by Naive Bayes, which determines the likelihood of each data point

belonging to each class. Naive Bayes can estimate the required probability with very little training data. It is

computationally efficient and works well on highdimensional datasets. In certain complicated settings, the accuracy

of the method may be limited due to the assumption of feature independence. The Bayes theorem can be used to

determine the posterior probability P(c—x) given the prior probabilities P(c), P(x), and the likelihood P(x—c). The

posterior probability P(c—x) indicates the likelihood of a class (c, target) given a predictor (x, attributes). The prior

probability P(c) represents the initial probability of the class. The likelihood P(x—c) displays the predictor's

probability given the class. Lastly, the prior probability P(x) represents the predictor's initial probability.

FRAMEWORK AND ARCHITECTURE

A. System Design

In terms of malware detection, both behavior-based and signature-based approaches offer benefits and drawbacks.

Numerous researchers have suggested hybrid techniques for malware detection that mix static and dynamic

characteristics in order to take use of both approaches' advantages and overcome their flaws. This section examines

and contrasts many hybrid malware detection methods according to a number of criteria. Rabek et al. (2003)

described a method for identifying malicious files that have been obfuscated. To get details about system calls, such

as function names, addresses, and return addresses, they used static analysis. By running the malicious files in a

regulated dynamic environment, this static data was coupled with dynamic elements. An executable file was deemed

harmful if it made use of the same system calls as those that were saved (which indicated known malware). If the

creator of the virus included unnecessary system calls in the code, this tactic might not work. To find worms in a

network, Collins et al. (2008) presented a protocol graph detector. They modelled a network in which connections

were edges and hosts were nodes. This method observed worm behaviour by simulating the network. It did not

include other forms of malware, such as Trojan horses or viruses, and instead concentrated only on worms. In order

to decrease false-positive answers and address the shortcomings of static and dynamic analytic methodologies,

Mangialardo et al. (2015) proposed the FAMA framework. IDA Pro was utilised to extract static features, while the

Cuckoo sandbox was employed to capture behavioural characteristics. The classifier was then trained using the

retrieved features by feeding them into the Random Forest and C5.0 algorithms. The accuracy of the experimental

findings in differentiating between harmful and benign files was 95.75%. A method for integrated malware detection

was presented by Shijo et al. (2015). Taking into account undesirable printed strings introduced to obfuscate the

code, they disassembled binary files and retrieved printable string information. In general, the study examines

various hybrid malware detection techniques that aim to address the drawbacks of both static and dynamic analysis

while using their strengths.

B. Hypervisor

When using machine learning techniques for malware detection, a hypervisor is essential for a number of reasons. A

hypervisor, first and foremost, offers a regulated and segregated environment for the execution of potentially

dangerous software. The virus functions in a sandbox that is segregated from the host operating system and other

programs, thanks to the hypervisor's creation of a virtual machine (VM) environment. By keeping the virus from

impacting the underlying system, this isolation contributes to the host machine's safety and integrity. Another crucial

function of the hypervisor's isolation is to prevent the virus from being discovered by it. Malicious software frequently

uses methods to determine whether it is being watched by security tools or operating in a virtual environment.

Malware can be made less likely to detect monitoring and analysis tools by using a hypervisor, which provides an

environment that resembles a real operating system. This increases the likelihood of deciphering the behaviour of

the infection and identifying its destructive purpose. The hypervisor makes it possible to take snapshots or

checkpoints while malware is running. The precise state of the malware-infected system at different phases of its

execution is preserved by these snapshots, which record the state of the virtual machine at distinct points in time.

Researchers can examine system modifications, watch network activities, and spot any vulnerabilities being exploited

by using these snapshots to analyse the behaviour of the infection. Furthermore, classifiers may be trained on a

variety of typical malware samples by using these snapshots to generate training datasets for machine learning

models. The repeatability that a hypervisor offers is another benefit of using one. By simply going back to a previously

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 171 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

taken snapshot, researchers may precisely duplicate the execution environment, guaranteeing that tests and analyses

can be carried out again. This repeatability is essential for carrying out thorough assessments, contrasting various

detection strategies, and verifying the efficacy of machine learning algorithms in malware detection. To sum up, a

hypervisor is a critical element in machine learning malware detection. It can isolate malware, evade detection,

provide fine-grained control, permit monitoring and analysis, enable snapshot-based analysis, and ensure

repeatability, making it a crucial tool in the development of trustworthy and efficient malware detection systems.

Fig. 3 Architecture of Hypervisor Type 1

Fig 4: Type- II Hypervisor Architecture

C. Architecture

Finding harmful actions that malware exhibits while it is being executed is the foundation of the behavior-based

approach to malware detection. In order to determine the behaviour, this method takes into account a number of

elements, including browser events, system events, network events, APIs, etc. File activities, registry activities, and

network activities are the three primary groups into which these metrics are divided.Finding anomalies—unusual

actions carried out by malware—is the fundamental idea underpinning malware detection. The malware detector in

anomaly-based detection systems is trained by examining only benign files. The benign files are analysed using static

or dynamic analysis, and the classifier is trained with the files' typical operations. The anomalous and benign-based

technique, on the other hand, is a better method for differentiating between benign and dangerous activity since it

analyses both benign and malware files. This method records both benign and malevolent activity. In contrast to the

anomaly-based technique, training the detector using this method takes more time. Heuristic approaches are a

continuation of behavior-based approaches for detecting malware. When it comes to efficiently identifying

sophisticated malware, machine learning is far more important than conventional malware detection techniques.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 172 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 5 Behavioural and machine learning based Architecture

PROPOSED SYSTEM The multifaceted process of detecting malware in files and programs involves gathering and

arranging datasets for machine learning algorithms that are used for testing and training. To guarantee accuracy,

three sets of datasets are used: a training set, a test set, and a "scaleup" set. Sets of clean files with malware-like

properties are also included in datasets to further improve the efficacy of the system. The test dataset includes files

from several operating systems and the WildList collection, whereas the malware files used in the training dataset

are from the Virus Heaven collection. These databases cover a wide range of malware types, including trojans,

backdoors, hacking tools, rootkits, worms, and more. The ten components of the "scaleup" dataset—S10,S20...,and

S100—will be divided in order to assess how scalable the learning methods are. This part makes it possible to assess

training speed and malware detection rate for ever-larger datasets. Additionally, the project will compile and classify

Android application packages (.apk). These programs will operate on the Bluestack software emulator, which enables

Android programs to operate on a PC. The permissions of the.apk files will be retrieved together with those of other

regular files from other collections. Five machine learning classifiers will assess the datasets using TPR, FPR, Prec.,

Recall, and F-measure: k-star, Random Forest (RF), Decision Tree (J48), Naive Bayes (NB), and Simple Logistic. To

achieve the best level of accuracy, the datasets will undergo three distinct tests utilising WEKA software. Providing a

training set and evaluating the test set is one method. The second option is cross-validation, which involves dividing

the dataset into subgroups, training the algorithm on k-1 of those parts, and then evaluating it on the remaining

subset. Using a percentage-based approach, the third way separates the dataset into training and testing sections. In

order to use machine learning algorithms to identify malware from files and programs, dataset preparation and

collection are crucial. The accuracy of training and testing is improved by using various datasets, including clean files

that resemble malware files. This helps to avoid hacker assaults, protect data, and provide a more effective early

warning system for computers. Additionally, our system outlines several frameworks and methods for identifying

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 173 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and evaluating malware. A behavioral-based framework that analyses and categorises suspicious applications using

malicious programs being injected. Additionally, it suggests a brand-new hybrid architecture for malware detection

that blends machine learning with deep transfer learning. The methodology entails creating a normalised and

augmented image-based PE dataset and assessing how well deep transfer learning models perform. The second step

involves combining deep learning and machine learning models to detect malware. Additionally, the system will

discuss the advantages and disadvantages of both static and dynamic malware analysis methods. The static approach

provides more accurate information on harmful programs, while the dynamic approach detects malware by running

the system. By combining these techniques, malware detection can be enhanced. The Random Forest machine

learning technique, which involves the evolution of several decision trees based on distinct subsets of the data set, is

also briefly explained. The algorithm selects variables and parameters for node selection and partitioning at random

to determine the total error rate. The frequency of misclassification is then computed. The ultimate classification

result is determined by the class that receives the most votes from the qualifying trees.

CONCLUSION

A model for identifying malware from files and apps is developed in the project "Malware Detection Using Machine

Learning." This model is going to distinguish between malware and clean files. Millions of people worldwide will

benefit from this concept as it is free to use and many cannot afford to purchase software. Additionally, fewer people

will fall victim to malware and ransomware as a result of this. In addition, our approach is appropriate for cloud-

based or clustering malware detection systems, since it will consume less resources than existing methods. For even

more precise findings, further work on this subject may use more sophisticated methods like deep learning or natural

language processing. However, our idea has a lot of potential for use in malware identification and might be a useful

tool for protecting computer systems.

REFRENCES

[1] Kaspersky Lab. (n.d.). Machine learning: Finding its place in cybersecurity. Retrieved December 20, 2024, from

https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-WhitepaperMachine-Learning.pdf

[2] eInfochips. (n.d.). Malware detection using machine learning techniques. Retrieved December 20, 2024, from

https://www.einfochips.com/blog/malware-detection-using-machine-learningtechniques/

[3] Dunlea, J. (2024, January 5). Machine learning techniques for advanced malware detection. Akkio.

https://www.akkio.com/post/malware-detection-using-machine-learning

[4] Navya, V. K., Pandey, J. K., Anjney, P., Reddy, P. V. S., & Ompuri, O. (2023). Malware detection using machine

learning. Journal of Emerging Technologies and Innovative Research, 10(4), m1–m4.

https://www.jetir.org/papers/JETIR2304C01.pdf

[5] Gavriluț, D., Cimpoeșu, M., Anton, D., & Ciortuz, L. (2009). Malware detection using machine learning. In

Proceedings of the International Multiconference on Computer Science and Information Technology (pp. 735–

741). IEEE. https://doi.org/10.1109/IMCSIT.2009.5352759

[6] Akhtar, M., & Feng, T. (2022). Malware analysis and detection using machine learning algorithms. Symmetry,

14(11), 2304. https://doi.org/10.3390/sym14112304

[7] Sahu, S. S., Sahay, S. K., & Rath, S. K. (2024). Malware detection using machine learning: A systematic review.

Machine Learning with Applications, 7, Article 100227. https://doi.org/10.1016/j.mlwa.2024.100227

[8] Bhat, K., Khairnar, T., Phatangare, S., & Narkhedkar, T. (2023). Malware detection using machine learning.

International Journal for Research in Applied Science and Engineering Technology, 11(5), 1– 5.

https://doi.org/10.22214/ijraset.2023.52217

[9] Akhtar, M. S., & Feng, T. (2023). Evaluation of machine learning algorithms for malware detection. Sensors,

23(2), 946. https://doi.org/10.3390/s23020946

[10] Kiinitix. (n.d.). Malware detection using machine learning [GitHub repository]. GitHub.

https://github.com/Kiinitix/Malware-Detection-using-Machine-learning

[11] Doe, J. (2023). An analysis of cybersecurity measures in modern organizations (Publication No. 12345).

[California State University ScholarWorks]. https://scholarworks.calstate.edu/downloads/df65vf74d

[12] Liu, Y., Wang, L., & Zhang, X. (2023). Research on the optimization of machine learning algorithms. Journal

of Physics: Conference Series, 1962(1), 012010. https://doi.org/10.1088/1742-6596/1962/1/012010

https://media.kaspersky.com/en/enterprise-security/Kaspersky-Lab-WhitepaperMachine-Learning.pdf
https://www.einfochips.com/blog/malware-detection-using-machine-learningtechniques/
https://www.akkio.com/post/malware-detection-using-machine-learning
https://www.jetir.org/papers/JETIR2304C01.pdf
https://doi.org/10.1109/IMCSIT.2009.5352759
https://doi.org/10.3390/sym14112304
https://doi.org/10.1016/j.mlwa.2024.100227
https://doi.org/10.22214/ijraset.2023.52217
https://github.com/Kiinitix/Malware-Detection-using-Machine-learning
https://scholarworks.calstate.edu/downloads/df65vf74d
https://doi.org/10.1088/1742-6596/1962/1/012010

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 174 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[13] Venkata Pavan Kalyan, E. (n.d.). Title of the document (Unpublished manuscript). Hindustan

University.https://hindustanuniv.ac.in/assets/naac/CA/1_3_4/2659_EMMELA_VENKATA_P

AVAN_KALYAN_compressed.pdf

[14] Maidaly, A. (2023). Malware detection with machine learning [Kaggle notebook]. Kaggle.

https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning

[15] Maldozer: Automatic framework for Android malware detection using deep learning. Slogix.

https://slogix.in/machine-learning/maldozer-automatic-framework-for-android-malwaredetection-using-

deep-learning/

[16] Tuff96. (n.d.). Malware detection using machine learning [GitHub repository]. GitHub.

https://github.com/tuff96/Malware-detection-using-Machine-Learning

[17] Anonymous.(n.d.).Malware detection using machine learning. Retrieved from

http://www.ir.juit.ac.in:8080/jspui/bitstream/123456789/6422/1/Malware%20Detection%20U

sing%20Machine%20Learning.pdf

[18] Code. (n.d.). Malware detection. Retrieved December 20, 2024, from

https://paperswithcode.com/task/malware-detection

[19] P. Santikellur, Lakshya, S. R. Prakash and R. S. Chakraborty, "A Computationally Efficient Tensor Regression

Network based Modeling Attack on XOR APUF", Asian Hardware Oriented Security and Trust Symposium

(AsianHOST), 2019, pp. 1-6, doi:

[20] 1109/AsianHOST47458.2019.9006692. https://ieeexplore.ieee.org/document/9006692. A. Roy, S. Misra and

Lakshya, "OPTIVE: Optimal Configuration of Virtual Sensor in Mobile Sensor-Cloud", IEEE Wireless

Communications and Networking Conference (WCNC), 2019, pp. 1-6, doi: 10.1109/WCNC.2019.8885626.

https://ieeexplore.ieee.org/document/8885626.

[21] R. Nanjundappa, Gajendra N, Lakshya et al. "AWAF: AI Enabled Web Contents Authoring Framework", IEEE

17th India Council International Conference (INDICON), 2020, pp. 1-5, doi:

10.1109/INDICON49873.2020.9342385. https://ieeexplore.ieee.org/document/9342385.

[22] A. Prabakaran, M. R. Voleti, Lakshya and P. S. Manurkar, "A Multi-Input Neural Network with Dense Flow and

Spatio-Temporal Features for Anomaly Detection", Fifteenth International Conference on Information

Processing (ICINPRO), 2019, pp. 1-6, doi: 10.1109/ICInPro47689.2019.9092161.

https://ieeexplore.ieee.org/document/9092161.

[23] Lakshya, "Behaviour of Sample Selection Techniques under explicit Regularization", Bebis G. et al. (eds)

Advances in Visual Computing (ISVC), 2021, vol. 13017, pp. 331-340.

https://link.springer.com/chapter/10.1007/978-3-030-90439-5_26

[24] Lakshya, S. Kota, Mallikarujun Volleti and Shivraj Singh, "Compressed Domain Consistent Motion based Frame

Scoring for IoT Edge Surveillance Videos", International Symposium on Visual Computing, 2021, pp. 534-545.

https://link.springer.com/chapter/10.1007/978-3- 030-90439-5_42.

[25] Lakshya, S. Agarwal, S. Kota and M. Volleti, "DSNet-MV: Fast summarization of Surveillance Video's using

Deep learning in Compressed Domain using Motion Vectors", IEEE 18th India Council International

Conference (INDICON), 2021, pp. 1-6 https://ieeexplore.ieee.org/document/9691667.

[26] . Priyank Sirohi, Niraj Singhal, Syed Vilayat Rizvi and Pradeep Kumar, “A Reactive Approach for High-Accuracy

and Data-Driven Customer Behaviour Analysis and Prediction”, Proceedings of International Conference on

International Conference on Artificial-Business Analytics, Quantum and Machine Learning: Trends,

Perspectives, and Prospects, pp. 55-66, Faridabad, India, June 2023. Doi: https://doi.org/10.1007/978-981-

97-2508-3_5.

[27] Radhika Singh, Priyank Sirohi Gur Sharan Kant, “MALWARE DETECTION USING MACHINE LEARNING

THROUGH CLASSIFICATION TECHNIQUES”, Journal of Computational Analysis and Applications

(JoCAAA), vol. 33, no. 08, pp. 5025–5043, Dec. 2024.

https://www.kaggle.com/code/maidaly/malware-detection-with-machine-learning
https://slogix.in/machine-learning/maldozer-automatic-framework-for-android-malwaredetection-using-deep-learning/
https://slogix.in/machine-learning/maldozer-automatic-framework-for-android-malwaredetection-using-deep-learning/
https://github.com/tuff96/Malware-detection-using-Machine-Learning
https://paperswithcode.com/task/malware-detection
https://ieeexplore.ieee.org/document/8885626
https://ieeexplore.ieee.org/document/9342385
https://ieeexplore.ieee.org/document/9092161
https://link.springer.com/chapter/10.1007/978-3-030-90439-5_26
https://ieeexplore.ieee.org/document/9691667

