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Introduction: Dengue Hemorrhagic Fever (DHF) remains a critical public health concern in 

tropical urban environments, particularly those constrained by limited resources. As part of 

Southeast Asia’s endemic dengue belt, Indonesia experiences recurrent seasonal outbreaks 

requiring timely, scalable, and data-driven risk stratification strategies. 

Objectives: This study aims to develop an efficient and interpretable machine learning 

framework for annual dengue risk mapping in urban Indonesia. The model enables binary 

classification of outbreak severity, supporting early warning systems and guiding public health 

interventions. 

Methods: A hybrid approach was implemented, combining Principal Component Analysis 

(PCA) for dimensionality reduction and K-Nearest Neighbor (KNN) for binary classification. 

Semarang City, characterized by persistent transmission and pronounced interannual 

variability, was selected as the empirical case study. The dataset included morbidity and 

mortality records from 2020 to 2025, enriched with epidemiological, climatological, and 

demographic indicators. PCA was applied to extract the most informative components, followed 

by KNN to classify each year into high-risk or low-risk categories. Model performance was 

evaluated using Leave-One-Out Cross Validation (LOOCV). 

Results: The PCA-KNN model achieved an overall classification accuracy of 83.33%, 66.7% 

precision, 100% recall, and an F1-score of 80%, demonstrating robustness across temporal 

variations. Its lightweight architecture and minimal computational demands underscore its 

suitability for deployment in resource-constrained settings. 

Conclusions: This study presents a replicable and pragmatic annual dengue risk stratification 

framework. The model’s computational efficiency, interpretability, and operational relevance 

highlight its potential utility in epidemic preparedness, vector control planning, and public 

health surveillance, particularly in urban regions with limited infrastructure and high disease 

burden. 

Keywords: Machine Learning, Principal Component Analysis, K-Nearest Neighbor, Early 
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INTRODUCTION 

Dengue Hemorrhagic Fever (DHF) remains a persistent public health challenge across tropical and subtropical 

regions, with Southeast Asia—particularly Indonesia—experiencing a disproportionate burden [1], [2], [3]. Over the 

past three decades, dengue incidence has risen sharply and expanded geographically, now affecting 129 countries [4], 

[5]. Global case counts surged from 23.3 million in 1990 to 104.8 million in 2017, with age-adjusted incidence 

reaching 1,371.3 per 100,000 population [6]. This escalating trend highlights the limitations of current prevention 

and control strategies, which continue to fall short in curbing transmission and mitigating outbreaks [7]. 

In Indonesia, seasonal dengue surges remain frequent yet challenging to predict using conventional surveillance 

systems [8]. These fluctuations are strongly influenced by climatic variables—such as rainfall, humidity, and 

temperature—that affect mosquito breeding cycles and drive spatiotemporal transmission patterns [9], [10]. 
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Sociodemographic factors, including urban density, sanitation infrastructure, and public awareness, further 

compound transmission dynamics and shape the geographic distribution of cases [3], [11]. 

Semarang, the capital of Central Java Province, represents a high-risk urban setting with consistently elevated dengue 

incidence and marked seasonal variability [12], [13]. Its epidemiological characteristics make it a compelling case for 

developing data-driven frameworks that integrate epidemiological, climatological, and demographic indicators to 

enable geographically responsive public health planning. The recurring outbreaks across Indonesia underscore the 

urgent need for strategic, evidence-based interventions tailored to local conditions and resource limitations. 

Technological advances increasingly support outbreak forecasting and early detection, with predictive models 

emerging as key tools for timely intervention and efficient resource allocation [4], [5]. Conventional statistical 

methods often struggle to capture the nonlinear, multifactorial nature of dengue transmission, driven by complex 

interactions among environmental conditions, human behavior, and vector ecology [2], [4], [5]. In response, machine 

learning has gained prominence as a scalable and interpretable alternative, capable of uncovering latent patterns and 

enhancing predictive accuracy in epidemiological contexts [6], [7], [14]. 

By incorporating environmental and sociodemographic variables, machine learning models enable more precise 

annual risk classification and facilitate targeted public health responses [9], [11]. Implementing such frameworks in 

high-risk urban areas like Semarang represents a strategic step toward sustainable dengue control and offers a 

replicable model for other endemic regions. 

Recent studies have applied various machine learning techniques—including neural networks, support vector 

machines, and ensemble methods—for dengue outbreak prediction and classification [11], [12], [14]. While these 

models often deliver strong predictive performance, many are computationally demanding and lack interpretability, 

limiting their practical utility in public health contexts. Ensemble and deep learning approaches, in particular, 

frequently function as black-box systems, making it difficult for stakeholders to interpret, validate, or trust their 

outputs [7], [14], [15]. This interpretability gap highlights the need for transparent, explainable models that balance 

methodological rigor with stakeholder accessibility. 

In response to these challenges, interpretable and lightweight methods such as Principal Component Analysis (PCA) 

and K-Nearest Neighbor (K-NN) have gained traction for their simplicity, transparency, and practical effectiveness 

[16], [17]. PCA reduces dimensionality by transforming correlated variables into orthogonal components, 

streamlining data structure and improving model performance [16]. K-NN, a non-parametric classifier, assigns labels 

based on majority voting among nearest neighbors in the feature space [17]. Its intuitive logic and low computational 

cost make it well-suited for real-world health applications where efficiency and stakeholder trust are critical [18]. 

Integrating environmental surveillance data with accessible machine learning algorithms offers a promising pathway 

for predictive public health modeling. Incorporating seasonal, geographic, and climatic variables has been shown to 

enhance both model accuracy and operational relevance [11], [12], [19]. When combined with interpretable methods 

such as K-NN and dimensionality reduction techniques like PCA, these data sources can yield actionable insights for 

early warning and vector control. This approach not only improves epidemic preparedness but also facilitates more 

proactive, locally adapted public health interventions [17], [18]. 

This study proposes an efficient lightweight PCA-KNN-based model for annual dengue risk mapping in Semarang 

City, Indonesia. The model classifies yearly risk levels using integrated epidemiological and environmental 

indicators, and its performance is evaluated using Leave-One-Out Cross Validation [20], [21]. Beyond technical 

validation, the study emphasizes the model’s practical utility in supporting proactive surveillance, early warning 

systems, and strategic decision-making in resource-constrained urban settings. 

LITERATUR REVIEW 

Efforts to predict and classify the risk of Dengue Hemorrhagic Fever (DHF) have employed a wide range of 

methodological approaches. Early studies predominantly relied on conventional statistical models, such as time-

series analysis and regression techniques, to forecast case trends. For example, a time-series study conducted in 

Surabaya, Indonesia, offered a broad overview of dengue incidence but fell short in capturing the nonlinear and 
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multifactorial nature of transmission dynamics [8]. Similarly, vulnerability models that emphasized population and 

climatic factors demonstrated limited generalizability across diverse geographic and epidemiological contexts [11]. 

As computational technologies have advanced, machine learning has emerged as a promising alternative to enhance 

predictive accuracy. Clinical data–driven models have shown strong performance in early dengue diagnosis; however, 

their integration into regional surveillance systems remains constrained by the limited availability of epidemiological 

datasets [16], [17]. More sophisticated approaches, such as ensemble learning frameworks, have achieved 

commendable results in outbreak forecasting. However, their computational intensity and lack of interpretability 

often hinder practical deployment in public health decision-making environments [19]. 

Complementing these developments, a growing body of research has underscored the critical role of environmental 

and demographic variables in shaping dengue transmission. Climate variability—including fluctuations in rainfall, 

temperature, and humidity—has been shown to influence dengue risk in Central Java, Indonesia, significantly [12]. 

Panel data analyses further confirm that demographic and climatological indicators are indispensable components 

of robust predictive models [13]. Nevertheless, many of these studies rely on complex architectures or narrowly 

defined variable sets, which limit their scalability and operational feasibility in resource-constrained settings. 

To address these limitations, recent investigations have turned to lightweight and interpretable methods such as Principal 

Component Analysis (PCA) and K-Nearest Neighbor (K-NN). PCA has demonstrated efficacy in reducing dimensionality 

while preserving essential variance, thus streamlining model inputs without sacrificing informational depth [10].  K-NN, 

a non-parametric classification algorithm, is widely recognized for its robustness and ease of implementation, particularly 

in small-scale epidemiological datasets [2]. The integration of PCA and K-NN thus offers a compelling alternative—one 

that is computationally efficient, transparent, and suitable for real-world public health applications. 

Taken together, the literature reveals persistent gaps in model complexity, variable inclusivity, and practical usability. 

The present study responds to these challenges by implementing an efficient lightweight PCA-KNN-based model to 

classify annual DHF risk levels using epidemiological data from Semarang City, Central Java, Indonesia, spanning 

2020 to 2025. This framework serves as a viable approach to supporting early warning systems, enhancing 

monitoring capabilities, and providing information for targeted public health interventions in endemic urban areas. 

METHODS 

This study adopted a quantitative, descriptive–retrospective design, utilizing publicly available epidemiological 

records of Dengue Hemorrhagic Fever (DHF) in Semarang City from 2020 to 2025. The methodological workflow 

comprised five stages: data acquisition, preprocessing and normalization, dimensionality reduction via Principal 

Component Analysis (PCA), risk classification using the K-Nearest Neighbor (K-NN) algorithm, and performance 

evaluation. All analyses were conducted exclusively on secondary data, without experimental intervention [1], [4], 

[5], [8]. PCA was applied to reduce dimensionality and mitigate multicollinearity [22], [23], followed by K-NN 

classification (k = 1) to assign annual observations into high- or low-risk categories [2], [16], [24], [25]. Model 

performance was assessed using Leave-One-Out Cross Validation (LOOCV), a robust technique suited for small-scale 

retrospective datasets [20], [21] , with standard metrics used to evaluate predictive accuracy and interpretability. 

Data Preprocessing and Normalization 

Epidemiological data were sourced from official records published by the Semarang Health Office, Central Java, 

Indonesia, comprising annual DHF case statistics over six years. Preprocessing procedures included handling 

missing values and standardizing data formats to ensure analytical consistency and readiness for modeling [2]. Each 

year was assigned a binary risk label (“High” or “Low”) based on whether the total number of cases exceeded the 

median threshold. To enhance compatibility with distance-based classifiers such as K-NN, all numerical variables 

were normalized using Min–Max scaling [9]. 

Dimensionality Reduction Using PCA 

Principal Component Analysis (PCA) was employed to reduce feature dimensionality and transform correlated 

variables into orthogonal components, thereby simplifying the input space while preserving meaningful variance. 

Components accounting for at least 95% of the cumulative variance were retained for subsequent classification [10]. 



Journal of Information Systems Engineering and Management 
2025, 10(61s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 76 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Widely adopted in epidemiological and environmental modeling, PCA effectively suppresses noise, mitigates 

multicollinearity, and improves model interpretability [6], [7], [10]. The PCA transformation can be mathematically 

expressed as follows Eq. (1). 

   𝑍 = (𝑋 − 𝑋̅)𝑉     (1) 

Where 𝑍 is the data transformed into the principal component space, 𝑋 represents the normalized data matrix, and 

𝑉 represents the eigenvector matrix of the covariance matrix 𝑆. 

Risk Classification With K-Nearest Neighbor 

The K-Nearest Neighbor (K-NN) algorithm was applied to classify annual DHF risk levels based on the proximity of 

data points within the PCA-transformed feature space. A value of 𝑘 =  1 was selected to accommodate the limited 

dataset size, aligning with prior applications of K-NN in dengue classification and infectious disease modeling [8], 

[13], [16], [17]. The algorithm was chosen for its non-parametric structure, computational simplicity, and proven 

reliability in small-scale public health datasets [2], [16]. The Euclidean distance between a test sample 𝑥 and a 

training sample 𝑥𝑖 is computed as Eq. (2). 

     𝑑(𝑥, 𝑥𝑖) =  √{∑ (𝑥𝑗 − 𝑥{𝑖𝑗})
2𝑝

{𝑗=1} }      (2) 

where 𝑝 denotes the number of features, 𝑥𝑗 is the value of the 𝑗 − 𝑡ℎ feature for the test sample, and 𝑥𝑖𝑗is the value of 

the 𝑗 − 𝑡ℎ feature for the 𝑖 − 𝑡ℎ training sample. The class label is then assigned according to the majority class among 

the nearest neighbors.  

Model performance was validated using Leave-One-Out Cross Validation (LOOCV), which is suitable for small 

datasets. In LOOCV, the model is trained on 𝑛 − 1samples and tested on the remaining one, repeating this process 

𝑛times. The overall error is calculated as follows Eq. (3). 

      
1

𝑛
∑ 𝐿(𝑦𝑖, 𝑦 ̂𝑛

𝑖=1 − 𝑖)     (3) 

where 𝑛 is the total number of samples, 𝑦𝑖 is the true label of the 𝑖-th observation, 𝑦̂−𝑖is the model’s prediction when 

the 𝑖-th sample is excluded from training, and 𝐿(⋅)represents the loss function (e.g., misclassification error). 

Model Evaluation Metrics 

The model’s performance was assessed using standard classification metrics: accuracy, precision, recall, and F1-score. 

Accuracy quantifies overall predictive correctness; precision indicates the proportion of true positives among predicted 

positives; recall measures sensitivity to actual positive cases; and F1-score offers a harmonic balance between precision 

and recall [7], [14], [15]. All computational procedures were conducted in Python, utilizing libraries such as pandas for 

data manipulation, scikit-learn for modeling and preprocessing, and matplotlib for visualization [6], [9]. 

A concise summary of the methodological workflow applied in this study is presented in Table 1. The workflow 

comprises five sequential stages, beginning with the collection of annual DHF records from 2020 to 2025 and 

culminating in model evaluation using Leave-One-Out Cross Validation (LOOCV). Each stage is systematically 

designed to convert raw epidemiological data into a structured format optimized for dimensionality reduction and 

risk classification through the integrated PCA–KNN framework. 

Stage Description 

Data Collection Using annual DHF case data from Semarang (2020-2025). 

Preprocessing Labeling each year as 'high' or 'low' risk based on the average. 

Dimensionality Reduction (PCA) Reducing features and transforming to principal components. 

Classification (K-NN) Grouping similar years using K-NN with k=1. 

Model Evaluation (LOOCV) Evaluating model using Leave-One-Out Cross Validation. 

Table 1. Summary of methodological workflow applied for annual DHF risk classification using PCA and K-NN. 
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RESULTS AND DISCUSSION 

Annual Trends of DHF Cases in Semarang City 

Surveillance data from the Semarang City Health Department between 2020 and 2025 indicate pronounced year-to-

year fluctuations in Dengue Hemorrhagic Fever (DHF) incidence. The highest case count was recorded in 2022 with 

864 reported cases, while the lowest occurred in 2025 with only 115 cases. These variations reflect the dynamic and 

nonlinear nature of dengue transmission, which cannot be reliably inferred through visual inspection alone [1], [2]. 

Prior studies have shown that such temporal instability often results from complex interactions among climatic, 

demographic, and environmental factors [6], [11]. This inherent unpredictability underscores the importance of data-

driven predictive modeling over traditional manual forecasting approaches [4], [5], [7]. 

As shown in Figure 1, dengue case counts in Semarang remained relatively stable between 2020 and 2021, followed 

by a pronounced surge in 2022. In subsequent years, incidence declined consistently, reaching its lowest level in 

2025. This temporal pattern highlights the variability of dengue transmission and serves as a descriptive foundation 

for the dataset used in the PCA–KNN modeling framework. 

 

Figure 1. Annual DHF case trends in Semarang City (2020-2025) 

Risk Classification Using PCA and K-NN 

A hybrid PCA–KNN framework was employed to classify annual DHF risk levels. PCA transformed correlated 

features into orthogonal components while retaining ≥95% cumulative variance, enhancing interpretability and 

reducing redundancy—particularly valuable for small epidemiological datasets [6], [7], [10]. The K-NN algorithm (k 

= 1) then assigned binary risk labels based on spatial proximity within the PCA-reduced space, consistent with prior 

applications in infectious disease modeling [8], [13], [16]. Labels were defined using a mean-based threshold: years 

exceeding the average case count were classified as “high risk,” others as “low risk” [7], [13]. Model validation used 

Leave-One-Out Cross Validation (LOOCV), a low-bias strategy suited for limited samples [14], [19], with recent 

studies affirming its stability and interpretability in small-scale epidemiological contexts [26]. 

The transformed dataset was projected onto the first two principal components to visualize the separation between 

annual DHF risk classes. As shown in Figure 2, high-risk years (red markers) are clearly distinguishable from low-

risk years (green markers) within the PCA-reduced feature space. This separation underscores the effectiveness of 

PCA in simplifying the input space while preserving critical variance for K-NN classification. The model’s predictions, 

also depicted in Figure 2, correctly identified four out of six annual risk labels, demonstrating its capacity to 

differentiate high- and low-risk periods despite the constraints of a limited dataset. 
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Figure 2. Visualization of annual DHF data projected onto the first two principal components (PC1 and PC2), showing the 
separation between high-risk (red) and low-risk (green) years. 

Model Evaluation 

Classification performance is summarized in Figure 3, which presents a heatmap of precision, recall, and F1-score 

for each risk class. The model achieved an overall accuracy of 0.83, with a recall of 1.00 for the high-risk class, 

indicating strong sensitivity in detecting years with elevated dengue incidence. Although precision for the low-risk 

class was slightly lower (0.67), the macro-averaged scores remained balanced, reflecting a reasonable trade-off 

between sensitivity and specificity within the constraints of a small dataset.  

The model performance was evaluated using four standard classification metrics: Accuracy, Precision, Recall, and 

F1-Score. These metrics provide a overview of the model’s ability to correctly classify data, assess the proportion of 

relevant predictions, measure sensitivity to actual positive cases, and balance precision and recall. 

 

Figure 3. Heatmap of the classification report, showing precision, recall, F1-score, accuracy, and macro-average for each risk 
class. The model achieved an overall accuracy of 83%, with high recall for the high-risk class. 

The metrics are defined as shown in Eq. (4)–(7). 

      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (5) 

     𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (6) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (7) 

Where 𝑇𝑃 (True Positives) represents correctly classified positive instances, 𝑇𝑁 (True Negatives) represents 

classified negative instances, 𝐹𝑃 (False Positives) represents negative instances incorrectly classified as positive, and 

𝐹𝑁 (False Negatives) represents positive instances incorrectly classified as negative. 
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Metric Value 
Accuracy 83.3% 
Precision 66.7% 
Recall 100.0% 
F1 Score 80.0% 

Table 2. Evaluation matrics of the classification model 

Model performance metrics are summarized in Table 2. The PCA–KNN classifier yielded an accuracy of 83.3%, 

precision of 66.7%, recall of 100%, and an F1-score of 80%. The perfect recall underscores the model’s sensitivity in 

detecting high-risk years, consistent with prior dengue studies that prioritize minimizing false negatives [4], [5], [10], 

[15]. Conversely, the moderate precision reflects the presence of false positives—a typical trade-off in recall-optimized 

models [8], [16], [18]. 

Recent studies confirm that cross-validation strategies significantly affect metric reliability, particularly in small 

epidemiological datasets. LOOCV, for example, has demonstrated greater stability in recall compared to K-fold 

methods under limited data conditions [26]. As shown in the confusion matrix (Fig. 3), the model correctly classified 

five out of six instances, with one low-risk year misclassified as high risk. This minor error is acceptable given the 

model’s recall-oriented design, which intentionally prioritizes sensitivity to avoid overlooking potential high-risk 

periods [3], [18], [27]. 

Although basic in nature, the PCA–KNN framework demonstrates competitive performance in DHF risk 

classification, comparable to other lightweight algorithms commonly used in epidemiological modeling [15], [17], 

[28]. Its interpretability and low computational overhead make it well-suited for local health systems with limited 

data and analytical resources [1], [9]. For future enhancement, incorporating external environmental and 

demographic variables—such as rainfall, temperature, and population density—may improve predictive accuracy 

[11], [19], [26]. Moreover, ensemble methods like Random Forest have shown promise in increasing noise tolerance 

and capturing nonlinear patterns in epidemiological datasets [26], [28], [29]. Sensitivity analysis is also 

recommended to assess model robustness and stability under varying conditions [12], [29]. 

CONCLUSION 

This study demonstrated that a PCA–KNN framework can effectively classify annual DHF risk levels using 

epidemiological data from Semarang City, Central Java, Indonesia (2020–2025). PCA reduced feature 

dimensionality while preserving key variance, enabling K-NN to operate within a simplified yet informative space. 

The model achieved 83.3% accuracy, 66.7% precision, 100% recall, and an F1-score of 80%, indicating strong 

sensitivity to high-risk years and balanced overall performance. LOOCV further enhanced reliability by producing 

stable metrics despite the small sample size. These findings affirm that lightweight, interpretable models such as 

PCA–KNN offer practical value for public health surveillance in data-constrained settings. Future work may integrate 

environmental and demographic variables (e.g., rainfall, temperature, population density) to improve predictive 

power, while ensemble methods and sensitivity analyses could strengthen robustness and generalizability. 
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