Journal of Information Systems Engineering and Management

2025, 10(61s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Agentic Cloud Infrastructure Management: The New Age of

Development and Operations

Mohamed Rizwan Syed Sulaiman
Independent Researcher, USA.

ARTICLE INFO

ABSTRACT

Received:05 Sept 2025
Revised:09 Oct 2025

Accepted:19 Oct 2025

Cloud infrastructure management is at a revolutionary crossroads where autonomous
software agents are essentially redefining operational paradigms. Conventional
infrastructure automation is based on procedural scripts necessitating explicit
specification of all sequences of actions, involving heavy maintenance overhead and
restraining flexibility to unexpected conditions. Agentic management systems provide
goal-directed execution frameworks in which human engineers specify high-level goals
while autonomous agents autonomously decide optimal implementation schemes.
These smart systems utilize continuous learning features to monitor telemetry streams,
identify patterns in performance, and create advanced behavior models for proactive
intervention prior to insignificant deviations becoming service interruptions. Moving
from reactive threshold-based monitoring to proactive self-healing mechanisms greatly
decreases the number of incidents while improving recovery processes. Quality-of-
service-based component choice, constraint-based resource placement, and adaptive
autoscaling are key technological underpinnings for autonomous optimization across
various operational axes. Human engineering jobs change proportionally, moving from
tactical deployment towards strategic architecture definition, policy making, and
governance framework design. Engineers have to develop skills in declarative
specification languages, multi-objective optimization formulations, and mechanisms for
validating agent behavior. Service-level agreement languages and service-oriented
programming models offer crucial abstractions for describing operational intent to
autonomous systems. The intersection of machine learning, multi-agent coordination
protocols, and cloud-native architectures creates the technical foundation for
infrastructure environments that are always evolving, self-optimizing, and ensuring
resilience through smart autonomous decision-making in lieu of manual action.

Keywords: Agentic Management, Autonomous Infrastructure, Goal-Oriented
Execution, Self-Healing Systems, Adaptive Optimization, Cloud Orchestration

Introduction

Cloud infrastructure management follows an ongoing path to increasing abstraction and automation.
From manual server configuration in the early days to the scripted automation era, the market now
stands at the cusp of a revolutionary paradigm: agentic management. This new direction significantly
rethinks the way that cloud infrastructure is managed, serviced, and optimized. Instead of depending
on human engineers to foresee all situations and program responses into procedural codes, agentic
systems utilize autonomous software agents with the system's ability to make independent decisions,
learn over time, and adapt. The difficulty in administering current cloud infrastructure is rooted in the
intrinsic complexity of distributed systems, where optimizations at the protocol level and design
choices have a direct effect on operational efficacy. Protocol optimization research illustrates how
performance at runtime can be achieved through precise examination of method dispatch
mechanisms and memory allocation patterns, as shown to introduce quantifiable overhead through
existential containers and witness tables in protocol-oriented environments [1]. These results
emphasize the value of knowing low-level operational behaviors when creating autonomous systems
for making real-time optimization choices throughout distributed infrastructure.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 21
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

The move towards agentic management is also brought about by the added architectural complexity
resulting from microservices adoption, which has drastically altered how cloud applications are built
and run. Industry reports indicate that organizations adopting microservices architectures will deploy
between eight and fifteen different services per application, with some big systems having more than
fifty independently deployable units [2]. This distributed nature of architecture generates significant
operational overhead since every microservice needs separate monitoring, deployment pipelines, and
resource management. Research into microservices practice reveals that seventy-three percent of
practitioners surveyed mention more complexity in debugging and troubleshooting distributed
systems, and sixty-eight percent mention monitoring and observability as key operation challenges
[2]. Traditional manual methods and scripted automation find it difficult to handle this kind of
complexity efficiently since human operators have to integrate data across many service boundaries,
dependency chains, and failure modes that interact in a non-linear fashion.

These agents embody the transition from human-led automation to machine-led autonomy, in which
smart systems take on the operational complexity of contemporary cloud infrastructure while human
engineers are relegated to strategic guidance and architectural design. The shift to agentic
management fills the gap that microservices environments create in producing enormous amounts of
telemetry data in distributed tracing systems, metrics aggregation platforms, and log consolidation
frameworks, which call for advanced correlation and analysis capabilities beyond human intellect [2].
In addition, the dynamic nature of containerized workloads, where service instances horizontally scale
in reaction to demand and communication patterns continuously change, requires real-time decision-
making that occurs at machine speeds instead of human reaction times. Autonomous agents that
possess machine learning can deal with this multi-dimensional operational data, discern faint
patterns of performance degradation before cascading into system failures, and implement remedial
strategies that dynamically adjust to the context of each occurrence, thus realizing degrees of
operational resilience and efficiency that are not possible with traditional automation techniques.

From Scripted Automation to Goal-Oriented Execution

Procedural thinking is the foundation of traditional infrastructure management practices. Engineers
write meticulous scripts that outline unique sequences of steps for provisioning infrastructure,
configuring offerings, and reacting to nicely-defined conditions. Even though this infrastructure-as-
code approach has immensely superior consistency and reproducibility, it still fundamentally stays
reactive and brittle. All edge cases have to be foreseen, all failure modes explicitly addressed, and all
operational workflows hand-coded. The nature of contemporary cloud provisioning requires advanced
modeling techniques that are capable of abstracting infrastructure elements and their dependencies.
Studies in infrastructure modeling illustrate the fact that cloud infrastructures need to be represented
in terms of multiple architectural layers, such as virtualization infrastructure, networking topologies,
storage environments, and application deployment models [3]. The problem becomes especially
pressing when dealing with multi-cloud heterogeneous environments in which infrastructure
descriptors need to consider different types of resources that have varying provisioning parameters
and configuration needs. Research on cloud provisioning tools discovers that human error-prone
infrastructure specification processes occur, with misconfiguration levels averaging twenty-three
percent in environments where automated validation processes are not in place, and provisioning
entire application stacks manually takes from forty-five minutes to multiple hours based on
complexity [3]. The cost of upkeep for these increasingly sophisticated automation frameworks takes
enormous amounts of engineering time, since infrastructure models need to be iteratively updated to
support new service offerings, revised API standards, and shifting organizational needs.

Agentic management actually reverses this paradigm by accepting goal-driven execution. Rather than
outlining exact steps in implementation, engineers define top-level objectives that specify outcomes in
terms of what, instead of the exact mechanism by which. The autonomous agent translates such
objectives, regularly reviews the corresponding systems, and autonomously decides on suitable

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 22
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

actions to attain and sustain the defined goals. Multi-agent systems enable the architectural basis for
such transformation, supporting distributed intelligence where professional agents work together to
realize complex operational objectives beyond the capabilities of monolithic automation systems [4].
Studies of multi-agent architectures show that agent-based systems are superior in dynamic situations
with uncertainty, incomplete knowledge, and real-time adaptation requirements—exactly the
circumstances that prevail in contemporary cloud computing. These systems utilize highly advanced
coordination mechanisms such as contract net protocols, in which agents bargain task allocation on
the basis of capability and availability, and blackboard architecture in which observational data and
intermediate results are shared by agents to construct collective situational awareness [4]. The
effectiveness of multi-agent approaches stems from their ability to decompose complex problems into
manageable subproblems handled by specialized agents, with empirical studies showing that agent-
based systems can reduce problem-solving time by forty to sixty percent compared to centralized
approaches when addressing distributed optimization challenges [4]. This declarative approach
liberates engineers from the cognitive overhead of anticipating every operational scenario, allowing
them to focus on defining what should be accomplished rather than micromanaging how it should be
done. The agent takes on the role of mapping intent into action, dynamically modifying its strategies
as conditions change and new information is introduced, based on reasoning abilities that permit
agents to choose actions as a function of present environmental state, anticipated outcomes, and
specified utility functions as opposed to simply following a pre-defined sequence of instructions [4].

Managemen | Configuration Adaptation P.O 11cy. Proble.m
t Approach Complexity Success Rate Specification Resolution
Requirements Time
. Low f . E
Procedural Extensive code owtor Detailed module xtend.e d
Scripting requirements unexpected specifications resolution
conditions periods
High . s
Infrastructure . .. - Explicit edge case Significant
maintenance Limited flexibility . ..
as Code handling debugging time
overhead
Goal-Oriented Substant.lal High for Minimal policy Real—t'lme
complexity unexpected e adaptive
Agents . .\ definitions
reduction conditions response
Multi-Agent Decomposed Faster problem- High-level intent ?ti"’:?ergfc
1 Ivi larati .
Systems problem spaces | solving declarations adaptation

Table 1. Performance Comparison of Infrastructure Management Paradigms [3, 4].

Continuous Learning and Adaptive Optimization

The full potential of agentic systems is realized through their ability to engage in continuous learning
and self-enhancement. In contrast to fixed automation scripts that apply fixed rules, smart agents
examine patterns in huge amounts of telemetry data, performance statistics, and operational
occurrences. As they continually conduct this examination, they improve their models of system
behavior to such an advanced degree that they can identify subtle anomalies, forecast impending
problems, and maximize resource consumption with sophistication that goes beyond the simple logic
of rules [5]. Quality-of-service driven component ranking research in the cloud environment proves
that intelligent systems need to analyze service components along various axes, such as response time,
throughput, reliability, and availability, in order to build end-to-end performance models. Web service
composition research identifies that cloud applications incorporate between fifteen to forty-five
different service components, each having varying performance attributes that change depending on

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 23
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

network conditions, resource contention, and workload patterns [5]. Optimal component
configuration identification poses computational challenges as the solution space increases
exponentially with the increase in the number of service alternatives. Empirical studies of component
ranking models demonstrate that quality-aware selection mechanisms increase end-to-end
application response times by thirty-two to fifty-one percent versus random selection of components,
while, at the same time, improving reliability measures by selecting components with historical failure
rates under three percent [5]. These learning systems utilize collaborative filtering methods and
matrix factorization strategies to forecast service quality dimensions for component pairs that have
not been directly experienced, with prediction accuracy levels of over eighty-five percent when trained
on adequate amounts of historical invocation data [5].

This adaptive nature is realized in several aspects. Agents learn to associate seemingly unrelated
signals to detect underlying causes of performance degradation, understanding that infrastructure
optimization needs advanced placement strategies that consider heterogeneity of resources and
workload patterns [6]. Studies of virtual machine placement algorithms show that intelligent
decisions at placement have a significant impact on overall cloud infrastructure efficiency, with
experiments comparing different strategies such as First Fit, Best Fit, Worst Fit, and optimization-
based strategies under varied workload profiles. Experimental analysis in realistic cloud simulation
environments shows that simple placement schemes like First Fit can produce resource fragmentation
levels of more than forty-five percent, which translates into huge capacity wastage and higher
operation costs [6]. They observe seasonal workload behavior patterns and act in anticipation to
modify capacity provisioning ahead of time, with sophisticated placement algorithms lowering the
number of active physical hosts needed by eighteen to thirty-two percent over baseline methods, thus
saving the amount of energy and infrastructure costs commensurately [6]. They compare the
efficiency of their own interventions and adjust their decision-making strategies accordingly, as
confirmed by comparative studies illustrating that optimization-based placement methods cut service
level agreement breaches by fifty-three to sixty-seven percent while increasing resource utilization
rates from baseline rates of forty-eight percent to optimized rates of seventy-two to seventy-nine
percent [6]. This has a feedback effect whereby operational intelligence builds up over time, evolving
the infrastructure from being a passive pool of resources to an actively self-optimizing system that
improves with experience, with simulation results showing that adaptive placement approaches can
handle thousands of virtual machine allocation requests with placement decision latencies below two
hundred milliseconds, facilitating real-time optimization even in extremely dynamic cloud
environments [6].

Optimization Performance Improvement Range Implementation
Dimension Metric p 8 Approach
Compgnent Response time Significant enhancement QoS-driven ranking
Selection improvement frameworks
Service Reliability Component failure rate | Below threshold levels Collat?oratlve filtering
techniques
Prediction Accuracy Quality gttrlbute High accuracy levels Matrix factorization
forecasting methods
Fragmentation Fewer active hosts Optimization-based
Resource Placement . . .
reduction required algorithms
Utilization Resource allocation Optimized allocation Adaptive placement
Efficiency rates levels strategies
SLA Violation . . Substantial violation Intelligent placement
: Service compliance - :
Reduction reduction techniques
Decision Latency P}acement processing | ¢ o4 processing Rea}—tlme optimization
time engines

Table 2. Continuous Learning and Optimization Metrics in Cloud Systems [5, 6].

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

24

Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Proactive Self-Healing and Resilience

Arguably, the strongest strength of agentic infrastructure management is its ability for proactive self-
healing. Conventional monitoring and alerting systems follow threshold-based reasoning, only
alerting human administrators when certain conditions are exceeded. Reactive systems have inherent
delays between trouble beginning and repair, during which time service quality can deteriorate and
user experience is impaired [7]. Virtual machine provisioning with placement constraints research
indicates that cloud infrastructure needs to support sophisticated application needs, such as affinity
rules that require co-location of communicating services, anti-affinity constraints that require
segregation for fault tolerance, and capacity constraints that provide sufficient resource availability
between failure domains. Experiments on placement optimization problems show that infrastructure
as a service environments normally handle provisioning requests on collections of three to twenty-five
virtual machines with interdependent placement constraints, in which constraint satisfaction becomes
computationally hard when growing larger [7]. Analysis of heuristic placement algorithms indicates
that greedy strategies may accept between sixty-two percent and seventy-eight percent of requests
under moderate load, but are severely impacted in acceptance levels to thirty-five to forty-nine
percent once resource fragmentation is built up due to poor previous placement choices [7]. The
computational complexity of best placement increases exponentially with problem size, with exact
optimization methods requiring solution times of more than several minutes to solve for requests with
more than fifteen virtual machines, which renders them ineffective for real-time provisioning
scenarios where response latency must be less than ten to fifteen seconds to continue to provide an
acceptable user experience [7].

Autonomous agents overcome this limitation by constantly monitoring system health and acting
before small problems snowball into large-scale mishaps. By catching early warning signs like gradual
resource depletion, forming bottlenecks, or marginal behavioral anomalies, agents can take control
measures when issues are still contained and within control [8]. Experiments on self-adaptive
autoscaling algorithms for cloud services show that self-determined decision-making should trade off
several conflicting goals, such as maintenance of service quality, minimizing operational cost, and
configuration stability to prevent thrashing between scaling states. Research probing trade-off
decision models indicates that cloud applications have very volatile scaling demands, with patterns of
workloads showing coefficient of variation values between zero point four and two point six based on
application nature and patterns of users' behavior [8]. The autoscaling challenge becomes even more
intricate when taking into account that horizontal scaling via instance replication presents varying
cost-performance behavior compared to vertical scaling via resource supplementation, with test
results indicating that horizontal methods usually provide superior fault tolerance and load
distribution but are more expensive in terms of licensing and network overhead [8]. Adaptive scaling
policy analysis using reinforcement learning methods illustrates that smart agents can decrease
service level agreement breaches by forty-seven to sixty-three percent relative to reactive threshold-
based autoscaling, while at the same time lowering infrastructure expenditures by twenty-three to
thirty-nine percent through better resource utilization [8]. This could mean undoing recent
alterations, reassigning workloads, or reconfiguring system parameters dynamically, with simulation
experiments being shown to suggest that self-adaptive systems can converge toward optimal scaling
configurations in eight to fifteen adaptation cycles, which corresponds to twenty to forty-five minutes
of operation observation based on workload dynamics and latency of feedback [8]. The outcome is
infrastructure that is resilient not by over-provisioning and redundancy but through smart, adaptive
measures to changing conditions, with field tests demonstrating that multi-objective optimization
methods balancing quality, cost, and stability can realize Pareto efficiency gains of thirty-two to fifty-
one percent over single-objective optimization methods that ignore key trade-off dimensions [8].

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 25
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Self-Healin . .

ors B Constraint Type Performance Impact | Operational Benefit
Capability
VM Set Affinity and anti-affinity Moderate to high Complex placement
Provisioning rules acceptance satisfaction
Heuristic Resource fragmentation Variable under load Dynamic constraint
Placement management conditions handling
Constraint C
. Multiple VM configurations | Fast response latency Real-time provisioning
Optimization
SLA Violation Co . . . Proactive qualit;
. Multi-objective balancing Substantial reduction . d Y
Prevention maintenance
Cost Horizontal and vertical e Efficient resource
. . Significant cost decrease qe
Optimization scaling utilization
Adaptive Learning-based Multiple adaptation Near-optimal
Convergence optimization cycles configuration
- uality-cost-stability trade- | Multi-dimensional Balanced optimization
Pareto Efficiency Quality Y . p
offs improvement outcomes

Table 3. Proactive Self-Healing Capabilities and Resilience Outcomes [7, 8].

The Evolving Role of Human Engineers

The rise of agentic management does not devalue the role of human expertise but instead pushes
engineering work up the stack to concentrate on higher-order issues. Rather than spending time
crafting maintenance scripts or answering recurring operational alerts, engineers focus on
architectural design, policy development, and strategic planning. They determine the goals that
inform autonomous agents, set guardrails that limit agent action into tolerable bounds, and create
feedback loops that allow autonomous improvement [9]. Service level agreement language studies for
cloud-based collaborative systems prove that human engineers have to use formal specifications to
implement intricate quality-of-service conditions, operational requirements, and performance
guarantees that determine the behavior of autonomous systems. Research into collaborative service
provisioning finds that contemporary cloud applications usually consist of three to seven
organizational entities that run under separate service level agreements, each having specific response
time thresholds, availability commitments, and throughput guarantees [9]. The challenge of handling
these multi-party contracts becomes acutely pronounced when one takes into account the fact that
service level agreement breaches in collaborative settings tend to cascade across organizational silos,
with research indicating that one provider's inability to honor commitments will set off consequential
violations impacting downstream consumers in forty-three to sixty-one percent of intricate service
composition contexts [9]. Examination of agreement specification languages shows that engineers
need to specify not just performance metrics and threshold values but also complex monitoring
mechanisms, violation detection algorithms, penalty computation formulas, and remediation
processes, with typical enterprise contracts having between twenty-five and seventy-eight separate
clauses controlling different aspects of service delivery and quality assurance [9]. The mental
complexity of doing this manually at scale becomes untenable, calling for autonomous agents that can
continuously monitor agreement, verify compliance, and adaptively respond to maintain contractual
terms within dynamic operating environments [9].

Engineers need to acquire new skills to make this transition. Knowing how to properly convey intent
to intelligent systems becomes a priority. Creating observable architectures that enable agents to
receive information required for well-informed decision-making becomes an essential skill [10].
Service-oriented computing programming model research identifies that engineers need to move away
from imperative programming models that are concerned with algorithmic control flow toward
declarative styles that focus on composition, coordination, and quality-of-service specification.

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 26
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)
e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Research on service-oriented development practices illustrates that average enterprise applications
compose between twelve and thirty-five external services, each with functional interfaces exposed
using standard protocols and with internal implementation opacity [10]. The crux problem is to
assemble these independently composed services into well-formed applications while addressing non-
functional concerns like transactional consistency, security policy enforcement, and error recovery
across organizational boundaries. Service composition patterns analysis reveals that engineers need to
become experts in orchestration languages for describing intricate workflows with concurrent
execution branches, conditionally based on runtime information, and compensation logic for
managing partial failures in long-running business processes [10]. Engineers will also need to create
frameworks for agent behavior monitoring, ensuring autonomous decisions are consistent with
organizational goals and keeping adequate control without excessive micromanagement, while studies
have shown that service-oriented architectures need to be equipped with advanced management
infrastructure in the form of service registries for capability discovery, policy frameworks for access
control enforcement, and monitoring systems for quality-of-service verification [10]. The role of
human beings changes from implementer to architect, from firefighter to strategist, with
programming model evolution research indicating that abstraction layers that support declarative
service composition can cut application development effort by thirty-five to fifty-two percent against
low-level integration coding, while at the same time enhancing system maintainability by providing
clean separation between business logic and infrastructure issues [10].

Engineerin; e . . . Competenc
81 Tng Traditional Allocation Agentic Allocation P Y
Dimension Requirement
. . L Reactive incident
Operational Tasks The majority of the effort | Minority of effort v
response
e e . . . Architecture and
Strategic Initiatives | Minority of effort The majority of the effort .
planning
o . .. Automated compliance Formal agreement
SLA Specification Multiple distinct clauses o . P 5
monitoring languages
Violation Cascade Significant in multi-party | Agent-mediated Cross-boundary
Risk scenarios prevention coordination
. . Numerous external . .y Orchestration
Service Integration . Declarative composition
services languages
Development Effort Service-oriented
. Baseline implementation | Substantial reduction .
Reduction abstractions
.. . . Several weeks of Goal-oriented
Training Period Not applicable . . P
proficiency specification
Productivi . . e . Agent collaboration
v Baseline capacity Significant increase 5
Improvement mastery

Table 4. Human Engineering Role Transformation in Agentic Systems [9, 10].
Conclusion

Agentic cloud infrastructure management is a core rethink of how digital systems run and regulate
themselves across dispersed conditions. The constraints built into procedural automation—brittle
failure recovery, exponential increase in complexity, and ongoing manual maintenance needs—call for
a paradigmatic shift toward self-governance. Intelligent agents with learning capabilities, predictive
analytics, and adaptive decision-making break reactive operational paradigms by acting proactively,
continuously optimizing, and self-improving based on accumulated operational intelligence.
Component ranking based on quality allows for intelligent selection of services from large catalogs of
options, while placement algorithms based on constraint awareness minimize resource usage based
on intricate affinity and capacity constraints. Autoscaling algorithms with self-adaptive features

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 27

Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Journal of Information Systems Engineering and Management
2025, 10(618)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

balance competing goals such as performance, cost minimization, and configuration stability through
advanced trade-off analysis. Technical complexity in multi-agent coordination, reinforcement
learning, and causal inference allows systems to manage operational complexity beyond human
cognitive capabilities in real-time processing environments. Practice in engineering changes
equivalently as practitioners shift from applying procedural logic to designing declarative policies,
authoring observable systems, and developing governance frameworks that ensure autonomous
decisions align with organizational goals. Service-level agreement languages facilitate formal means of
expressing quality commitments across organizational boundaries, and service-oriented programming
models present compositional abstractions that control distributed application complexity. The
symbiosis between human strategic oversight and machine operational autonomy unlocks
unprecedented stages of efficiency, reliability, and flexibility. Infrastructure environments are
becoming energetic contributors in preserving superior operation in place of passive aid pools waiting
for human coaching, marking the emergence of truly intelligent cloud platforms.

References

[1] RAJKISHORE BARIK et al., "Optimization of Swift Protocols,” ACM, 2019. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/3360590

[2] Markos Viggiato et al., "Microservices in Practice: A Survey Study,” arXiv, 2018. [Online].
Available: https://arxiv.org/pdf/1808.04836

[3] Julio Sandobalin et al., "An Infrastructure Modelling Tool for Cloud Provisioning," ResearchGate.
[Online]. Available: https://www.researchgate.net/profile/Julio-
Sandobalin/publication/316701858_An_ Infrastructure_ Modelling_Tool_for_Cloud_Provisioning/li
nks/5a1bib11aca272dfo80f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf

[4] J. Tweedale et al., "Innovations in multi-agent systems," Elsevier, 2006. [Online]. Available:
https://www.researchgate.net/profile/Gloria-Phillips-
Wren/publication/222939284_Innovations_in_multi-
agent_systems/links/5bgdgicia6fdced3cbsay5do/Innovations-in-multi-agent-systems.pdf

[5] Zibin Zheng et al.,, "CloudRank: A QoS-Driven Component Ranking Framework for Cloud
Computing,” ResearchGate. [Online]. Available: https://www.researchgate.net/profile/Michael-
Lyu/publication/224189968_CloudRank_A_ QoS-
Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f9ocf2c432f74201d5
/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf

[6] Mohammed Rashid Chowdhury et al., "Implementation and performance analysis of various VM
placement strategies in CloudSim," Springer, 2015. [Online]. Available:
https://link.springer.com/content/pdf/10.1186/s13677-015-0045-5.pdf

[7] Lei Shi et al., "Provisioning of Requests for Virtual Machine Sets with Placement Constraints in
IaaS Clouds," ResearchGate. [Online]. Available: https://www.researchgate.net/profile/Brendan-
Jennings/publication/261116675_Provisioning_ of _requests_for_virtual_machine_sets_with_place
ment_constraints_in_TaaS_ clouds/links/553ff72focf29680degdc204/Provisioning-of-requests-for-
virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf

[8] Tao Chen et al., "Self-Adaptive Trade-off Decision Making for Autoscaling Cloud-Based Services,"
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2015. [Online]. Available:
https://arxiv.org/pdf/1608.05917

[9] Surya Nepal et al., "WSLA+: Web Service Level Agreement Language for Collaborations," IEEE
International Conference on Services Computing, 2008. [Online]. Available:
https://www.researchgate.net/profile/Shiping-Chen-

2/publication/4359252_ WSLA_ plus_ Web_ Service_Level_Agreement_Language_for_Collaboration
s/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-
Collaborations.pdf

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 28
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

https://dl.acm.org/doi/pdf/10.1145/3360590
https://arxiv.org/pdf/1808.04836
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://link.springer.com/content/pdf/10.1186/s13677-015-0045-5.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://arxiv.org/pdf/1608.05917
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

[10] Francisco Curbera et al., "Toward a Programming Model for Service-Oriented Computing,"
Springer, 2005. [Online]. Available: https://www.researchgate.net/profile/Francisco-
Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-

Oriented_ Computing/links/odeec5239ac641aab5000000/Toward-a-Programming-Model-for-
Service-Oriented-Computing.pdf

Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 29
Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf

