
Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 21 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Agentic Cloud Infrastructure Management: The New Age of

Development and Operations

Mohamed Rizwan Syed Sulaiman

Independent Researcher, USA.

ARTICLE INFO ABSTRACT

Received:05 Sept 2025

Revised:09 Oct 2025

Accepted:19 Oct 2025

Cloud infrastructure management is at a revolutionary crossroads where autonomous

software agents are essentially redefining operational paradigms. Conventional

infrastructure automation is based on procedural scripts necessitating explicit

specification of all sequences of actions, involving heavy maintenance overhead and

restraining flexibility to unexpected conditions. Agentic management systems provide

goal-directed execution frameworks in which human engineers specify high-level goals

while autonomous agents autonomously decide optimal implementation schemes.

These smart systems utilize continuous learning features to monitor telemetry streams,

identify patterns in performance, and create advanced behavior models for proactive

intervention prior to insignificant deviations becoming service interruptions. Moving

from reactive threshold-based monitoring to proactive self-healing mechanisms greatly

decreases the number of incidents while improving recovery processes. Quality-of-

service-based component choice, constraint-based resource placement, and adaptive

autoscaling are key technological underpinnings for autonomous optimization across

various operational axes. Human engineering jobs change proportionally, moving from

tactical deployment towards strategic architecture definition, policy making, and

governance framework design. Engineers have to develop skills in declarative

specification languages, multi-objective optimization formulations, and mechanisms for

validating agent behavior. Service-level agreement languages and service-oriented

programming models offer crucial abstractions for describing operational intent to

autonomous systems. The intersection of machine learning, multi-agent coordination

protocols, and cloud-native architectures creates the technical foundation for

infrastructure environments that are always evolving, self-optimizing, and ensuring

resilience through smart autonomous decision-making in lieu of manual action.

Keywords: Agentic Management, Autonomous Infrastructure, Goal-Oriented

Execution, Self-Healing Systems, Adaptive Optimization, Cloud Orchestration

Introduction

Cloud infrastructure management follows an ongoing path to increasing abstraction and automation.

From manual server configuration in the early days to the scripted automation era, the market now

stands at the cusp of a revolutionary paradigm: agentic management. This new direction significantly

rethinks the way that cloud infrastructure is managed, serviced, and optimized. Instead of depending

on human engineers to foresee all situations and program responses into procedural codes, agentic

systems utilize autonomous software agents with the system's ability to make independent decisions,

learn over time, and adapt. The difficulty in administering current cloud infrastructure is rooted in the

intrinsic complexity of distributed systems, where optimizations at the protocol level and design

choices have a direct effect on operational efficacy. Protocol optimization research illustrates how

performance at runtime can be achieved through precise examination of method dispatch

mechanisms and memory allocation patterns, as shown to introduce quantifiable overhead through

existential containers and witness tables in protocol-oriented environments [1]. These results

emphasize the value of knowing low-level operational behaviors when creating autonomous systems

for making real-time optimization choices throughout distributed infrastructure.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 22 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The move towards agentic management is also brought about by the added architectural complexity

resulting from microservices adoption, which has drastically altered how cloud applications are built

and run. Industry reports indicate that organizations adopting microservices architectures will deploy

between eight and fifteen different services per application, with some big systems having more than

fifty independently deployable units [2]. This distributed nature of architecture generates significant

operational overhead since every microservice needs separate monitoring, deployment pipelines, and

resource management. Research into microservices practice reveals that seventy-three percent of

practitioners surveyed mention more complexity in debugging and troubleshooting distributed

systems, and sixty-eight percent mention monitoring and observability as key operation challenges

[2]. Traditional manual methods and scripted automation find it difficult to handle this kind of

complexity efficiently since human operators have to integrate data across many service boundaries,

dependency chains, and failure modes that interact in a non-linear fashion.

These agents embody the transition from human-led automation to machine-led autonomy, in which

smart systems take on the operational complexity of contemporary cloud infrastructure while human

engineers are relegated to strategic guidance and architectural design. The shift to agentic

management fills the gap that microservices environments create in producing enormous amounts of

telemetry data in distributed tracing systems, metrics aggregation platforms, and log consolidation

frameworks, which call for advanced correlation and analysis capabilities beyond human intellect [2].

In addition, the dynamic nature of containerized workloads, where service instances horizontally scale

in reaction to demand and communication patterns continuously change, requires real-time decision-

making that occurs at machine speeds instead of human reaction times. Autonomous agents that

possess machine learning can deal with this multi-dimensional operational data, discern faint

patterns of performance degradation before cascading into system failures, and implement remedial

strategies that dynamically adjust to the context of each occurrence, thus realizing degrees of

operational resilience and efficiency that are not possible with traditional automation techniques.

From Scripted Automation to Goal-Oriented Execution

Procedural thinking is the foundation of traditional infrastructure management practices. Engineers

write meticulous scripts that outline unique sequences of steps for provisioning infrastructure,

configuring offerings, and reacting to nicely-defined conditions. Even though this infrastructure-as-

code approach has immensely superior consistency and reproducibility, it still fundamentally stays

reactive and brittle. All edge cases have to be foreseen, all failure modes explicitly addressed, and all

operational workflows hand-coded. The nature of contemporary cloud provisioning requires advanced

modeling techniques that are capable of abstracting infrastructure elements and their dependencies.

Studies in infrastructure modeling illustrate the fact that cloud infrastructures need to be represented

in terms of multiple architectural layers, such as virtualization infrastructure, networking topologies,

storage environments, and application deployment models [3]. The problem becomes especially

pressing when dealing with multi-cloud heterogeneous environments in which infrastructure

descriptors need to consider different types of resources that have varying provisioning parameters

and configuration needs. Research on cloud provisioning tools discovers that human error-prone

infrastructure specification processes occur, with misconfiguration levels averaging twenty-three

percent in environments where automated validation processes are not in place, and provisioning

entire application stacks manually takes from forty-five minutes to multiple hours based on

complexity [3]. The cost of upkeep for these increasingly sophisticated automation frameworks takes

enormous amounts of engineering time, since infrastructure models need to be iteratively updated to

support new service offerings, revised API standards, and shifting organizational needs.

Agentic management actually reverses this paradigm by accepting goal-driven execution. Rather than

outlining exact steps in implementation, engineers define top-level objectives that specify outcomes in

terms of what, instead of the exact mechanism by which. The autonomous agent translates such

objectives, regularly reviews the corresponding systems, and autonomously decides on suitable

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 23 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

actions to attain and sustain the defined goals. Multi-agent systems enable the architectural basis for

such transformation, supporting distributed intelligence where professional agents work together to

realize complex operational objectives beyond the capabilities of monolithic automation systems [4].

Studies of multi-agent architectures show that agent-based systems are superior in dynamic situations

with uncertainty, incomplete knowledge, and real-time adaptation requirements—exactly the

circumstances that prevail in contemporary cloud computing. These systems utilize highly advanced

coordination mechanisms such as contract net protocols, in which agents bargain task allocation on

the basis of capability and availability, and blackboard architecture in which observational data and

intermediate results are shared by agents to construct collective situational awareness [4]. The

effectiveness of multi-agent approaches stems from their ability to decompose complex problems into

manageable subproblems handled by specialized agents, with empirical studies showing that agent-

based systems can reduce problem-solving time by forty to sixty percent compared to centralized

approaches when addressing distributed optimization challenges [4]. This declarative approach

liberates engineers from the cognitive overhead of anticipating every operational scenario, allowing

them to focus on defining what should be accomplished rather than micromanaging how it should be

done. The agent takes on the role of mapping intent into action, dynamically modifying its strategies

as conditions change and new information is introduced, based on reasoning abilities that permit

agents to choose actions as a function of present environmental state, anticipated outcomes, and

specified utility functions as opposed to simply following a pre-defined sequence of instructions [4].

Managemen

t Approach

Configuration

Complexity

Adaptation

Success Rate

Policy

Specification

Requirements

Problem

Resolution

Time

Procedural

Scripting

Extensive code

requirements

Low for

unexpected

conditions

Detailed module

specifications

Extended

resolution

periods

Infrastructure

as Code

High

maintenance

overhead

Limited flexibility
Explicit edge case

handling

Significant

debugging time

Goal-Oriented

Agents

Substantial

complexity

reduction

High for

unexpected

conditions

Minimal policy

definitions

Real-time

adaptive

response

Multi-Agent

Systems

Decomposed

problem spaces

Faster problem-

solving

High-level intent

declarations

Dynamic

strategy

adaptation

Table 1. Performance Comparison of Infrastructure Management Paradigms [3, 4].

Continuous Learning and Adaptive Optimization

The full potential of agentic systems is realized through their ability to engage in continuous learning

and self-enhancement. In contrast to fixed automation scripts that apply fixed rules, smart agents

examine patterns in huge amounts of telemetry data, performance statistics, and operational

occurrences. As they continually conduct this examination, they improve their models of system

behavior to such an advanced degree that they can identify subtle anomalies, forecast impending

problems, and maximize resource consumption with sophistication that goes beyond the simple logic

of rules [5]. Quality-of-service driven component ranking research in the cloud environment proves

that intelligent systems need to analyze service components along various axes, such as response time,

throughput, reliability, and availability, in order to build end-to-end performance models. Web service

composition research identifies that cloud applications incorporate between fifteen to forty-five

different service components, each having varying performance attributes that change depending on

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 24 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

network conditions, resource contention, and workload patterns [5]. Optimal component

configuration identification poses computational challenges as the solution space increases

exponentially with the increase in the number of service alternatives. Empirical studies of component

ranking models demonstrate that quality-aware selection mechanisms increase end-to-end

application response times by thirty-two to fifty-one percent versus random selection of components,

while, at the same time, improving reliability measures by selecting components with historical failure

rates under three percent [5]. These learning systems utilize collaborative filtering methods and

matrix factorization strategies to forecast service quality dimensions for component pairs that have

not been directly experienced, with prediction accuracy levels of over eighty-five percent when trained

on adequate amounts of historical invocation data [5].

This adaptive nature is realized in several aspects. Agents learn to associate seemingly unrelated

signals to detect underlying causes of performance degradation, understanding that infrastructure

optimization needs advanced placement strategies that consider heterogeneity of resources and

workload patterns [6]. Studies of virtual machine placement algorithms show that intelligent

decisions at placement have a significant impact on overall cloud infrastructure efficiency, with

experiments comparing different strategies such as First Fit, Best Fit, Worst Fit, and optimization-

based strategies under varied workload profiles. Experimental analysis in realistic cloud simulation

environments shows that simple placement schemes like First Fit can produce resource fragmentation

levels of more than forty-five percent, which translates into huge capacity wastage and higher

operation costs [6]. They observe seasonal workload behavior patterns and act in anticipation to

modify capacity provisioning ahead of time, with sophisticated placement algorithms lowering the

number of active physical hosts needed by eighteen to thirty-two percent over baseline methods, thus

saving the amount of energy and infrastructure costs commensurately [6]. They compare the

efficiency of their own interventions and adjust their decision-making strategies accordingly, as

confirmed by comparative studies illustrating that optimization-based placement methods cut service

level agreement breaches by fifty-three to sixty-seven percent while increasing resource utilization

rates from baseline rates of forty-eight percent to optimized rates of seventy-two to seventy-nine

percent [6]. This has a feedback effect whereby operational intelligence builds up over time, evolving

the infrastructure from being a passive pool of resources to an actively self-optimizing system that

improves with experience, with simulation results showing that adaptive placement approaches can

handle thousands of virtual machine allocation requests with placement decision latencies below two

hundred milliseconds, facilitating real-time optimization even in extremely dynamic cloud

environments [6].

Optimization
Dimension

Performance
Metric

Improvement Range
Implementation

Approach

Component
Selection

Response time
improvement

Significant enhancement
QoS-driven ranking
frameworks

Service Reliability Component failure rate Below threshold levels
Collaborative filtering
techniques

Prediction Accuracy
Quality attribute
forecasting

High accuracy levels
Matrix factorization
methods

Resource Placement
Fragmentation
reduction

Fewer active hosts
required

Optimization-based
algorithms

Utilization
Efficiency

Resource allocation
rates

Optimized allocation
levels

Adaptive placement
strategies

SLA Violation
Reduction

Service compliance
Substantial violation
reduction

Intelligent placement
techniques

Decision Latency
Placement processing
time

Sub-second processing
Real-time optimization
engines

Table 2. Continuous Learning and Optimization Metrics in Cloud Systems [5, 6].

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 25 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Proactive Self-Healing and Resilience

Arguably, the strongest strength of agentic infrastructure management is its ability for proactive self-

healing. Conventional monitoring and alerting systems follow threshold-based reasoning, only

alerting human administrators when certain conditions are exceeded. Reactive systems have inherent

delays between trouble beginning and repair, during which time service quality can deteriorate and

user experience is impaired [7]. Virtual machine provisioning with placement constraints research

indicates that cloud infrastructure needs to support sophisticated application needs, such as affinity

rules that require co-location of communicating services, anti-affinity constraints that require

segregation for fault tolerance, and capacity constraints that provide sufficient resource availability

between failure domains. Experiments on placement optimization problems show that infrastructure

as a service environments normally handle provisioning requests on collections of three to twenty-five

virtual machines with interdependent placement constraints, in which constraint satisfaction becomes

computationally hard when growing larger [7]. Analysis of heuristic placement algorithms indicates

that greedy strategies may accept between sixty-two percent and seventy-eight percent of requests

under moderate load, but are severely impacted in acceptance levels to thirty-five to forty-nine

percent once resource fragmentation is built up due to poor previous placement choices [7]. The

computational complexity of best placement increases exponentially with problem size, with exact

optimization methods requiring solution times of more than several minutes to solve for requests with

more than fifteen virtual machines, which renders them ineffective for real-time provisioning

scenarios where response latency must be less than ten to fifteen seconds to continue to provide an

acceptable user experience [7].

Autonomous agents overcome this limitation by constantly monitoring system health and acting

before small problems snowball into large-scale mishaps. By catching early warning signs like gradual

resource depletion, forming bottlenecks, or marginal behavioral anomalies, agents can take control

measures when issues are still contained and within control [8]. Experiments on self-adaptive

autoscaling algorithms for cloud services show that self-determined decision-making should trade off

several conflicting goals, such as maintenance of service quality, minimizing operational cost, and

configuration stability to prevent thrashing between scaling states. Research probing trade-off

decision models indicates that cloud applications have very volatile scaling demands, with patterns of

workloads showing coefficient of variation values between zero point four and two point six based on

application nature and patterns of users' behavior [8]. The autoscaling challenge becomes even more

intricate when taking into account that horizontal scaling via instance replication presents varying

cost-performance behavior compared to vertical scaling via resource supplementation, with test

results indicating that horizontal methods usually provide superior fault tolerance and load

distribution but are more expensive in terms of licensing and network overhead [8]. Adaptive scaling

policy analysis using reinforcement learning methods illustrates that smart agents can decrease

service level agreement breaches by forty-seven to sixty-three percent relative to reactive threshold-

based autoscaling, while at the same time lowering infrastructure expenditures by twenty-three to

thirty-nine percent through better resource utilization [8]. This could mean undoing recent

alterations, reassigning workloads, or reconfiguring system parameters dynamically, with simulation

experiments being shown to suggest that self-adaptive systems can converge toward optimal scaling

configurations in eight to fifteen adaptation cycles, which corresponds to twenty to forty-five minutes

of operation observation based on workload dynamics and latency of feedback [8]. The outcome is

infrastructure that is resilient not by over-provisioning and redundancy but through smart, adaptive

measures to changing conditions, with field tests demonstrating that multi-objective optimization

methods balancing quality, cost, and stability can realize Pareto efficiency gains of thirty-two to fifty-

one percent over single-objective optimization methods that ignore key trade-off dimensions [8].

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 26 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Self-Healing

Capability
Constraint Type Performance Impact Operational Benefit

VM Set

Provisioning

Affinity and anti-affinity

rules

Moderate to high

acceptance

Complex placement

satisfaction

Heuristic

Placement

Resource fragmentation

management

Variable under load

conditions

Dynamic constraint

handling

Constraint

Optimization
Multiple VM configurations Fast response latency Real-time provisioning

SLA Violation

Prevention
Multi-objective balancing Substantial reduction

Proactive quality

maintenance

Cost

Optimization

Horizontal and vertical

scaling
Significant cost decrease

Efficient resource

utilization

Adaptive

Convergence

Learning-based

optimization

Multiple adaptation

cycles

Near-optimal

configuration

Pareto Efficiency
Quality-cost-stability trade-

offs

Multi-dimensional

improvement

Balanced optimization

outcomes

Table 3. Proactive Self-Healing Capabilities and Resilience Outcomes [7, 8].

The Evolving Role of Human Engineers

The rise of agentic management does not devalue the role of human expertise but instead pushes

engineering work up the stack to concentrate on higher-order issues. Rather than spending time

crafting maintenance scripts or answering recurring operational alerts, engineers focus on

architectural design, policy development, and strategic planning. They determine the goals that

inform autonomous agents, set guardrails that limit agent action into tolerable bounds, and create

feedback loops that allow autonomous improvement [9]. Service level agreement language studies for

cloud-based collaborative systems prove that human engineers have to use formal specifications to

implement intricate quality-of-service conditions, operational requirements, and performance

guarantees that determine the behavior of autonomous systems. Research into collaborative service

provisioning finds that contemporary cloud applications usually consist of three to seven

organizational entities that run under separate service level agreements, each having specific response

time thresholds, availability commitments, and throughput guarantees [9]. The challenge of handling

these multi-party contracts becomes acutely pronounced when one takes into account the fact that

service level agreement breaches in collaborative settings tend to cascade across organizational silos,

with research indicating that one provider's inability to honor commitments will set off consequential

violations impacting downstream consumers in forty-three to sixty-one percent of intricate service

composition contexts [9]. Examination of agreement specification languages shows that engineers

need to specify not just performance metrics and threshold values but also complex monitoring

mechanisms, violation detection algorithms, penalty computation formulas, and remediation

processes, with typical enterprise contracts having between twenty-five and seventy-eight separate

clauses controlling different aspects of service delivery and quality assurance [9]. The mental

complexity of doing this manually at scale becomes untenable, calling for autonomous agents that can

continuously monitor agreement, verify compliance, and adaptively respond to maintain contractual

terms within dynamic operating environments [9].

Engineers need to acquire new skills to make this transition. Knowing how to properly convey intent

to intelligent systems becomes a priority. Creating observable architectures that enable agents to

receive information required for well-informed decision-making becomes an essential skill [10].

Service-oriented computing programming model research identifies that engineers need to move away

from imperative programming models that are concerned with algorithmic control flow toward

declarative styles that focus on composition, coordination, and quality-of-service specification.

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 27 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Research on service-oriented development practices illustrates that average enterprise applications

compose between twelve and thirty-five external services, each with functional interfaces exposed

using standard protocols and with internal implementation opacity [10]. The crux problem is to

assemble these independently composed services into well-formed applications while addressing non-

functional concerns like transactional consistency, security policy enforcement, and error recovery

across organizational boundaries. Service composition patterns analysis reveals that engineers need to

become experts in orchestration languages for describing intricate workflows with concurrent

execution branches, conditionally based on runtime information, and compensation logic for

managing partial failures in long-running business processes [10]. Engineers will also need to create

frameworks for agent behavior monitoring, ensuring autonomous decisions are consistent with

organizational goals and keeping adequate control without excessive micromanagement, while studies

have shown that service-oriented architectures need to be equipped with advanced management

infrastructure in the form of service registries for capability discovery, policy frameworks for access

control enforcement, and monitoring systems for quality-of-service verification [10]. The role of

human beings changes from implementer to architect, from firefighter to strategist, with

programming model evolution research indicating that abstraction layers that support declarative

service composition can cut application development effort by thirty-five to fifty-two percent against

low-level integration coding, while at the same time enhancing system maintainability by providing

clean separation between business logic and infrastructure issues [10].

Engineering

Dimension
Traditional Allocation Agentic Allocation

Competency

Requirement

Operational Tasks The majority of the effort Minority of effort
Reactive incident

response

Strategic Initiatives Minority of effort The majority of the effort
Architecture and

planning

SLA Specification Multiple distinct clauses
Automated compliance

monitoring

Formal agreement

languages

Violation Cascade

Risk

Significant in multi-party

scenarios

Agent-mediated

prevention

Cross-boundary

coordination

Service Integration
Numerous external

services
Declarative composition

Orchestration

languages

Development Effort

Reduction
Baseline implementation Substantial reduction

Service-oriented

abstractions

Training Period Not applicable
Several weeks of

proficiency

Goal-oriented

specification

Productivity

Improvement
Baseline capacity Significant increase

Agent collaboration

mastery

Table 4. Human Engineering Role Transformation in Agentic Systems [9, 10].

Conclusion

Agentic cloud infrastructure management is a core rethink of how digital systems run and regulate

themselves across dispersed conditions. The constraints built into procedural automation—brittle

failure recovery, exponential increase in complexity, and ongoing manual maintenance needs—call for

a paradigmatic shift toward self-governance. Intelligent agents with learning capabilities, predictive

analytics, and adaptive decision-making break reactive operational paradigms by acting proactively,

continuously optimizing, and self-improving based on accumulated operational intelligence.

Component ranking based on quality allows for intelligent selection of services from large catalogs of

options, while placement algorithms based on constraint awareness minimize resource usage based

on intricate affinity and capacity constraints. Autoscaling algorithms with self-adaptive features

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 28 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

balance competing goals such as performance, cost minimization, and configuration stability through

advanced trade-off analysis. Technical complexity in multi-agent coordination, reinforcement

learning, and causal inference allows systems to manage operational complexity beyond human

cognitive capabilities in real-time processing environments. Practice in engineering changes

equivalently as practitioners shift from applying procedural logic to designing declarative policies,

authoring observable systems, and developing governance frameworks that ensure autonomous

decisions align with organizational goals. Service-level agreement languages facilitate formal means of

expressing quality commitments across organizational boundaries, and service-oriented programming

models present compositional abstractions that control distributed application complexity. The

symbiosis between human strategic oversight and machine operational autonomy unlocks

unprecedented stages of efficiency, reliability, and flexibility. Infrastructure environments are

becoming energetic contributors in preserving superior operation in place of passive aid pools waiting

for human coaching, marking the emergence of truly intelligent cloud platforms.

References

[1] RAJKISHORE BARIK et al., "Optimization of Swift Protocols," ACM, 2019. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3360590

[2] Markos Viggiato et al., "Microservices in Practice: A Survey Study," arXiv, 2018. [Online].

Available: https://arxiv.org/pdf/1808.04836

[3] Julio Sandobalin et al., "An Infrastructure Modelling Tool for Cloud Provisioning," ResearchGate.

[Online]. Available: https://www.researchgate.net/profile/Julio-

Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/li

nks/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf

[4] J. Tweedale et al., "Innovations in multi-agent systems," Elsevier, 2006. [Online]. Available:

https://www.researchgate.net/profile/Gloria-Phillips-

Wren/publication/222939284_Innovations_in_multi-

agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf

[5] Zibin Zheng et al., "CloudRank: A QoS-Driven Component Ranking Framework for Cloud

Computing," ResearchGate. [Online]. Available: https://www.researchgate.net/profile/Michael-

Lyu/publication/224189968_CloudRank_A_QoS-

Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5

/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf

[6] Mohammed Rashid Chowdhury et al., "Implementation and performance analysis of various VM

placement strategies in CloudSim," Springer, 2015. [Online]. Available:

https://link.springer.com/content/pdf/10.1186/s13677-015-0045-5.pdf

[7] Lei Shi et al., "Provisioning of Requests for Virtual Machine Sets with Placement Constraints in

IaaS Clouds," ResearchGate. [Online]. Available: https://www.researchgate.net/profile/Brendan-

Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_place

ment_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-

virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf

[8] Tao Chen et al., "Self-Adaptive Trade-off Decision Making for Autoscaling Cloud-Based Services,"

IEEE TRANSACTIONS ON SERVICES COMPUTING, 2015. [Online]. Available:

https://arxiv.org/pdf/1608.05917

[9] Surya Nepal et al., "WSLA+: Web Service Level Agreement Language for Collaborations," IEEE

International Conference on Services Computing, 2008. [Online]. Available:

https://www.researchgate.net/profile/Shiping-Chen-

2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaboration

s/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-

Collaborations.pdf

https://dl.acm.org/doi/pdf/10.1145/3360590
https://arxiv.org/pdf/1808.04836
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Julio-Sandobalin/publication/316701858_An_Infrastructure_Modelling_Tool_for_Cloud_Provisioning/links/5a1b1b11aca272df080f1629/An-Infrastructure-Modelling-Tool-for-Cloud-Provisioning.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Gloria-Phillips-Wren/publication/222939284_Innovations_in_multi-agent_systems/links/5b9d91c1a6fdccd3cb5a75d0/Innovations-in-multi-agent-systems.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://www.researchgate.net/profile/Michael-Lyu/publication/224189968_CloudRank_A_QoS-Driven_Component_Ranking_Framework_for_Cloud_Computing/links/543c63f90cf2c432f74201d5/CloudRank-A-QoS-Driven-Component-Ranking-Framework-for-Cloud-Computing.pdf
https://link.springer.com/content/pdf/10.1186/s13677-015-0045-5.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://www.researchgate.net/profile/Brendan-Jennings/publication/261116675_Provisioning_of_requests_for_virtual_machine_sets_with_placement_constraints_in_IaaS_clouds/links/553ff72f0cf29680de9dc204/Provisioning-of-requests-for-virtual-machine-sets-with-placement-constraints-in-IaaS-clouds.pdf
https://arxiv.org/pdf/1608.05917
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf
https://www.researchgate.net/profile/Shiping-Chen-2/publication/4359252_WSLA_plus_Web_Service_Level_Agreement_Language_for_Collaborations/links/0f317531c4ba21bc33000000/WSLA-plus-Web-Service-Level-Agreement-Language-for-Collaborations.pdf

Journal of Information Systems Engineering and Management
2025, 10(61s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 29 Copyright © 2025 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

[10] Francisco Curbera et al., "Toward a Programming Model for Service-Oriented Computing,"

Springer, 2005. [Online]. Available: https://www.researchgate.net/profile/Francisco-

Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-

Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-

Service-Oriented-Computing.pdf

https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf
https://www.researchgate.net/profile/Francisco-Curbera/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing/links/0deec5239ac641aab5000000/Toward-a-Programming-Model-for-Service-Oriented-Computing.pdf

