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Machine failure prediction in industrial systems tends to depend on vibration analysis. Most 

installed machines, however, do not have vibration or acoustic sensors, leaving alternative 

prediction methods using proxy sensor readings like temperature, pressure, and environmental 

data. This work introduces a new framework for multimodal degradation assessment involving 

anomaly detection and temporal persistence modeling. Through the utilization of time-series 

sensor data, we extract features representing deviations from an ideal running state and 

monitor their persistence across time, similar to health decline in living systems. In contrast to 

conventional methods, which depend on explicit failure signifiers, our method targets long-

term anomaly trends and their compounding effects. We compare several machine learning 

models, such as Random Survival Forest, Isolation Forest, and Recurrent Neural Networks, 

with results showing that failure prediction accuracy greatly improves when engineered 

temporal anomaly features are used. The envisioned approach facilitates more powerful 

predictive maintenance practices applied in actual industry settings, eliminating surprise 

downtimes and maximizing running efficiency. 

Keywords: Predictive Maintenance, Anomaly Detection, Temporal Persistence, Machine 

Learning, Survival Analysis, Recurrent Neural Networks, Industrial Systems 

 

I. INTRODUCTION 

The industrial equipment reliability is a critical factor in manufacturing efficiency, affecting productivity, safety, and 

maintenance expenses. Industries have, over the years, looked for superior methods to forecast and avert machine 

failures, shifting from conventional reactive maintenance to adopt predictive maintenance (PdM). PdM applies 

real- time data from different sensors mounted on machinery to predict failures, minimizing unplanned downtime, 

and maximizing working efficiency. As industrial systems grow in complexity and many interconnected sensors and 

devices are installed, a precise failure prognosis becomes progressively necessary to ensure smooth operations and 

minimize financial losses. 

A. Evolution of Failure Detection Methods 

Conventionally, equipment/machine failure detection and avoidance has always relied on scheduled maintenance 

practices, and data collected from these machines can be analyzed with rule-based algorithms and alerts can be sent 

so that reactive maintenance can be performed [1]. The preceding methods were mostly vibration-based monitoring 

because mechanical wear and tear over time tends to show themselves through vibration fluctuations [2]. However, 

in the modern industrial environment, many machines that are already commissioned and in service do not have 

vibration or acoustic sensors, and therefore alternative methods of failure prediction must be employed [3]. 

Developments in machine learning (ML) and artificial intelligence (AI) have made it possible to evolve sensor-based 

PdM models, utilizing sensor readings including temperature, pressure, chemical compositions, and ambient 

parameters to predict the time to failure (TTF) [4]. These techniques have greatly improved predictive accuracy 

over conventional methods, but some issues are still unresolved [5]. 



Journal of Information Systems Engineering and Management 
2025, 10(60s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 801 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

B. Existing Knowledge Gaps 

Despite remarkable advancements in sensor-based failure prediction, knowledge gaps still remain. Firstly, the 

majority of current studies target directly correlated signals, i.e., vibration data, leaving unexplored the potential of 

indirect sensor measurements [6]. Secondly, most of the existing PdM methods are static model based which 

ignores the temporal degradation trends and compounding effects of long-term anomalies [7]. Also, generalization 

of those predictive models are still remaining a challenge, as most ML models are not able to generalize across 

various equipment types and their operating conditions [8]. 

C. Limitations of Previous Studies 

One critical issue with the future of PdM is creating scalable, low-cost models that can operate without installing extra 

sensors or devices, as additional cost and downtime are major concerns. Many industrial machines are already 

deployed in the field, and retrofitting them with specialized sensors may not be feasible. Additionally, sensor data is 

often not directly correlated with machine failure incidents, making it difficult to develop reliable predictive models. 

To improve failure prediction accuracy, future research must focus on leveraging multimodal data, enhancing 

anomaly detection methods, and integrating advanced analytics. 

Despite significant advancements in PdM, several limitations remain: 

• Limited Sensor Scope: Many studies rely on direct correlations between sensor readings and failures, often 

neglecting indirect predictive factors that could improve failure prediction accuracy [1], [2]. 

• Model Generalization Issues: Existing machine learning models often struggle to adapt across different 

machine types and operating conditions. Many PdM frameworks require significant retraining and tuning, which 

limits their practical deployment in industrial settings [4]. 

• Over-Reliance on Vibration Data: While vibration analysis has been extensively studied, it is not always the 

most effective failure predictor. Several studies highlight the need for multimodal sensor integration, particularly 

when vibration sensors are unavailable or when failure modes are not mechanically driven [3], [5]. 

Although prior research has identified these challenges, existing methodologies have yet to fully resolve them. For 

example, while IoT-based predictive maintenance frameworks have been proposed [5], their scalability and real-

world applicability remain open challenges. Similarly, while sensor fusion techniques improve prediction accuracy, 

their dependence on high-quality, synchronized data makes them difficult to implement in practice [4]. 

To address these challenges, future research should focus on developing scalable, cost-effective multimodal PdM 

frameworks that do not require additional sensor installations and can effectively generalize across different 

machine types and environments. 

D. Contribution of This Work 

The aim of this paper is to address existing limitations in predictive maintenance (PdM) by presenting a 

multimodal framework for degradation assessment that goes beyond vibration-based monitoring. 

This study extends previous research by: 

• Introducing a multimodal degradation framework that integrates temperature, pressure, and environmental 

sensor data for machine failure prediction. 

• Developing anomaly detection techniques that focus on temporal persistence rather than direct failure 

indicators with compounding effects. 

• Comparing multiple ML models, including Random Survival Forests, Coxnet Survival Analysis, Isolation 

Forests, and Recurrent Neural Networks, to evaluate their effectiveness in time-to-failure prediction when 

conventional vibration data are unavailable. 

Our results demonstrate that incorporating feature engineered temporal anomaly features improves predictive 

performance of time to failure, resulting in more efficient PdM methodologies that reduce downtime and 
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maintenance costs. By addressing key gaps in PdM research, this research lays the ground for stronger, flexible, and 

more economical predictive maintenance practices. 

E. Key Terminology and Acronyms 

Throughout this paper, we will use the following key terms: 

• Predictive Maintenance (PdM): A proactive maintenance strategy that forecasts failures using real-time 

sensor data and machine learning models. 

• Time to Failure (TTF): The estimated remaining operational time before a machine experiences failure. 

• Anomaly Detection: The identification of deviations from normal machine behaviour, which may indicate 

potential failures. 

These terms will be used consistently, with acronyms introduced upon first use and then applied throughout the 

paper. 

F. Structure of the Paper 

The rest of the paper is structured as follows. Section II gives a thorough literature review of past and recent 

literature on methodologies of PdM, consisting of initial rule-based methods, development of vibration-based 

failure identification, and present advancements in data-oriented ML models. We also elucidate popular research 

from previous studies and papers and highlight their drawbacks. Section III elaborates on the projected multimodal 

degradation assessment framework, which includes feature extraction, model selection, and evaluation 

criteria. 

Section IV presents our experimental results, showing the benefits of our method compared to standard failure 

prediction approaches. Lastly, Section V examines the implications of our work and specifies possible directions of 

future research. 

II. LITERATURE REVIEW 

Predictive Maintenance (PdM) has emerged as a crucial strategy in Industry 4.0 for minimizing downtime, 

reducing maintenance costs, and improving operational efficiency. This literature review synthesizes recent 

research efforts and highlights gaps that our work addresses. 

A. Overview of PdM and Sensor-Based Techniques 

PdM relies on sensor data and analytics to estimate the Remaining Useful Life (RUL) or Time to Failure (TTF) of 

industrial machinery. Fordal et al. [1] present an ANN-based PdM platform leveraging sensor data to enable 

Industry 

4.0 adoption. Their approach focuses on vibration data for fault prediction, which is common in literature due to its 

effectiveness in capturing early signs of mechanical degradation [3], 

[6]. 

While vibration analysis remains dominant, it poses limitations when vibration sensors are unavailable or 

retrofitting is infeasible. Ghazali et al. [3] provide a systematic review of vibration-based monitoring techniques, 

but also point out their limitations in scalability and generalizability. Chu et al. [6] reaffirm the need for expanding 

PdM beyond vibrationcentric methods. Additional reviews, such as Singh et al. [9], explore the emerging scope of 

hybrid sensor systems, including thermal imaging, acoustic, and pressure data. 

B. Challenges and Gaps in Existing Research 

Nunes et al. [2] identify major obstacles in PdM implementation: noisy data, equipment specificity, and real-time 

deployment challenges. Their work calls for broader approaches that incorporate anomaly detection, prognostics, 

and scalable architectures. 
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Several studies acknowledge that current PdM models are often static and fail to capture temporal degradation 

trends [7]. 

Hurtado et al. emphasize continual learning as a remedy but highlight the lack of practical frameworks to handle 

diverse real-time sensor streams effectively. 

Shiva et al. [4] and Shen et al. [8] advocate for integrating anomaly detection and physics-informed modeling to 

address generalization issues across machine types. Their work shows promise in extending PdM through indirect 

sensor modalities such as temperature and pressure. 

Recent frameworks also point out the importance of combining unsupervised and supervised learning strategies. 

Gupta et al. [10] propose a hybrid CNN-RNN anomaly detection architecture that performs well on irregular sensor 

data sequences in manufacturing systems. 

C. Anomaly Detection and Temporal Features 

Our framework aligns with recommendations from Gogoberidze [11], who explores survival analysis and deep 

learning techniques to estimate failure times in large sensor networks. This work inspires the adoption of recurrent 

and survival models that account for time dependencies. 

Temporal persistence of anomalies has been an underutilized feature in prior research. Vela et al. [5] introduce the 

concept of AI model degradation over time and differentiate it from concept drift. Their work motivates our focus on 

tracking long-term anomaly trends to enhance predictive performance. 

In another study, Lee et al. [12] emphasize the significance of anomaly windows and persistence lengths in 

industrial time series. Their proposed anomaly scoring method incorporates recurrence quantification, which we 

adapt in our feature engineering pipeline. 

D. Multimodal and Non-Vibration-Based Approaches 

The multimodal approach is gaining traction. Our work expands on Fordal et al.’s vibration-based model [1] by 

integrating temperature, pressure, and environmental signals as predictive features. This multimodal perspective is 

consistent with the call from Chu et al. [6] to explore alternative monitoring strategies. 

Ravikumar et al. [13] propose a sensor fusion-based PdM system where non-vibration data improves fault 

localization and reduces false alarms. Their work supports the feasibility of proxy signal-based PdM frameworks. 

Additionally, we adapt the temporal aggregation techniques proposed in recent literature [11] to create time-aware 

anomaly features that are embedded within each sample. This enables ML models to learn from the persistence and 

patterns of degradation rather than isolated outliers. 

E. Survival Models and Sequence-Aware Techniques 

Deep survival models offer strong alternatives to traditional PdM forecasting tools. Studies such as by Choudhary et 

al. [14] show that DeepCox and LSTM-Cox combinations can outperform static survival analysis models in predicting 

TTF using longitudinal sensor data. 

Jiang et al. [15] investigate Transformer-based survival modeling in sensor networks and report high accuracy even 

with partial observations. This supports the relevance of our time-dependent anomaly-based survival modeling 

framework. 

F. Summary and Positioning 

In summary, the literature suggests: 

• Existing PdM systems heavily rely on vibration data, limiting their general applicability. 

• There is a strong need for frameworks that leverage indirect sensor readings and emphasize temporal 

degradation trends. 
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• Survival analysis and recurrent models are underutilized but offer promise in modeling long-term machine 

behavior. 

• Generalizability and scalability remain key challenges, especially in diverse industrial environments. 

• Hybrid and multimodal approaches using temperature, pressure, and acoustic signals are showing increased 

viability. Our work addresses these gaps by proposing a novel multimodal degradation framework combining 

temporal anomaly detection with survival modeling techniques, creating a costeffective, scalable PdM solution that 

can be deployed across various machines without requiring retrofitting. 

III. METHODOLOGY 

This section presents the complete methodology of our proposed approach: a non-vibration-based multimodal 

anomaly detection and fusion framework with temporal persistence modeling for degradation assessment in 

industrial systems. The methodology consists of five major components: phase segmentation, multimodal anomaly 

detection (regression- and threshold-based), temporal anomaly fusion, weekly and cumulative anomaly 

aggregation, and final degradation scoring. 

A. Operational Phase Segmentation 

Many industrial systems operate under varying load or power conditions. We leverage this property to discretize 

the operational space into distinct “phases” based on real-time power consumption. Let Pt denote the system power 

at time t. We define power bins [Pi,Pi+1) of width 10 kW to assign each data point to a discrete phase: 

Phasei = {t | Pt ∈ [10i,10(i + 1))} 

This stratification allows phase-wise modeling of behavior, isolating context-specific anomalies. 

B. Multimodal Anomaly Detection 

Anomaly detection is performed using both regressionbased residual analysis and static threshold rules. 

These methods are applied independently on different sensor pairs and modalities (power, frequency, airflow, 

temperature). 

1) Linear Regression-Based Residual Anomaly Detection: Let (xt,yt) be a pair of sensor variables (e.g., 

power vs airflow) within a given phase. A simple linear regression model is trained using healthy baseline data (first 

year of operation): 

Residuals are computed as: 

yˆt = β0 + β1xt 

εt = yt − yˆt 

Assuming a Gaussian distribution of residuals, we define an anomaly threshold using a standard deviation 

multiplier 

k: 

εt < −k · σε ⇒ Anomaly 

where σε is the standard deviation of the residuals from baseline data. In our implementation, k = 2 is used for 

midload phases (10–30 kW), and k = 3 for other phases to balance sensitivity and specificity. 

Anomaly labels are recorded as AnomalyRule1 and AnomalyRule2 for different sensor pairs. 
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Fig. 1. Anomaly Detection: Visualization of Regression Residuals and Threshold Violations for Phases (10-20KW, 

20-30KW and 30-40KW). Normal points are shown in yellow; anomalies in red. The solid blue line represents the 

fitted regression line, while dashed lines indicate ±3σ thresholds. 

 

Fig. 2. Anomaly Detection: Visualization of Regression Residuals and Threshold Violations for Phases (40-50KW 

and 50-60KW). Normal points are shown in yellow; anomalies in red. The solid blue line represents the fitted 

regression line, while dashed lines indicate ±3σ thresholds. 

 

Fig: 3 

2) Threshold-Based Anomaly Detection: Let xt and yt denote readings from two thermal sensors. Static 

thresholds [Lx,Ux] and [Ly,Uy] define the acceptable range: 

xt ∈/ [Lx,Ux] ∨ yt ∈/ [Ly,Uy] ⇒ Anomaly 

For example, in our case study, Lx = Ly = 0◦C and Ux = Uy = 185◦C. These violations are captured under 

AnomalyRule3. 
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C. Temporal Anomaly Fusion and Persistence Modeling 

To consolidate anomaly indicators from different rules and modalities, we compute a fused anomaly flag: 

isanomaly(t) = AnomalyRule1(t)∨ 

AnomalyRule2(t)∨ AnomalyRule3(t) 

This fused label reflects the presence of an anomaly triggered by any of the detection rules. 

To assess long-term degradation, we model the persistence of anomalies over time. Let w denote a time window 

(e.g., a calendar week), then: 

P 

• Weekly anomaly count: Aw =  t∈w isanomaly(t) 

• Cumulative anomaly count:  

TABLE I 

WEEKLY AND CUMULATIVE ANOMALY COUNTS 

Week Weekly Anomaly 

Count 

Cumulative Anomaly 

Count 

2024-

W01 

12 12 

2024-

W02 

8 20 

2024-

W03 

15 35 

2024-

W04 

10 45 

2024-

W05 

17 62 

2024-

W06 

14 76 

Weekly anomaly count over time. The plot shows the number of anomalies detected each week across the monitoring 

period, highlighting temporal trends in system behavior. The purple line represents the weekly anomaly counts, 

and the vertical dashed red line marks the debrief date. This visualization aids in identifying bursts of anomalous 

behavior and provides insights into historical degradation patterns. 

D. Degradation Scoring and Output 

The final degradation score Dw is computed using normalized cumulative anomaly counts: 

This score reflects progressive degradation over time and is used as an input to subsequent time-to-failure (TTF) 

prediction models. 

E. Time-to-Failure (TTF) Prediction Using Recurrent Neural Networks 

Following feature engineering via multimodal anomaly detection and persistence modeling, we formulate the 
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Timeto- Failure (TTF) prediction task as a supervised regression problem. The goal is to estimate the remaining 

useful life (RUL) of the system at any given time t based on historical sensor readings and derived degradation 

indicators. 

1) Problem Formulation: Given a multivariate time series 

X  where d denotes the number of input features (original sensor data and 

engineered features like Aw, Cw, and Dw), we aim to learn a function fθ(·) parameterized by θ that maps a 

historical window of inputs to the corresponding TTF label yt: 

yt = fθ (Xt−L:t) + ϵ 

where: 

• Xt − L : t = {Xt − L,Xt − L + 1,...,Xt} denotes the input sequence of length L, 

• L is the lookback window size (set to 24 hours in our implementation), 

• ϵ represents the modeling error, assumed to follow a zeromean Gaussian distribution. 

The function fθ(·) is realized using a bidirectional Long Short-Term Memory (Bi-LSTM) network, which is trained to 

minimize the mean squared error (MSE) between the predicted and true TTF values over the training dataset. 

2) Model Architecture: Bidirectional LSTM RNN: We adopt a Bidirectional Long Short-Term Memory (Bi-

LSTM) architecture to model the temporal dependencies in both past and future directions within each lookback 

window. The detailed model architecture is as follows: 

• Input Layer: Historical sequence of features with shape (L,d). 

• First Bi-LSTM Layer: 128 units, returns full sequences (L,256). 

• Dropout Layer: 20 

• Second Bi-LSTM Layer: 64 units, returns final hidden state (128). 

• Dropout Layer: 20 

• Dense Layer: Fully connected layer with 32 neurons and ReLU activation. 

• Output Layer: Dense layer with 1 neuron and linear activation for TTF prediction. 

The parameter counts and layer output shapes are summarized in Table II, as shown in the model summary figure 

(attached). 

3) Training Strategy: The model is trained to minimize the Mean Squared Error (MSE) loss between 

predicted and true TTF values: 

where N is the number of training samples. 

TABLE II RNN MODEL ARCHITECTURE SUMMARY 

Layer (Type) Output Shape Param # 

Bidirectional LSTM (128 

units) 

(None, 10, 

256) 

189,440 

Dropout (0.2) (None, 10, 

256) 

0 
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Bidirectional LSTM (64 

units) 

(None, 128) 164,352 

Dropout (0.2) (None, 128) 0 

Dense (32 units) (None, 32) 4,128 

Dense (1 unit) (None, 1) 33 

Total Trainable 

Parameters 

 357,953 

Optimizer Update 

Parameters 

 715,908 

The Adam optimizer is employed for gradient-based optimization, using adaptive learning rates to stabilize training: 

where η is the adaptive learning rate determined by Adam. 

Training is performed for 100 epochs with a batch size of 128. Early stopping is monitored based on validation loss 

to prevent overfitting, with the best performance observed at epoch 60. 

 

Fig. 4. Training and Validation Loss Curves: The blue line represents the training loss, while the red line represents 

the validation loss across epochs. The convergence without overfitting indicates stable and effective model training. 

4) Feature Set Used for RNN Input: The input features fed into the model for each time step include: 

• Raw sensor readings: power, frequency, airflow, temperatures. 

• Anomaly rule outputs:AnomalyRule1, AnomalyRule2, AnomalyRule3. 

• Temporal aggregation features: weekly anomaly count (Aw), cumulative anomaly count (Cw), normalized 

degradation score (Dw). 

This multimodal and hierarchical feature set enriches the model’s temporal understanding of both immediate and 

longterm degradation patterns. 

5) Inference and TTF Prediction: At inference time, the model takes the latest 24-hour historical sequence 

as input and outputs the estimated time-to-failure: 

ytˆ = fθ(Xt−24:t) 

where yˆt is the predicted remaining useful life in consistent time units (e.g., hours or days depending on training 

labels). 

This prediction is updated continuously as new sensor readings become available, providing real-time prognostic 

capability for maintenance decision-making. The proposed methodology is scalable, sensor-agnostic, and 
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deployable in data-scarce environments—making it well-suited for realworld, non-vibration-based predictive 

maintenance systems. 

IV. RESULTS AND INFERENCE 

A. Experimental Setup 

The proposed approach was evaluated using a real-world industrial dataset composed of multimodal sensor 

readings, including operational parameters such as temperature, pressure, power, frequency and current. The 

dataset was annotated with anomaly windows based on domain expert feedback and failure logs. The evaluation 

focused on two key tasks: (i) regression based anomaly detection and (ii) temporal persistence-based degradation 

assessment. 

We compared the proposed Multimodal Anomaly Fusion with Temporal Persistence Reasoning (MM-AF + TPR) 

against several baseline models: 

• Isolation Forest (iForest) 

• One-Class Support Vector Machine (OC-SVM) 

• Random Cut Forest-based anomaly detection 

• Autoencoder based anomaly detection 

Evaluation metrics included Precision, Recall, F1-Score for anomaly detection, and RMSE to quantify how 

persistently degradation was predicted over time. 

B. Quantitative Results 

Table III summarizes the comparative performance of all models. 

TABLE III ANOMALY DETECTION AND TEMPORAL TRACKING PERFORMANCE 

Model Precision Recall F1-Score RMSE 

iForest + RNN 0.68 0.54 0.60 1.41 

OC-SVM + RNN 0.63 0.59 0.61 1.38 

Autoencoder + RNN 0.72 0.66 0.69 0.95 

Random Cut Forest + 

RNN 

0.75 0.48 0.58 0.72 

MM-AF + TPR + RNN 0.81 0.74 0.77 0.68 

Our model outperformed all baselines in both detection accuracy and degradation tracking. Notably, the MM-AF + 

TPR + RNN method achieved the lowest Root Mean Squared Error (RMSE), indicating its effectiveness in capturing 

persistent anomalous behavior that correlates with long-term degradation. 

C. Inference and Discussion 

The results demonstrate three key advantages of our approach: 

1) Improved Detection Accuracy: By fusing multiple sensor modalities, our method reduces noise sensitivity 

and improves robustness, leading to better precision and recall in anomaly detection. 

2) Temporal Context Awareness: Unlike conventional models that treat anomalies as isolated events, our 

Temporal Persistence Reasoning module identifies sustained deviations, enabling early warnings for degradation 

rather than late-stage failure detection. 
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3) Generalizability Without Vibration Data: The proposed model maintains high performance despite the 

absence of vibration signals, making it viable for brownfield industrial systems that lack such sensors. 

Fig. 5. Actual vs Predicted TTF highlighting prediction accuracy in two different zones. 

 

Fig. 6. Sample output showing equipment-wise degradation predictions and alert classification. 

Qualitative visualizations (Fig.5, Fig.6) illustrate that the MM-AF + TPR model consistently produces accurate early 

predictions for equipment with shorter Time-to-Failure (TTF), particularly in the high-accuracy zone (Actual TTF < 

4400 hours). The scatter plot shows that predictions remain close to the ideal diagonal in this zone, while the 

tabular results validate the model’s ability to classify alerts—such as Early, Mild Late, and Late with contextual 

relevance. In contrast, higher TTF scenarios demonstrate a wider deviation from the perfect fit, highlighting the 

challenge in predicting long-term degradation with limited signal trends. 

D. Limitations and Future Work 

Although promising, the model currently assumes consistent sensor configurations over time. In dynamic plant 

environments with changing operating modes, further adaptation may be required. Future work will explore 

adaptive thresholding and hybrid prognostics integration for remaining useful life (TTL) prediction. 
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