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ARTICLE INFO ABSTRACT

Machine failure prediction in industrial systems tends to depend on vibration analysis. Most
installed machines, however, do not have vibration or acoustic sensors, leaving alternative
Revised: 12 Feb 2025 prediction methods using proxy sensor readings like temperature, pressure, and environmental
data. This work introduces a new framework for multimodal degradation assessment involving
anomaly detection and temporal persistence modeling. Through the utilization of time-series
sensor data, we extract features representing deviations from an ideal running state and
monitor their persistence across time, similar to health decline in living systems. In contrast to
conventional methods, which depend on explicit failure signifiers, our method targets long-
term anomaly trends and their compounding effects. We compare several machine learning
models, such as Random Survival Forest, Isolation Forest, and Recurrent Neural Networks,
with results showing that failure prediction accuracy greatly improves when engineered
temporal anomaly features are used. The envisioned approach facilitates more powerful
predictive maintenance practices applied in actual industry settings, eliminating surprise
downtimes and maximizing running efficiency.
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I. INTRODUCTION

The industrial equipment reliability is a critical factor in manufacturing efficiency, affecting productivity, safety, and
maintenance expenses. Industries have, over the years, looked for superior methods to forecast and avert machine
failures, shifting from conventional reactive maintenance to adopt predictive maintenance (PdM). PdM applies
real- time data from different sensors mounted on machinery to predict failures, minimizing unplanned downtime,
and maximizing working efficiency. As industrial systems grow in complexity and many interconnected sensors and
devices are installed, a precise failure prognosis becomes progressively necessary to ensure smooth operations and
minimize financial losses.

A. Evolution of Failure Detection Methods

Conventionally, equipment/machine failure detection and avoidance has always relied on scheduled maintenance
practices, and data collected from these machines can be analyzed with rule-based algorithms and alerts can be sent
so that reactive maintenance can be performed [1]. The preceding methods were mostly vibration-based monitoring
because mechanical wear and tear over time tends to show themselves through vibration fluctuations [2]. However,
in the modern industrial environment, many machines that are already commissioned and in service do not have
vibration or acoustic sensors, and therefore alternative methods of failure prediction must be employed [3].
Developments in machine learning (ML) and artificial intelligence (AI) have made it possible to evolve sensor-based
PdM models, utilizing sensor readings including temperature, pressure, chemical compositions, and ambient
parameters to predict the time to failure (TTF) [4]. These techniques have greatly improved predictive accuracy
over conventional methods, but some issues are still unresolved [5].
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B. Existing Knowledge Gaps

Despite remarkable advancements in sensor-based failure prediction, knowledge gaps still remain. Firstly, the
majority of current studies target directly correlated signals, i.e., vibration data, leaving unexplored the potential of
indirect sensor measurements [6]. Secondly, most of the existing PAM methods are static model based which
ignores the temporal degradation trends and compounding effects of long-term anomalies [7]. Also, generalization
of those predictive models are still remaining a challenge, as most ML models are not able to generalize across
various equipment types and their operating conditions [8].

C. Limitations of Previous Studies

One critical issue with the future of PdM is creating scalable, low-cost models that can operate without installing extra
sensors or devices, as additional cost and downtime are major concerns. Many industrial machines are already
deployed in the field, and retrofitting them with specialized sensors may not be feasible. Additionally, sensor data is
often not directly correlated with machine failure incidents, making it difficult to develop reliable predictive models.
To improve failure prediction accuracy, future research must focus on leveraging multimodal data, enhancing
anomaly detection methods, and integrating advanced analytics.

Despite significant advancements in PdM, several limitations remain:

. Limited Sensor Scope: Many studies rely on direct correlations between sensor readings and failures, often
neglecting indirect predictive factors that could improve failure prediction accuracy [1], [2].

. Model Generalization Issues: Existing machine learning models often struggle to adapt across different
machine types and operating conditions. Many PdM frameworks require significant retraining and tuning, which
limits their practical deployment in industrial settings [4].

. Over-Reliance on Vibration Data: While vibration analysis has been extensively studied, it is not always the
most effective failure predictor. Several studies highlight the need for multimodal sensor integration, particularly
when vibration sensors are unavailable or when failure modes are not mechanically driven [3], [5].

Although prior research has identified these challenges, existing methodologies have yet to fully resolve them. For
example, while IoT-based predictive maintenance frameworks have been proposed [5], their scalability and real-
world applicability remain open challenges. Similarly, while sensor fusion techniques improve prediction accuracy,
their dependence on high-quality, synchronized data makes them difficult to implement in practice [4].

To address these challenges, future research should focus on developing scalable, cost-effective multimodal PdM
frameworks that do not require additional sensor installations and can effectively generalize across different
machine types and environments.

D. Contribution of This Work

The aim of this paper is to address existing limitations in predictive maintenance (PdM) by presenting a
multimodal framework for degradation assessment that goes beyond vibration-based monitoring.

This study extends previous research by:

. Introducing a multimodal degradation framework that integrates temperature, pressure, and environmental
sensor data for machine failure prediction.

. Developing anomaly detection techniques that focus on temporal persistence rather than direct failure
indicators with compounding effects.

. Comparing multiple ML models, including Random Survival Forests, Coxnet Survival Analysis, Isolation
Forests, and Recurrent Neural Networks, to evaluate their effectiveness in time-to-failure prediction when
conventional vibration data are unavailable.

Our results demonstrate that incorporating feature engineered temporal anomaly features improves predictive
performance of time to failure, resulting in more efficient PAM methodologies that reduce downtime and
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maintenance costs. By addressing key gaps in PdM research, this research lays the ground for stronger, flexible, and
more economical predictive maintenance practices.

E. Key Terminology and Acronyms
Throughout this paper, we will use the following key terms:

. Predictive Maintenance (PdM): A proactive maintenance strategy that forecasts failures using real-time
sensor data and machine learning models.

. Time to Failure (TTF): The estimated remaining operational time before a machine experiences failure.

. Anomaly Detection: The identification of deviations from normal machine behaviour, which may indicate
potential failures.

These terms will be used consistently, with acronyms introduced upon first use and then applied throughout the
paper.

F. Structure of the Paper

The rest of the paper is structured as follows. Section II gives a thorough literature review of past and recent
literature on methodologies of PdM, consisting of initial rule-based methods, development of vibration-based
failure identification, and present advancements in data-oriented ML models. We also elucidate popular research
from previous studies and papers and highlight their drawbacks. Section III elaborates on the projected multimodal
degradation assessment framework, which includes feature extraction, model selection, and evaluation
criteria.

Section IV presents our experimental results, showing the benefits of our method compared to standard failure
prediction approaches. Lastly, Section V examines the implications of our work and specifies possible directions of
future research.

I1. LITERATURE REVIEW

Predictive Maintenance (PdM) has emerged as a crucial strategy in Industry 4.0 for minimizing downtime,
reducing maintenance costs, and improving operational efficiency. This literature review synthesizes recent
research efforts and highlights gaps that our work addresses.

A. Overview of PAM and Sensor-Based Techniques

PdM relies on sensor data and analytics to estimate the Remaining Useful Life (RUL) or Time to Failure (TTF) of
industrial machinery. Fordal et al. [1] present an ANN-based PdM platform leveraging sensor data to enable
Industry

4.0 adoption. Their approach focuses on vibration data for fault prediction, which is common in literature due to its
effectiveness in capturing early signs of mechanical degradation [3],

[6].

While vibration analysis remains dominant, it poses limitations when vibration sensors are unavailable or
retrofitting is infeasible. Ghazali et al. [3] provide a systematic review of vibration-based monitoring techniques,
but also point out their limitations in scalability and generalizability. Chu et al. [6] reaffirm the need for expanding
PdM beyond vibrationcentric methods. Additional reviews, such as Singh et al. [9], explore the emerging scope of
hybrid sensor systems, including thermal imaging, acoustic, and pressure data.

B. Challenges and Gaps in Existing Research

Nunes et al. [2] identify major obstacles in PAM implementation: noisy data, equipment specificity, and real-time
deployment challenges. Their work calls for broader approaches that incorporate anomaly detection, prognostics,
and scalable architectures.
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Several studies acknowledge that current PAM models are often static and fail to capture temporal degradation
trends [7].

Hurtado et al. emphasize continual learning as a remedy but highlight the lack of practical frameworks to handle
diverse real-time sensor streams effectively.

Shiva et al. [4] and Shen et al. [8] advocate for integrating anomaly detection and physics-informed modeling to
address generalization issues across machine types. Their work shows promise in extending PdM through indirect
sensor modalities such as temperature and pressure.

Recent frameworks also point out the importance of combining unsupervised and supervised learning strategies.
Gupta et al. [10] propose a hybrid CNN-RNN anomaly detection architecture that performs well on irregular sensor
data sequences in manufacturing systems.

C. Anomaly Detection and Temporal Features

Our framework aligns with recommendations from Gogoberidze [11], who explores survival analysis and deep
learning techniques to estimate failure times in large sensor networks. This work inspires the adoption of recurrent
and survival models that account for time dependencies.

Temporal persistence of anomalies has been an underutilized feature in prior research. Vela et al. [5] introduce the
concept of Al model degradation over time and differentiate it from concept drift. Their work motivates our focus on
tracking long-term anomaly trends to enhance predictive performance.

In another study, Lee et al. [12] emphasize the significance of anomaly windows and persistence lengths in
industrial time series. Their proposed anomaly scoring method incorporates recurrence quantification, which we
adapt in our feature engineering pipeline.

D. Multimodal and Non-Vibration-Based Approaches

The multimodal approach is gaining traction. Our work expands on Fordal et al.’s vibration-based model [1] by
integrating temperature, pressure, and environmental signals as predictive features. This multimodal perspective is
consistent with the call from Chu et al. [6] to explore alternative monitoring strategies.

Ravikumar et al. [13] propose a sensor fusion-based PdM system where non-vibration data improves fault
localization and reduces false alarms. Their work supports the feasibility of proxy signal-based PdM frameworks.

Additionally, we adapt the temporal aggregation techniques proposed in recent literature [11] to create time-aware
anomaly features that are embedded within each sample. This enables ML models to learn from the persistence and
patterns of degradation rather than isolated outliers.

E. Survival Models and Sequence-Aware Techniques

Deep survival models offer strong alternatives to traditional PAM forecasting tools. Studies such as by Choudhary et
al. [14] show that DeepCox and LSTM-Cox combinations can outperform static survival analysis models in predicting
TTF using longitudinal sensor data.

Jiang et al. [15] investigate Transformer-based survival modeling in sensor networks and report high accuracy even
with partial observations. This supports the relevance of our time-dependent anomaly-based survival modeling
framework.

F. Summary and Positioning
In summary, the literature suggests:
. Existing PAM systems heavily rely on vibration data, limiting their general applicability.

. There is a strong need for frameworks that leverage indirect sensor readings and emphasize temporal
degradation trends.
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. Survival analysis and recurrent models are underutilized but offer promise in modeling long-term machine
behavior.

. Generalizability and scalability remain key challenges, especially in diverse industrial environments.

. Hybrid and multimodal approaches using temperature, pressure, and acoustic signals are showing increased
viability. Our work addresses these gaps by proposing a novel multimodal degradation framework combining
temporal anomaly detection with survival modeling techniques, creating a costeffective, scalable PdM solution that
can be deployed across various machines without requiring retrofitting.

III. METHODOLOGY

This section presents the complete methodology of our proposed approach: a non-vibration-based multimodal
anomaly detection and fusion framework with temporal persistence modeling for degradation assessment in
industrial systems. The methodology consists of five major components: phase segmentation, multimodal anomaly
detection (regression- and threshold-based), temporal anomaly fusion, weekly and cumulative anomaly
aggregation, and final degradation scoring.

A. Operational Phase Segmentation

Many industrial systems operate under varying load or power conditions. We leverage this property to discretize
the operational space into distinct “phases” based on real-time power consumption. Let Pt denote the system power
at time t. We define power bins [Pi,Pi+1) of width 10 kW to assign each data point to a discrete phase:

Phasej = {t | Pt € [101,10(1 + 1))}
This stratification allows phase-wise modeling of behavior, isolating context-specific anomalies.

B. Multimodal Anomaly Detection

Anomaly detection is performed using both regressionbased residual analysis and static threshold rules.
These methods are applied independently on different sensor pairs and modalities (power, frequency, airflow,
temperature).

1) Linear Regression-Based Residual Anomaly Detection: Let (xt,yt) be a pair of sensor variables (e.g.,

power vs airflow) within a given phase. A simple linear regression model is trained using healthy baseline data (first
year of operation):

Residuals are computed as:
y't=po + Pixt
et=yt-y't

Assuming a Gaussian distribution of residuals, we define an anomaly threshold using a standard deviation
multiplier

k:
et<-k-oe =  Anomaly

where o¢ is the standard deviation of the residuals from baseline data. In our implementation, k = 2 is used for
midload phases (1030 kW), and k = 3 for other phases to balance sensitivity and specificity.

Anomaly labels are recorded as AnomalyRule1 and AnomalyRule2 for different sensor pairs.
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Fig. 1. Anomaly Detection: Visualization of Regression Residuals and Threshold Violations for Phases (10-20KW,
20-30KW and 30-40KW). Normal points are shown in yellow; anomalies in red. The solid blue line represents the
fitted regression line, while dashed lines indicate +3o thresholds.

Fig. 2. Anomaly Detection: Visualization of Regression Residuals and Threshold Violations for Phases (40-50KW
and 50-60KW). Normal points are shown in yellow; anomalies in red. The solid blue line represents the fitted
regression line, while dashed lines indicate +3o thresholds.

Weanty Arpemnaty Costt Over Tume

Fig: 3
2) Threshold-Based Anomaly Detection: Let xt and yt denote readings from two thermal sensors. Static
thresholds [Lx,Ux] and [Ly,Uy] define the acceptable range:
xt €/ [Lx,Ux] vV yt€/[Ly,Uy]l > Anomaly

For example, in our case study, Lx = Ly = 0°Cand Ux = Uy = 185°C. These violations are captured under
AnomalyRules.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 805

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(60s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

C. Temporal Anomaly Fusion and Persistence Modeling

To consolidate anomaly indicators from different rules and modalities, we compute a fused anomaly flag:
isanomaly(t) = AnomalyRule1(t)v

AnomalyRule2(t)v AnomalyRule3(t)

This fused label reflects the presence of an anomaly triggered by any of the detection rules.

To assess long-term degradation, we model the persistence of anomalies over time. Let w denote a time window
(e.g., a calendar week), then:

P

. Weekly anomaly count: Ay = tew isanomaly(t)

. Cumulative anomaly count: Cw =301 Ai

TABLE I
WEEKLY AND CUMULATIVE ANOMALY COUNTS
Week [Weekly Anomaly Cumulative Anomaly
Count Count

2024- 12 12
Wo1
2024~ 8 20
Woz2
2024~ 15 35
Wo3
2024- 10 45
Wog
2024- 17 62
Wos
2024- 14 76
Wob

Weekly anomaly count over time. The plot shows the number of anomalies detected each week across the monitoring
period, highlighting temporal trends in system behavior. The purple line represents the weekly anomaly counts,
and the vertical dashed red line marks the debrief date. This visualization aids in identifying bursts of anomalous
behavior and provides insights into historical degradation patterns.

D. Degradation Scoring and Output

D, = L
max(C')
The final degradation score Dy is computed using normalized cumulative anomaly counts:

This score reflects progressive degradation over time and is used as an input to subsequent time-to-failure (TTF)
prediction models.

E. Time-to-Failure (TTF) Prediction Using Recurrent Neural Networks

Following feature engineering via multimodal anomaly detection and persistence modeling, we formulate the
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Timeto- Failure (TTF) prediction task as a supervised regression problem. The goal is to estimate the remaining
useful life (RUL) of the system at any given time t based on historical sensor readings and derived degradation

indicators.

1) Problem Formulation: Given a multivariate time series
1 2 d

[:r.i ),.TE ). )]T

( a . . .
Xt = 1 Ty € R where d denotes the number of input features (original sensor data and

engineered features like Aw, Cw, and Dw), we aim to learn a function f0(-) parameterized by 6 that maps a
historical window of inputs to the corresponding TTF label yi:

yt=f0 (Xt-L:t) + €

where:

. Xt - L:t={Xt- LXt-L+1,..,Xt} denotes the input sequence of length L,

. L is the lookback window size (set to 24 hours in our implementation),

. e represents the modeling error, assumed to follow a zeromean Gaussian distribution.

The function fO(-) is realized using a bidirectional Long Short-Term Memory (Bi-LSTM) network, which is trained to
minimize the mean squared error (MSE) between the predicted and true TTF values over the training dataset.

2) Model Architecture: Bidirectional LSTM RNN: We adopt a Bidirectional Long Short-Term Memory (Bi-
LSTM) architecture to model the temporal dependencies in both past and future directions within each lookback
window. The detailed model architecture is as follows:

. Input Layer: Historical sequence of features with shape (L,d).
. First Bi-LSTM Layer: 128 units, returns full sequences (L,256).
. Dropout Layer: 20

. Second Bi-LSTM Layer: 64 units, returns final hidden state (128).

. Dropout Layer: 20
. Dense Layer: Fully connected layer with 32 neurons and ReL.U activation.
. Output Layer: Dense layer with 1 neuron and linear activation for TTF prediction.

The parameter counts and layer output shapes are summarized in Table II, as shown in the model summary figure
(attached).
3) Training Strategy: The model is trained to minimize the Mean Squared Error (MSE) loss between

N
_ 1 .2
L) = ;(m )
predicted and true TTF values:

where N is the number of training samples.

TABLE II RNN MODEL ARCHITECTURE SUMMARY

Layer (Type) Output Shape [Param #

Bidirectional LSTM (128 |(None, 10, 189,440

units) 2506)

Dropout (0.2) (None, 10, 0
256)

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 807

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2025, 10(60s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
Bidirectional LSTM (64 |(None, 128) (164,352
units)
Dropout (0.2) (None, 128) 0
Dense (32 units) (None, 32) 4,128
Dense (1 unit) (None, 1) 33
Total Trainable 357,953
Parameters
Optimizer Update 715,008
Parameters

oL
0 e()fn%

The Adam optimizer is employed for gradient-based optimization, using adaptive learning rates to stabilize training:

where 7 is the adaptive learning rate determined by Adam.

Training is performed for 100 epochs with a batch size of 128. Early stopping is monitored based on validation loss
to prevent overfitting, with the best performance observed at epoch 60.

Lowest loss recorded without overfitting

tpochs

Fig. 4. Training and Validation Loss Curves: The blue line represents the training loss, while the red line represents
the validation loss across epochs. The convergence without overfitting indicates stable and effective model training.

4) Feature Set Used for RNN Input: The input features fed into the model for each time step include:

. Raw sensor readings: power, frequency, airflow, temperatures.

. Anomaly rule  outputs:AnomalyRule1, AnomalyRule2, AnomalyRule3s.

. Temporal aggregation features: weekly anomaly count (Aw), camulative anomaly count (Cr), normalized

degradation score (Dw).

This multimodal and hierarchical feature set enriches the model’s temporal understanding of both immediate and
longterm degradation patterns.

5) Inference and TTF Prediction: At inference time, the model takes the latest 24-hour historical sequence
as input and outputs the estimated time-to-failure:

yt” = fO(Xt-24:t)
where y”t is the predicted remaining useful life in consistent time units (e.g., hours or days depending on training

labels).

This prediction is updated continuously as new sensor readings become available, providing real-time prognostic
capability for maintenance decision-making. The proposed methodology is scalable, sensor-agnostic, and
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deployable in data-scarce environments—making it well-suited for realworld, non-vibration-based predictive
maintenance systems.

IV. RESULTS AND INFERENCE

A. Experimental Setup

The proposed approach was evaluated using a real-world industrial dataset composed of multimodal sensor
readings, including operational parameters such as temperature, pressure, power, frequency and current. The
dataset was annotated with anomaly windows based on domain expert feedback and failure logs. The evaluation
focused on two key tasks: (i) regression based anomaly detection and (ii) temporal persistence-based degradation
assessment.

We compared the proposed Multimodal Anomaly Fusion with Temporal Persistence Reasoning (MM-AF + TPR)
against several baseline models:

. Isolation Forest (iForest)

. One-Class Support Vector Machine (OC-SVM)
. Random Cut Forest-based anomaly detection
. Autoencoder based anomaly detection

Evaluation metrics included Precision, Recall, F1-Score for anomaly detection, and RMSE to quantify how
persistently degradation was predicted over time.

B. Quantitative Results
Table ITI summarizes the comparative performance of all models.

TABLE IIT ANOMALY DETECTION AND TEMPORAL TRACKING PERFORMANCE

Model Precision Recall F1-Score RMSE
iForest + RNN 0.68 0.54 0.60 1.41
OC-SVM + RNN 0.63 0.5 0.61 1.38
Autoencoder + RNN 0.72 0.66 0.69 0.95
Random Cut Forest + 0.75 048 0.58 0.72
RNN

MM-AF + TPR + RNNo0.81 0.74 0.77 0.68

Our model outperformed all baselines in both detection accuracy and degradation tracking. Notably, the MM-AF +
TPR + RNN method achieved the lowest Root Mean Squared Error (RMSE), indicating its effectiveness in capturing
persistent anomalous behavior that correlates with long-term degradation.

C. Inference and Discussion
The results demonstrate three key advantages of our approach:

1) Improved Detection Accuracy: By fusing multiple sensor modalities, our method reduces noise sensitivity
and improves robustness, leading to better precision and recall in anomaly detection.

2) Temporal Context Awareness: Unlike conventional models that treat anomalies as isolated events, our
Temporal Persistence Reasoning module identifies sustained deviations, enabling early warnings for degradation
rather than late-stage failure detection.
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3) Generalizability Without Vibration Data: The proposed model maintains high performance despite the
absence of vibration signals, making it viable for brownfield industrial systems that lack such sensors.

2000 4000 8000 10000 12000

6000
Actual TTF

Fig. 5. Actual vs Predicted TTF highlighting prediction accuracy in two different zones.

EquipmentiD y_true y_pred is_hazardous y true in days y pred in days is_early alert

16865 11075 1389.466667 445.984985 True 57.894444 18.582708 True Early Alert

92071 11034 1204.033333 1329.271973 True 50.168056 55.386333 False

8517 11034 1758.033333 1506.697998 True 73.251389 62.779083 True Early Alert

8481 11034 1794.033333 1211.245361 True 74.751389 50.468555 True Early Alert

9532 11034 743.033333  928.798340 True 30.959722 38.699932 False

8028 11022 396.733333 1161.669922 True 16.530556 48.402912 False Late Alert

7465 11034 964.733333 1255.829346 True 40.197222 52.326221 False Late Alert

6670 11034 1759.733333 1214.233765 True 73.322222 50.593075 True  Early Alert

7822 11022 602.733333 1082.597778 True 25.113889 45.108242 False Late Alert

8896 11034 1379.033333 1209.590942 True 57.459722 50.399624 True Early Alert

8701 11022 1574.033333 1291.643677 True 65.584722 53.818485 True  Early Alert

9672 11022 603.033333 803.299988 True 25.126389 33.470833 False

8419 11034 1857.033333 1317.725008 True 77.376389 54.905212 True  Early Alert

8594 11034 1681.033333 1617.045532 True 70.043056 67.376900 Trve  Early Alert

17021 11075 1229.466667 4985.955566 True 51.227778 207.748154 False Late Alert

Fig. 6. Sample output showing equipment-wise degradation predictions and alert classification.

Qualitative visualizations (Fig.5, Fig.6) illustrate that the MM-AF + TPR model consistently produces accurate early
predictions for equipment with shorter Time-to-Failure (TTF), particularly in the high-accuracy zone (Actual TTF <
4400 hours). The scatter plot shows that predictions remain close to the ideal diagonal in this zone, while the
tabular results validate the model’s ability to classify alerts—such as Early, Mild Late, and Late with contextual
relevance. In contrast, higher TTF scenarios demonstrate a wider deviation from the perfect fit, highlighting the
challenge in predicting long-term degradation with limited signal trends.

D. Limitations and Future Work

Although promising, the model currently assumes consistent sensor configurations over time. In dynamic plant
environments with changing operating modes, further adaptation may be required. Future work will explore
adaptive thresholding and hybrid prognostics integration for remaining useful life (TTL) prediction.
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