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ARTICLE INFO ABSTRACT

Childhood Apraxia of speech is neurological motor speech disorder which is due to difficulty of
brain in planning and programming the complex movement of the speech. Especially it can’t be
Revised: 10 Nov 2024 categorized on basis of muscle weakness. Thus, it becomes mandatory to design a speech
Accepted: 28 Dec 2024 recognition system towards detection of childhood apraxia of speech on recorded sounds of
child and doctor conversation. However, manual speech processing technique becomes
challenging to classify the childhood apraxia of speech due to its complex sampling rate.
Adoption of machine learning architecture from artificial intelligence to speech recognition
makes detection more feasible and accurate. Despite of several advantage of the machine
learning and deep learning approaches, there exist some challenges on basis of model
scalability to large vocabulary and speech variability due to accent and style. In order to
mitigate those challenge, deep learning model has to be modelled. In this paper. a new deep
guided convolution neural network is designed and implemented to classify Childhood Apraxia
of speech. Initially preprocessing step is performed to eliminate the noise and transform signal
into segmented frame. Next segmented frame is processed in fast Fourier transform to obtain
the power spectrum. Obtained Power spectrum is projected to proposed model. Convolution
layer of model use mel filter to MFCC features and it is organized in feature map. Extracted
feature is employed to fully connected network to perform precise recognition and
classification of the Childhood Apraxia of speech in order to enhance prognosis of the specified
disease. Experimental analysis and performance analysis of the proposed model have been
evaluated using speech dataset from Ultra Suite Repository in the Python environment. On
Performance analysis of the proposed model using test data of the model through confusion
matrix provides model accuracy of 98.4% which is found to be high compared other
conventional architecture.
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1. INTRODUCTION

Childhood Apraxia is a complex speech disfluency occurs to a child due to multiple stuttering alterations. Stuttering
alteration of speech happens due to brain control in transforming signals to the body which results in complexity in
pronouncing the word with brief silence to certain syllables [1]. Thus, it becomes mandatory to design a speech
recognition system towards detection of childhood apraxia of speech on recorded sounds of child during doctor
conversation for diagnosis as non-invasive techniques on motor speech skills[1]. However, manual speech
processing technique becomes challenging to classify the childhood apraxia of speech due to its complex sampling
rate and it is found as highly intensive, time-consuming and error-prone. However, Adoption of machine learning
architecture from artificial intelligence to speech recognition makes detection more feasible and accurate. Despite
of several advantage of the machine learning and deep learning approaches, there exist some challenges on basis of
model scalability to large vocabulary and speech variability due to accent and style[2].

In order to mitigate those challenge, deep learning model has to be modelled. In this paper. a new deep
guided convolution neural network is designed and implemented to classify Childhood Apraxia of speech. Initially
preprocessing step is performed to eliminate the noise and transform signal into segmented frame. Next segmented
frame is processed in fast Fourier transform to obtain the power spectrum. Obtained Power spectrum is projected
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to proposed model. Convolution layer of model use mel filter to MFCC features and it is organized in feature map.
Extracted feature is employed to fully connected network to perform precise recognition and classification of the
Childhood Apraxia of speech in order to enhance prognosis of the specified disease[3].

The remaining part of the article is sectioned as follows; section 2 provides related work of speech recognition and
classification techniques using machine learning and deep learning architectures. In Section 3, design of proposed
deep learning architecture referred as deep guided convolution neural network is carried out for recognizing and
classifying Apraxia on the speech. Section 4 mentions experimental analysis and performance analysis of the
proposed methodology using speech signals extracted from benchmark ultra-suite repository. Finally, section 5
concludes the work with future suggestions.

2. RELATED WORK

In this section, several machine learning and deep learning architecture employed to process the speech signals
against apraxia of speech have been detailed on its architectural elements and experimental setup were as follows

2.1. Apraxia speech classification using Convolution Neural Network

In this architecture, a convolutional neural network is employed to process speech signal towards
classification of speech apraxia of the child. Architectural elements of the model composed of convolution layer to
extract the speech features, pooling layer to extract the optimal speech features through suitable filters. Extracted
optimal features is processed in fully connected layer using SoftMax function to classify apraxia of speech along loss
function to reduce the interclass variabilities of the model on cross fold validations[4].

2.2, Apraxia speech classification using Graph Convolution Network

In this architecture, a Graph convolution network is employed to process speech signal towards classification of
speech apraxia of the child. Architectural elements of the model composed of dilated convolution layer to extract
the speech features, attention mechanism to extract the optimal speech features through attention coefficients.
Extracted optimal features is processed further in the fully connected layer using SoftMax function to classify
apraxia of speech along loss function to reduce the intraclass variabilities of the model on cross fold validations[5].

3. PROPOSED MODEL

In this section, design of proposed deep learning architecture referred as deep guided convolution neural network is
carried out for recognizing and classifying Apraxia on the speech for speech signals is carried out. Architecture of
proposed model composed of deep guided convolution neural network is represented as follows
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Figure 1: Architecture diagram of the proposed model
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3.1. Signal Preprocessing

Signal Preprocessing is carried out on speech signal to eliminate the noises and normalize the speech
signal. Further it is used to segment the signal into different speech frames. Furthermore, each segmented
technique is employed to fast Fourier transform to generate power spectrum[6]. Further power spectrum of the

signal is mentioned as
1(1+1)

power spectrum Ps = 7C1..A.Eq.1

3.2. Deep Guided Convolution Neural Network

Deep Guided Convolution Neural Network is modeled with multiple layers to process power spectrum of the
signal. Functional outcomes of each layer is as follows

3.2.1. Convolution layer

Convolution layer uses the mel filter to extract the Mel Frequency Cepstral Coefficient features. Mel filter composed
of the bank of filter to obtain the Mel energy of power spectrum with its mel coefficient. Log of the mel energy is
applied to discrete cosine transform to extract the MFCC feature on correlating its value with mel spectrum[7].
MFCC coefficients contain rate changes of different spectrum bands. MFCC features is represented as

MFCC features =4 [;” cos(2nwr)dr....Eq.2

3.2.2. Pooling layer

Pooling layer uses max pooling function to extract the dense MFCC features and represents in form of dense feature
map. Table 1 provides the hyperparameter setting of Deep Guided Convolution Neural Network architecture.
Table 1: Hyper parameter of Deep Guided Convolution Neural Network Architecture

Hyperparameter Value
Epoch 65
Loss function Cross Entropy
Activation Function ReLU
Batch Size 35
Learning rate 1076

3.2.3. Fully connected layer

Fully connected layer of the model process MFCC features using SoftMax function and loss function.
Support vector machine is used as SoftMax function and cross entropy is used as loss function to process the Dense
MFCC features and its feature map[8].

e Activation Function

Activation function employs the ReLu activation function to generate linear feature vector and minimize
the errors[9].

¢ Loss function
Loss function employs cross entropy function to eliminate the intraclass variability of the feature vector[10].

¢ SoftMax function — Support vector Machine Classifier
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Support vector machine processes the linear MFCC feature vector. It transforms linear MFCC feature vector into
support vector. Hyperplane is established to support vector and class to vector is determined using decision
boundaries to determine the disfluencies[11].

Decision Boundary Function of Support vector Ds-6( )’ ?z o DM(D...Eq.3

Decision boundary function provides the speech classes to the support vector as normal and apraxia of speech
class.

Algorithm 1: Deep Guided Convolution Neural Network

Input: Speech Signal
Output: Class Label={Apraxia, Normal}
Process
Signal Preprocessing ()
Noise Filtering (Signal)
Signal Normalization (Noise filter signal)
Power spectrum= Segment (Frames with Windowing)
Deep Guided Convolution Neural Network ()
Convolution layer ()
Mel filter (power spectrum)
MFCC features
Pooling layer _ Max(MFCC features)
Dense MFCC features
Fully Connected layer
Activation function( Dense MFCC features )
Linear MFCC features
Loss Function_Cross entropy ( Linear MFCC features )
Eliminate the overfitting issues
SoftMax functions_ SVM(Linear MFCC features)
Class of speech = {Apraxia, Normal}

4. EXPERIMENTAL RESULTS

Experimental analysis of the proposed deep guided convolution neural network has carried out using speech signal
extracted from benchmark ultra-suite repository in python environment [12]. Performance analysis of the model is
carried out using test data through confusion matrix to obtain the parameter value of true positive, true negative,
false positive and false negative.

4.2. Performance metrics

The model performance such as precision, recall and f measure are computed using parameter of the confusion
matrix. Confusion matrix classifies power spectrum of the speech signal into normal and apraxia of speech with
respect to the matrix elements of the MFCC features.

e Precision
It is computed as correctly predicted MFCC feature to speech class among extracted MFCC feature. In other words,
it is defined as ratio of true positive to combination of true positive and false positive of prediction outcomes.
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Figure 2: Precision Analysis
It is represented as

s ...Eq.3
TP+FP
Figure 2 provides precision analysis of the speech recognition and classification technique using Deep guided
convolution neural network. It performs better while compared to existing architectures such as convolution neural
network and graph convolution network[13].

Precision =

¢ Recall
It is computed as incorrectly predicted MFCC feature to speech class among extracted MFCC feature. In other
words, it is defined as ratio of true positive to combination of true positive and false negative of classification
outcomes. It is represented as

Recall = TPL..Eq.4
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Figure 5: Recall Analysis
Figure 3 provides recall analysis of the speech recognition and classification technique using Deep guided
convolution neural network. It performs better while compared to existing architectures such as convolution neural
network and graph convolution network[14].

e Accuracy
It is defined as ratio of True positive to combination of true positive and false negative on classifying speech
data on basis of the MFCC features It is represented as

Accuracy = Eq.7

TP
2TP+FN’’
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Figure 6 : Accuracy Analysis
Figure 4 provides accuracy analysis of the speech recognition and classification technique using Deep guided
convolution neural network. It performs better while compared to existing architectures such as convolution neural
network and graph convolution network[15].

Table 3: Performance Evaluation of speech Recognition Technique Techniques

Disease Technique Accuracy Precision Recall
Classes
Apraxia Deep Guided Convolution Neural | 98.4 96.4 98.8
Network — Proposed model
Convolution Neural Network- | 94.7 92.8 94.9
Existing Model 1
Graph  Convolution = Network- | 96.7 94.2 96.8
Existing Model 2
Normal Deep Guided Convolution Neural | 98.4 96.4 98.8
Network — Proposed model
Convolution Neural Network- | 94.7 92.8 94.9
Existing Model 1
Graph  Convolution = Network- | 96.7 94.2 96.8
Existing Model 2
CONCLUSION

In this paper, deep guided convolution neural network is designed and implemented to classify Childhood Apraxia
of speech. Deep guided convolution neural network composed of multiple layer process preprocessed speech signal
in form of power spectrum on extracting MFCC features using mel filter. Those extracted feature is processed in the
fully connected network to perform precise recognition and classification of the Childhood Apraxia of speech in
order to enhance prognosis of the specified disease. Experimental analysis and performance analysis of the
proposed model proves that proposed model obtains accuracy of 98.4% as it is found to be high compared other

conventional architecture to the speech dataset from Ultra Suite Repository in the Python environment.
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