Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Evaluating Security Models for Database-Driven Microservices
using Java and Hibernate

1Jaya Krishna Modadugu, 2Ravi Teja Prabhala Venkata, 3Karthik Prabhala Venkata
1Software Engineer, Saint Louis, MO, USA, 63005
Email: jayakrishna.modadugu@gmail.com
ORCID: 0009-0008-9086-6145
2Senior Manager, Software Engineer, Saint Louis, MO, USA, 63005
Email: raviteja.prabhala@gmail.com
ORCID: 0009-0007-7265-212X
3Senior Specialist, Project Management, Hyderabad, India
Email: karthiko30789@gmail.com
ORCID: 0009-0001-4977-9006

ARTICLE INFO ABSTRACT

Received: 08 Nov 2024 This paper investigates security models for database-driven microservices using

Java and Hibernate. The primary purpose is to evaluate authentication, access

control, encryption, and transactional integrity mechanisms. Secondary research

Accepted: 28 Dec 2024 was employed, analysing academic literature, technical reports, and case studies for
evidence. Role-based and attribute-based access controls are examined for fine-
grained permission enforcement across distributed services. Hibernate ORM is
analysed for SQL injection prevention and ACID-compliant transactional integrity.
JWT and OAuth2 integration are evaluated for stateless and scalable authentication
across service endpoints. AES encryption secures data-at-rest, while TLS ensures
safe transmission between microservices. Logging, anomaly detection, and
monitoring frameworks are reviewed for real-time threat identification and
mitigation. Findings demonstrate that RBAC simplifies administration, whereas
ABAC enables dynamic, context-aware access control. Hibernate’s ORM mapping
reduces injection vulnerabilities but requires careful configuration. JWT/OAuth2
improves scalability and endpoint security, but token revocation management
remains essential. AES and TLS provide robust data confidentiality and integrity,
contingent on proper key management. Hybrid RBAC-ABAC models enhance
permission enforcement without significant performance loss. Containerised
microservices require secure propagation of keys, tokens, and policies. Overall,
layered security combining access control, encryption, authentication, and
monitoring ensures resilient, scalable, and secure Java-Hibernate microservices.
This study highlights practical trade-offs, implementation challenges, and
mitigation strategies, providing comprehensive guidance for developers and
researchers. The paper contributes evidence-based insights into securing database-
driven microservices in distributed, high-concurrency architectures.

Revised: 18 Dec 2024

Keywords: Microservices, Hibernate, Java, Security, Access, Encryption, RBAC,
ABAC, JWT, TLS

Introduction

Database-driven microservices demand robust security frameworks to protect sensitive data. Java
enables modular service construction, supporting secure API and business logic layers. Hibernate

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2660
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

facilitates object-relational mapping, enforcing entity-level access control and preventing SQL injection
attacks. Authentication strategies, including JWT and OAuth2, integrate seamlessly with service
endpoints. Role-based and attribute-based access models govern fine-grained permissions for
microservice operations. Encryption techniques, such as AES for data-at-rest and TLS for data-in-
transit, ensure confidentiality. Transactional integrity is maintained through ACID-compliant
Hibernate sessions. Logging and anomaly detection monitor unauthorised access attempts in real-time.
This study evaluates security models' effectiveness, scalability, and integration in Java-Hibernate
microservices, highlighting mitigation strategies against injection, privilege escalation, and data leakage
threats in distributed architectures.

Literature Review

Recent research emphasises secure microservice architectures for database-driven systems. Java
microservices leverage Spring Boot and Jakarta EE for modular, maintainable service layers. Hibernate
ORM ensures object-relational mapping (Huang et al.,, 2022), preventing SQL injection through
parameterised queries and entity validation. Studies show that role-based access control (RBAC) and
attribute-based access control (ABAC) effectively enforce fine-grained permissions.

4 r
Complexity ficroservice Intrusior Algorithms
Scenarios Detection Dataset
e _J — {
~ ™ ~ N
Risk Tolerance
: 7 Procedure
Scenarios
9 y K =

L

Metrics
7 Algorithms
Ranking

Figure 1: Evaluating intrusion detection for microservice applications

(Source: José Flora, 2024)

JWT, OAuth2, and OpenID Connect are widely implemented for stateless authentication across
distributed services. Data encryption using AES, RSA, and TLS protocols protects both rest and transit
states. Research highlights anomaly detection and logging frameworks for real-time threat
identification. Containerised deployments, such as Docker with Kubernetes, necessitate additional
security measures, including network segmentation and secret management (Henckel et al., 2022).
Several works compare centralised versus decentralised authentication models, showing trade-offs in
latency and scalability. Multi-tenancy introduces data isolation challenges, mitigated through schema
separation or row-level security policies. Benchmarking studies reveal that Hibernate caching strategies
reduce database load while maintaining transactional consistency.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2661
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

I A Cheatsheet on (APl Gateways f) ByteByteGo

What is an APl Gateway? API Gateway Features

An API Gateway decouples the client Client Apps
applications from the backend services —
@ B W
Client Apps Central entry point for all the

Ppr— clients
“ Service A 1 o4 HTTP Request
) \ / APl Gateway

2, Parameter __, &3 Whitelist __, AuthN

R B‘D —— > ServiceB Validations Verification AuthZ

Service i Rate
/ \ ?) Dpiscovery +— (& Routing «—(5) Limiting

Service C
v

8 Request Circuit

Transformation Breaker Caching

Benefits of APl Gateway

API Gateways simplify the management of APIs by Error Logging
providing a central location for routing, monitoring,
and securing traffic l

Handing

API Gateways protect backend services from
unauthorized access

Microservices @ Logs

API Gateways can improve the performance and
scalability of APl services

API Gateways provide a consistent and simplified
interface for client applications

API Gateway Platforms Securing Backend with APl Gateways

Amazon API Gateway is a fully managed 5 GetPublic key
service hy AWS Get Acce.ﬁ Token Built-in JWT

client_ ueaem.axs Identity 73 Authorization
Provider

Azure APl Management is a o Tl Module
comprehensive platform for publishing, "‘V“;.",.,.i’, o0
managing, and analyzing APIs Remm Access /

Vi

Google Cloud Endpoints simplifies the 3 “X’c"cke"s;‘?:,[;"n" alidate

development, deployment, and Client Access Token API
management of APIs on GCP Application ﬂ D T Endpoint
7 35\'.2 Token

9 Return
S Response
Kong is an open-source API gateway and Rotien
microservices management platform 8) resuits
10 Return 403 it
Token Invalid

Figure 2: API Gateway
Source: ByteByteGo, 2024

Literature also examines security misconfigurations in ORM mappings as major vulnerabilities.
Microservice-to-microservice communication requires mutual TLS and API gateway enforcement for
secure inter-service calls (Martin et al.,). Advanced intrusion detection frameworks using machine
learning complement traditional security models, detecting anomalous queries and privilege
escalations. Researchers consistently emphasise integrating security testing into CI/CD pipelines, using
automated static and dynamic analysis tools. Overall, the literature converges on hybrid approaches
combining Java microservice design, Hibernate ORM best practices, robust authentication, encryption,
and monitoring to ensure database-driven services remain resilient, scalable, and secure against
evolving cyber threats in distributed environments.

Method

This study employs a secondary research methodology to evaluate security models in database-driven
microservices (Ajayi et al., 2023). Secondary research allows a comprehensive analysis of existing
academic literature, technical reports, and case studies on Java and Hibernate implementations. Using
published data accelerates insights into proven security practices without deploying experimental
microservices. It facilitates comparison of role-based and attribute-based access control, JWT/OAuth2
authentication, and AES/TLS encryption techniques (Tran Florén et al., 2021).

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2662
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management

2024, 9(4s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article
JWT Authentication Workflow NESVO
solutions
1.User Authentication
request
API Gateway as JWT Issuer
2. JSON Web Token OR
Third-party JWT Issuer
Login
_
a—. API Gateway with JWT
3. JSON Web authentication
Token
End User Client Application > Native API
4. Protected = app identification using the
resource claims
Token Validation

Figure 3: Implementing OAuth2 and JWT using Golang
Source: Nagraj-todkari, 2024.

This method also enables critical evaluation of transactional integrity, ORM security, and inter-service
communication patterns across distributed systems. Leveraging multiple sources ensures triangulation,
improving the reliability and validity of findings. Secondary research is cost-effective and mitigates risks
associated with live system testing in production environments. Additionally, it captures trends and
benchmark results from diverse microservice architectures and deployment environments. Overall, this
approach provides a robust, evidence-based understanding of effective security models while
maintaining feasibility, reproducibility, and technical depth in analysing Java-Hibernate database-
driven microservices.

Result

Role-based and attribute-based access models effectively enforce fine-grained
microservice permissions.

Role-based access control (RBAC) assigns permissions based on predefined user roles. Attribute-based
access control (ABAC) grants access dynamically using user, resource, and environment attributes.
Studies show RBAC reduces administrative complexity by grouping users with similar privileges
efficiently (Chandramouli et al., 2021).

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2663
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

PERMISSIONS ACCESS

[] @& Wworkspace settings
Y

Beneficial
owner @ Move money

& Account analytics

Access is Works ;
pace settings
Map users - Map roles to granted or
D # aaa : e

to roles permissions denied @ Account analytics

Accountant — — @ Move money

Account analytics
e 0 0 0 0 Nt anatyt
' ¥ ¥ ¥ ¥ Move money

Book-keeper @ Attach receipt

Figure 4: Role-based access control (RBAC)
Source: Isaac Ejeh, 2024

ABAC provides finer-grained control, adapting to contextual conditions like time, location, and device.
In microservices, RBAC ensures that services only process authorised requests per role definitions.
ABAC dynamically evaluates policies during runtime, mitigating privilege escalation risks in distributed
systems. Integration with Java security frameworks enables seamless enforcement across multiple
microservice endpoints. Hibernate entity mappings support access checks at the object and field levels.
Combining RBAC and ABAC enhances security while maintaining system scalability and performance
(Ameer et al., 2022).

Attribute-based Access Control

Approve
Access

ENVIRONMENT
Er enta

Data Attribute Access

@ DATA ASSET Deny

@®frontegg

Figure 5: ABAC Framework
Source: Frontegg, 2023
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2664

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Logging frameworks record permission violations and policy enforcement actions for auditing
purposes. Real-time monitoring detects unauthorised access attempts and triggers automated alerts.
Research demonstrates that hybrid RBAC-ABAC models improve compliance with regulatory
requirements. Containerised deployments require role and attribute definitions to propagate across
Kubernetes-managed services. Multi-tenant environments benefit from ABAC’s dynamic evaluation to
isolate tenant data effectively. Benchmark results indicate minimal latency impact when applying access
control at the microservice level (Bambhore et al., 2022). Overall, RBAC and ABAC integration ensures
robust, context-aware, and scalable security enforcement in database-driven Java microservices.

Hibernate ORM prevents SQL injection and maintains transactional integrity in
distributed databases.

Hibernate ORM abstracts database interactions using object-relational mapping for Java applications.
It automatically converts entity objects to SQL queries, reducing manual query construction.
Parameterised queries in Hibernate prevent SQL injection by separating data from query structure
(Ekeh et al, 2022). This mechanism blocks malicious input from altering database commands.
Hibernate supports session-based transactions to ensure ACID compliance across distributed
microservices. Transactional integrity is maintained even during concurrent operations or service
failures. Cascading operations propagate changes consistently across related entities, avoiding partial
updates. Optimistic and pessimistic locking mechanisms prevent race conditions in high-concurrency
environments. Lazy and eager fetching strategies optimise database load without compromising data
consistency (Uzzaman et al., 2024).

&g’ TOOLBOX"
FUNCTIONING OF AN SQL INJECTION

2. Malicious SQL query
is validated & command
is executed by database.

1. Hacker identifies
vulnerable, SQL-driven
website & injects malicious
SQL query via input data.

-

WEBSITE INPUT FIELDS

3. Hacker is granted access to view
and alter records or potentially act
as database administrator

HACKER DATABASE

Figure 6:SQL Injection
(Source: Chiradeep et al., 2022)
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2665

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Hibernate’s second-level caching improves read performance while preserving transactional
correctness. Integration with Spring Boot enables declarative transaction management for
microservices, simplifying rollback and commit operations. Research indicates Hibernate reduces
common security misconfigurations in database-driven applications. Audit logging captures executed
queries and transaction states for forensic analysis. Containerised deployments retain transactional
guarantees when combined with distributed database protocols like XA or two-phase commit. Query
validation frameworks in Hibernate detect unsafe operations before execution. Overall, Hibernate ORM
provides secure, efficient, and consistent database access for microservices. (Cristofaro, 2023) It
prevents SQL injection attacks and maintains transactional integrity, ensuring reliable operation in
distributed Java-based architectures.

JWT and OAuthz2 integration ensures stateless, secure authentication across
microservice endpoints.

JSON Web Tokens (JWT) enable stateless authentication by encoding user claims securely . Each token
contains cryptographic signatures, preventing tampering during transmission (Gowda et al., 2023).
OAuth2 provides standardised authorisation flows, allowing secure third-party access delegation. In
microservices, JWT tokens carry identity and role information across service boundaries. Stateless
authentication reduces server-side session management overhead, improving scalability in distributed
architectures. Token expiration and refresh mechanisms minimise risks of token replay attacks.
Integration with Spring Security simplifies the enforcement of OAuth2 and JWT policies at endpoints
(Dimitrijevi¢ et al., 2024).

""""""""""""""""" | "~ Senice
| Inter-connected gh
! E E Register As a
H Fureka Client—J]
I O | O
SO v a0
' ' § \ J
. 2 Database
: bgistry) i Eureka Client (Service -1) . For Service -1
— <|P>:<PORT>
M — !
s~ - N
— >
. v (o
“ Q’./) H L]
' ' Database
Web Load Balancer | : Eureka Client (Service -2) for Service -2
bl : <IP>:<PORT>
—-— ! ' X
Mobile e
[\
! \ J
i i 2 Database
; Authentication : Eureka Client (Service -3) For Service -3
} (OKTA/Oauth2) ; <IP>:<PORT>
Figure 7: High-Level Microservice Architecture With Authorizations
(Source: Md Amran Hossain et al., 2024)
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2666

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Claims-based access ensures fine-grained permissions without querying central databases repeatedly.
HTTPS/TLS secures token transmission to prevent interception or man-in-the-middle attacks.
Research demonstrates JWT reduces latency compared to session-based authentication in high-
concurrency microservices. OAuth2’s authorisation code and client credentials flows provide flexible,
context-specific access control. Revocation strategies combined with short-lived tokens mitigate
unauthorised access risks. JWT signatures use HMAC or RSA to validate token authenticity efficiently
(Chopra et al., 2022). Logging frameworks capture failed authentication attempts for real-time
monitoring and audit purposes. Containerised environments require proper secret management for
signing keys to maintain security. Microservice-to-microservice communication also benefits from
token propagation for secure inter-service requests (Boateng, 2023). Overall, JWT and OAuth2
integration ensure stateless, cryptographically secure, and scalable authentication for database-driven
Java microservices. It strengthens endpoint security while maintaining performance and resilience in
distributed deployments.

AES and TLS encryption safeguard data-at-rest and in-transit against cyber threats.

AES encryption protects sensitive data stored in databases using symmetric keys. It ensures
confidentiality for data-at-rest in microservices and distributed systems (Jangam et al., 2023). Key
management strategies, including rotation and secure storage, prevent unauthorised decryption. TLS
encrypts data during transmission between microservices, preventing interception or man-in-the-
middle attacks. Combined, AES and TLS maintain end-to-end data security across distributed
architectures. Java and Spring frameworks provide built-in libraries for implementing both AES and
TLS. Session keys in TLS are generated dynamically to prevent reuse or replay attacks.

90 /8 [82 80 Q0 o8

. Endpoint
File Servers & Document '
External Databases laptops, PCs

Network Shares Mgmt Systems Storage Devices

DATA AT REST

Figure 8: Protection of Data at Rest

Mobile Cloud Storage

(Source: Sealpath, 2024)

Cypher suites like AES-256 with GCM provide both encryption and integrity verification (Tacchi
Mondaca,, 2024). Hibernate supports encrypted fields for database entities to secure persisted
information. Research shows that properly configured AES and TLS reduce attack surfaces significantly.
Containerised microservices require secure secrets management for encryption keys and certificates.
TLS mutual authentication strengthens trust between services, ensuring verified endpoints only.
Monitoring frameworks detect anomalies in encrypted traffic patterns, signalling potential threats. AES
encryption also protects backups and archival storage in multi-tenant environments. Performance
benchmarks indicate minimal latency impact when using hardware-accelerated AES and TLS (Dewanta
et al., 2022). Audit logs capture encryption operations and key usage events for compliance. Overall,
integrating AES for data-at-rest and TLS for data-in-transit ensures robust confidentiality, integrity,
and resilience. These mechanisms secure database-driven Java microservices against evolving cyber
threats effectively.

Discussion

The findings indicate RBAC and ABAC enforce precise permissions effectively across services (Sahani
et al., 2022). RBAC simplifies administration but lacks dynamic context evaluation compared to ABAC

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2667
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

models. ABAC enhances security in multi-tenant and dynamic environments through real-time
attribute checks.

(&)
8 POLICY

Permit Managers to® @ ®
USER

Y

Provided That ®®®

Subject Attributes
(X1}

®

&

ENVIRONMENT

If #9® OR 000

Unless @ @@

Y

ST

Environmint.al.Atlributes A U T H O R I ZAT I o N > @
E] ENGINE PERMIT

g o

INFORMATION ASSET

DENY

Resource & Action Attributes
(X1}

Figure 9: RBAC vs ABAC

Source: Frontegg, 2022

Hibernate ORM prevents SQL injection, but misconfigured entity mappings remain a potential
vulnerability. Transactional integrity is maintained via ACID-compliant sessions, though distributed
transactions add latency. JWT and OAuth2 provide stateless authentication, but token revocation and
short lifetimes remain critical challenges. Encryption with AES and TLS ensures data confidentiality,
yet key management errors can compromise security (Shakor et al, 2024). Combining these
mechanisms strengthens microservice resilience but increases implementation complexity. Real-time
logging and anomaly detection improve threat visibility but generate significant data overhead.
Containerised deployments necessitate the secure propagation of policies, tokens, and keys across pods.
Findings highlight trade-offs between fine-grained security and system performance in distributed
architectures. Hybrid models combining RBAC and ABAC achieve stronger access control without
excessive latency (Aftab et al., 2022). Overall, these results emphasise that layered security, proper
configuration, and monitoring are essential. The discussion reveals practical limitations and necessary
mitigations to implement secure Java-Hibernate microservices effectively.

Conclusion

This study concludes that robust security models are essential for database-driven microservices using
Java and Hibernate. Role-based and attribute-based access control effectively enforces fine-grained
permissions across distributed services. Hibernate ORM prevents SQL injection and maintains
transactional integrity, ensuring consistent and secure database operations. JWT and OAuth2
integration provide stateless authentication, enhancing scalability and endpoint security. AES
encryption safeguards data-at-rest, while TLS ensures secure data-in-transit, collectively protecting
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2668
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

sensitive information from cyber threats. Real-time logging, monitoring, and anomaly detection
complement these mechanisms, allowing rapid identification of unauthorised access or policy
violations. Research findings also highlight that combining RBAC and ABAC with secure ORM practices
reduces privilege escalation and misconfiguration risks. Containerised deployments require careful key
management, policy propagation, and mutual authentication for inter-service communications.
Overall, integrating these security strategies provides a comprehensive, scalable, and resilient
framework. The paper demonstrates that Java-Hibernate microservices can achieve high security
without compromising performance or transactional consistency.

Bibliography

[1] Aftab, M.U., Hamza, A., Oluwasanmi, A., Nie, X., Sarfraz, M.S., Shehzad, D., Qin, Z. and Rafiq,
A., 2022. Traditional and hybrid access control models: A detailed survey. Security and
Communication Networks, 2022(1), p.1560885. Available at
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1560885

[2] Ajayi, V.0., 2023. A review on primary sources of data and secondary sources of data. Available
at SSRN 5378785. Available at
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5378785

[3] Ameer, S., Benson, J. and Sandhu, R., 2022. Hybrid approaches (ABAC and RBAC) toward
secure access control in smart home IoT. IEEE transactions on dependable and secure
computing, 20(5), Pp-4032-4051. Available at
https://ieeexplore.ieee.org/abstract/document/9926074/

(4] Bambhore Tukaram, A., Schneider, S., Diaz Ferreyra, N.E., Simhandl, G., Zdun, U. and

Scandariato, R., 2022, August. Towards a security benchmark for the architectural design of
microservice applications. In Proceedings of the 17th International Conference on Availability,

Reliability and Security (pp. 1-7). Available at
https://dl.acm.org/doi/abs/10.1145/3538969.3543807
[5] Boateng, Y.M. and Asante, A.S., 2023. Using Kubernetes with Dapr for Distributed

Microservice Communication. Available at https://www.researchgate.net/profile/Jummy-
Johnson/publication/392526061_Using_ Kubernetes_with_Dapr_for_Distributed_Microser
vice_Communication/links/68472dbad1054bo207fadas5/Using-Kubernetes-with-Dapr-for-
Distributed-Microservice-Communication.pdf

[6] Chandramouli, R., Butcher, Z. and Chetal, A., 2021. Attribute-based access control for
microservices-based applications using a service mesh. NIST Special Publication, 800(S 41).
Available at
https://csre.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
204B.pdf

[7] Chopra, S., Singh, A. and Singh, A., 2022. An Authentication Based Scheme for Mobile
Applications Using THJWT. In WCNC (pp. 13-27). Available at https://ceur-ws.org/Vol-
3244/PAPER_o02.pdf

[8] Cristofaro, T., 2023. Kube: a cloud ERP system based on microservices and serverless
architecture =~ (Doctoral dissertation, Politecnico di Torino). Available at
https://webthesis.biblio.polito.it/29515/

[9] Dewanta, F., Yustiarini, B.Y. and Harsritanto, B.I.R., 2022. A study of secure communication
scheme in MQTT: TLS vs AES cryptography. Jurnal Infotel, 14(4), pp.269-276. Available at
https://ejournal.ittelkom-pwt.ac.id/index.php/infotel /article/view/807

[10] Dimitrijevi¢, N., Zdravkovié, N., Bogdanovi¢, M. and Mesterovic, A., 2024. Advanced Security
Mechanisms in the Spring Framework: JWT, OAuth, LDAP and Keycloak. In Proceedings of
the 14th International Conference on Business Information Security (BISEC 2023) (pp. 64-70).
Available at https://ceur-ws.org/Vol-3676/short_09.pdf

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2669
Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1560885
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5378785
https://ieeexplore.ieee.org/abstract/document/9926074/
https://dl.acm.org/doi/abs/10.1145/3538969.3543807
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204B.pdf
https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204B.pdf
https://ceur-ws.org/Vol-3244/PAPER_02.pdf
https://ceur-ws.org/Vol-3244/PAPER_02.pdf
https://webthesis.biblio.polito.it/29515/
https://ejournal.ittelkom-pwt.ac.id/index.php/infotel/article/view/807
https://ceur-ws.org/Vol-3676/short_09.pdf

Journal of Information Systems Engineering and Management

2024, 9(4s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article
[11] Ekeh, D., 2022. Detect and prevent SQL injection vulnerability. Available at

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

https://essuir.sumdu.edu.ua/bitstream/123456789/89048/1/Ekeh_bac_rob.pdf

Gowda, P.G.A.N., 2023. Securing Microservices Architecture Using JSON Web Tokens (JWS).
North American Journal of Engineering Research, 4(3). Available at
http://najer.org/najer/article/download/75/82

Henckel, I. and Soderberg, D., 2022. Database Loading Strategies for an In-Memory Cache in
Java. LU-CS-EX. Available at
https://lup.lub.lu.se/luur/download ?func=downloadFile&recordOId=9080748&fileOId=908
0752

Huang, Z., Shao, Z., Fan, G., Yu, H., Yang, K. and Zhou, Z., 2022. HBSniff: A static analysis tool
for Java Hibernate object-relational mapping code smell detection. Science of Computer
Programming, 217, p.102778. Available at
https://www.sciencedirect.com/science/article/pii/S0167642322000119

Jangam, S.K., 2023. Importance of Encrypting Data in Transit and at Rest Using TLS and Other
Security Protocols and API Security Best Practices. International Journal of Al, BigData,
Computational and Management Studies, 4(3), pp.82-91. Available at
https://ijaibdems.org/index.php/ijaibdcms/article/view/242

Sahani, G.J., Thaker, C.S. and Shah, S.M., 2022. Supervised Learning-Based Approach Mining
ABAC Rules from Existing RBAC Enabled Systems. EAI Endorsed Trans. Scalable Inf. Syst.,
10(1), p.€9. Available at https://ieeexplore.ieee.org/abstract/document/9926074/

Shakor, M.Y., Khaleel, M.I., Safran, M., Alfarhood, S. and Zhu, M., 2024. Dynamic AES
encryption and blockchain key management: a novel solution for cloud data security. IEEE
Access, 12, pp.26334-26343. Available at
https://ieeexplore.ieee.org/abstract/document/10382485/

Tacchi Mondaca, A., 2024. Testing TLS 1.3 Implementations Against Common Criteria for
Information Technology Security Evaluation: Using TLS-Attacker to automate collaborative
Protection Profile tests. Available at https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1856439

Tran Florén, S., 2021. Implementation and Analysis of Authentication and Authorization
Methods in a Microservice Architecture: A Comparison Between Microservice Security Design
Patterns for Authentication and Authorization Flows. Available at https://www.diva-
portal.org/smash/record.jsf?pid=diva2:1592510

Uzzaman, A., Jim, M.M.IL., Nishat, N. and Nahar, J., 2024. Optimizing SQL databases for big
data workloads: techniques and best practices. Academic Journal on Business Administration,
Innovation & Sustainability, 4(3), pp-15-29. Available at
https://www.researchgate.net/profile/Janifer-
Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKL
OADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMI
ZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-
PRACTICES.pdf

References of Figure

ByteByteGo, 2024. API Gateway. Available at https://blog.bytebytego.com/p/api-gateway
Chiradeep BasuMallick, 2022. What Is an SQL Injection? Meaning, Cheatsheet, Examples, and
Prevention Best Practices for 2022. Available at https://www.spiceworks.com/it-
security/application-security/articles/what-is-sql-injection/

Frontegg, 2023. What Is ABAC and How Does it Enhance Security? Available at
https://frontegg.com/guides/abac-security

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2670

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

https://essuir.sumdu.edu.ua/bitstream/123456789/89048/1/Ekeh_bac_rob.pdf
http://najer.org/najer/article/download/75/82
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9080748&fileOId=9080752
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9080748&fileOId=9080752
https://www.sciencedirect.com/science/article/pii/S0167642322000119
https://ijaibdcms.org/index.php/ijaibdcms/article/view/242
https://ieeexplore.ieee.org/abstract/document/9926074/
https://ieeexplore.ieee.org/abstract/document/10382485/
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1856439
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1856439
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1592510
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1592510
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://blog.bytebytego.com/p/api-gateway
https://www.spiceworks.com/it-security/application-security/articles/what-is-sql-injection/
https://www.spiceworks.com/it-security/application-security/articles/what-is-sql-injection/
https://frontegg.com/guides/abac-security

Journal of Information Systems Engineering and Management

2024, 9(4s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article
[24] Isaac Ejeh, 2024. What 1is role-based access control (RBAC)? Available at

[25]

[26]

[27]

[28]

[29]

https://stytch.com/blog/what-is-rbac/

José Flora, Nuno Antunes, 2024. Evaluating intrusion detection for microservice applications:
Benchmark, dataset, and case studies. Available at
https://www.sciencedirect.com/science/article/pii/S0164121224001870

Nagraj-todkari, 2024. Building Secure API's: Integrating OAuth2 and JWT with Golang.
Available at https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-
oauth2-and-jwt-with-golang/

Md Amran Hossain, Manoj Debnath, 2024. How To Implement OAuth2 Security in
Microservices. https://dzone.com/articles/how-to-achieve-oauth2-security-in-microservices-
di

Sealpath, 2024. Protecting the three states of data. Available at
https://www.sealpath.com/blog/protecting-the-three-states-of-data/

Frontegg, 2022. RBAC vs ABAC: Differences, Benefits & Use Cases. Available at
https://www.sealpath.com/blog/protecting-the-three-states-of-data/

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 2671

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

https://stytch.com/blog/what-is-rbac/
https://www.sciencedirect.com/science/article/pii/S0164121224001870
https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-oauth2-and-jwt-with-golang/
https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-oauth2-and-jwt-with-golang/
https://www.sealpath.com/blog/protecting-the-three-states-of-data/

