
Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2660

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Evaluating Security Models for Database-Driven Microservices

using Java and Hibernate

1Jaya Krishna Modadugu, 2Ravi Teja Prabhala Venkata, 3Karthik Prabhala Venkata

1Software Engineer, Saint Louis, MO, USA, 63005

Email: jayakrishna.modadugu@gmail.com

ORCID: 0009-0008-9086-6145

2Senior Manager, Software Engineer, Saint Louis, MO, USA, 63005

Email: raviteja.prabhala@gmail.com

ORCID: 0009-0007-7265-212X

3Senior Specialist, Project Management, Hyderabad, India

Email: karthik030789@gmail.com

ORCID: 0009-0001-4977-9006

ARTICLE INFO ABSTRACT

Received: 08 Nov 2024

Revised: 18 Dec 2024

Accepted: 28 Dec 2024

This paper investigates security models for database-driven microservices using

Java and Hibernate. The primary purpose is to evaluate authentication, access

control, encryption, and transactional integrity mechanisms. Secondary research

was employed, analysing academic literature, technical reports, and case studies for

evidence. Role-based and attribute-based access controls are examined for fine-

grained permission enforcement across distributed services. Hibernate ORM is

analysed for SQL injection prevention and ACID-compliant transactional integrity.

JWT and OAuth2 integration are evaluated for stateless and scalable authentication

across service endpoints. AES encryption secures data-at-rest, while TLS ensures

safe transmission between microservices. Logging, anomaly detection, and

monitoring frameworks are reviewed for real-time threat identification and

mitigation. Findings demonstrate that RBAC simplifies administration, whereas

ABAC enables dynamic, context-aware access control. Hibernate’s ORM mapping

reduces injection vulnerabilities but requires careful configuration. JWT/OAuth2

improves scalability and endpoint security, but token revocation management

remains essential. AES and TLS provide robust data confidentiality and integrity,

contingent on proper key management. Hybrid RBAC-ABAC models enhance

permission enforcement without significant performance loss. Containerised

microservices require secure propagation of keys, tokens, and policies. Overall,

layered security combining access control, encryption, authentication, and

monitoring ensures resilient, scalable, and secure Java-Hibernate microservices.

This study highlights practical trade-offs, implementation challenges, and

mitigation strategies, providing comprehensive guidance for developers and

researchers. The paper contributes evidence-based insights into securing database-

driven microservices in distributed, high-concurrency architectures.

Keywords: Microservices, Hibernate, Java, Security, Access, Encryption, RBAC,

ABAC, JWT, TLS

Introduction

Database-driven microservices demand robust security frameworks to protect sensitive data. Java

enables modular service construction, supporting secure API and business logic layers. Hibernate

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2661

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

facilitates object-relational mapping, enforcing entity-level access control and preventing SQL injection

attacks. Authentication strategies, including JWT and OAuth2, integrate seamlessly with service

endpoints. Role-based and attribute-based access models govern fine-grained permissions for

microservice operations. Encryption techniques, such as AES for data-at-rest and TLS for data-in-

transit, ensure confidentiality. Transactional integrity is maintained through ACID-compliant

Hibernate sessions. Logging and anomaly detection monitor unauthorised access attempts in real-time.

This study evaluates security models' effectiveness, scalability, and integration in Java-Hibernate

microservices, highlighting mitigation strategies against injection, privilege escalation, and data leakage

threats in distributed architectures.

Literature Review

Recent research emphasises secure microservice architectures for database-driven systems. Java

microservices leverage Spring Boot and Jakarta EE for modular, maintainable service layers. Hibernate

ORM ensures object-relational mapping (Huang et al., 2022), preventing SQL injection through

parameterised queries and entity validation. Studies show that role-based access control (RBAC) and

attribute-based access control (ABAC) effectively enforce fine-grained permissions.

Figure 1: Evaluating intrusion detection for microservice applications

(Source: José Flora, 2024)

JWT, OAuth2, and OpenID Connect are widely implemented for stateless authentication across

distributed services. Data encryption using AES, RSA, and TLS protocols protects both rest and transit

states. Research highlights anomaly detection and logging frameworks for real-time threat

identification. Containerised deployments, such as Docker with Kubernetes, necessitate additional

security measures, including network segmentation and secret management (Henckel et al., 2022).

Several works compare centralised versus decentralised authentication models, showing trade-offs in

latency and scalability. Multi-tenancy introduces data isolation challenges, mitigated through schema

separation or row-level security policies. Benchmarking studies reveal that Hibernate caching strategies

reduce database load while maintaining transactional consistency.

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2662

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Figure 2: API Gateway

Source: ByteByteGo, 2024

 Literature also examines security misconfigurations in ORM mappings as major vulnerabilities.

Microservice-to-microservice communication requires mutual TLS and API gateway enforcement for

secure inter-service calls (Martin et al.,). Advanced intrusion detection frameworks using machine

learning complement traditional security models, detecting anomalous queries and privilege

escalations. Researchers consistently emphasise integrating security testing into CI/CD pipelines, using

automated static and dynamic analysis tools. Overall, the literature converges on hybrid approaches

combining Java microservice design, Hibernate ORM best practices, robust authentication, encryption,

and monitoring to ensure database-driven services remain resilient, scalable, and secure against

evolving cyber threats in distributed environments.

Method

This study employs a secondary research methodology to evaluate security models in database-driven

microservices (Ajayi et al., 2023). Secondary research allows a comprehensive analysis of existing

academic literature, technical reports, and case studies on Java and Hibernate implementations. Using

published data accelerates insights into proven security practices without deploying experimental

microservices. It facilitates comparison of role-based and attribute-based access control, JWT/OAuth2

authentication, and AES/TLS encryption techniques (Tran Florén et al., 2021).

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2663

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Figure 3: Implementing OAuth2 and JWT using Golang

Source: Nagraj-todkari, 2024.

This method also enables critical evaluation of transactional integrity, ORM security, and inter-service

communication patterns across distributed systems. Leveraging multiple sources ensures triangulation,

improving the reliability and validity of findings. Secondary research is cost-effective and mitigates risks

associated with live system testing in production environments. Additionally, it captures trends and

benchmark results from diverse microservice architectures and deployment environments. Overall, this

approach provides a robust, evidence-based understanding of effective security models while

maintaining feasibility, reproducibility, and technical depth in analysing Java-Hibernate database-

driven microservices.

Result

Role-based and attribute-based access models effectively enforce fine-grained

microservice permissions.

Role-based access control (RBAC) assigns permissions based on predefined user roles. Attribute-based

access control (ABAC) grants access dynamically using user, resource, and environment attributes.

Studies show RBAC reduces administrative complexity by grouping users with similar privileges

efficiently (Chandramouli et al., 2021).

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2664

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Figure 4: Role-based access control (RBAC)

Source: Isaac Ejeh, 2024

ABAC provides finer-grained control, adapting to contextual conditions like time, location, and device.

In microservices, RBAC ensures that services only process authorised requests per role definitions.

ABAC dynamically evaluates policies during runtime, mitigating privilege escalation risks in distributed

systems. Integration with Java security frameworks enables seamless enforcement across multiple

microservice endpoints. Hibernate entity mappings support access checks at the object and field levels.

Combining RBAC and ABAC enhances security while maintaining system scalability and performance

(Ameer et al., 2022).

Figure 5: ABAC Framework

Source: Frontegg, 2023

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2665

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

 Logging frameworks record permission violations and policy enforcement actions for auditing

purposes. Real-time monitoring detects unauthorised access attempts and triggers automated alerts.

Research demonstrates that hybrid RBAC-ABAC models improve compliance with regulatory

requirements. Containerised deployments require role and attribute definitions to propagate across

Kubernetes-managed services. Multi-tenant environments benefit from ABAC’s dynamic evaluation to

isolate tenant data effectively. Benchmark results indicate minimal latency impact when applying access

control at the microservice level (Bambhore et al., 2022). Overall, RBAC and ABAC integration ensures

robust, context-aware, and scalable security enforcement in database-driven Java microservices.

Hibernate ORM prevents SQL injection and maintains transactional integrity in

distributed databases.

Hibernate ORM abstracts database interactions using object-relational mapping for Java applications.

It automatically converts entity objects to SQL queries, reducing manual query construction.

Parameterised queries in Hibernate prevent SQL injection by separating data from query structure

(Ekeh et al., 2022). This mechanism blocks malicious input from altering database commands.

Hibernate supports session-based transactions to ensure ACID compliance across distributed

microservices. Transactional integrity is maintained even during concurrent operations or service

failures. Cascading operations propagate changes consistently across related entities, avoiding partial

updates. Optimistic and pessimistic locking mechanisms prevent race conditions in high-concurrency

environments. Lazy and eager fetching strategies optimise database load without compromising data

consistency (Uzzaman et al., 2024).

Figure 6:SQL Injection

(Source: Chiradeep et al., 2022)

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2666

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Hibernate’s second-level caching improves read performance while preserving transactional

correctness. Integration with Spring Boot enables declarative transaction management for

microservices, simplifying rollback and commit operations. Research indicates Hibernate reduces

common security misconfigurations in database-driven applications. Audit logging captures executed

queries and transaction states for forensic analysis. Containerised deployments retain transactional

guarantees when combined with distributed database protocols like XA or two-phase commit. Query

validation frameworks in Hibernate detect unsafe operations before execution. Overall, Hibernate ORM

provides secure, efficient, and consistent database access for microservices. (Cristofaro, 2023) It

prevents SQL injection attacks and maintains transactional integrity, ensuring reliable operation in

distributed Java-based architectures.

JWT and OAuth2 integration ensures stateless, secure authentication across

microservice endpoints.

JSON Web Tokens (JWT) enable stateless authentication by encoding user claims securely . Each token

contains cryptographic signatures, preventing tampering during transmission (Gowda et al., 2023).

OAuth2 provides standardised authorisation flows, allowing secure third-party access delegation. In

microservices, JWT tokens carry identity and role information across service boundaries. Stateless

authentication reduces server-side session management overhead, improving scalability in distributed

architectures. Token expiration and refresh mechanisms minimise risks of token replay attacks.

Integration with Spring Security simplifies the enforcement of OAuth2 and JWT policies at endpoints

(Dimitrijević et al., 2024).

Figure 7: High-Level Microservice Architecture With Authorizations

(Source: Md Amran Hossain et al., 2024)

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2667

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

Claims-based access ensures fine-grained permissions without querying central databases repeatedly.

HTTPS/TLS secures token transmission to prevent interception or man-in-the-middle attacks.

Research demonstrates JWT reduces latency compared to session-based authentication in high-

concurrency microservices. OAuth2’s authorisation code and client credentials flows provide flexible,

context-specific access control. Revocation strategies combined with short-lived tokens mitigate

unauthorised access risks. JWT signatures use HMAC or RSA to validate token authenticity efficiently

(Chopra et al., 2022). Logging frameworks capture failed authentication attempts for real-time

monitoring and audit purposes. Containerised environments require proper secret management for

signing keys to maintain security. Microservice-to-microservice communication also benefits from

token propagation for secure inter-service requests (Boateng, 2023). Overall, JWT and OAuth2

integration ensure stateless, cryptographically secure, and scalable authentication for database-driven

Java microservices. It strengthens endpoint security while maintaining performance and resilience in

distributed deployments.

AES and TLS encryption safeguard data-at-rest and in-transit against cyber threats.

AES encryption protects sensitive data stored in databases using symmetric keys. It ensures

confidentiality for data-at-rest in microservices and distributed systems (Jangam et al., 2023). Key

management strategies, including rotation and secure storage, prevent unauthorised decryption. TLS

encrypts data during transmission between microservices, preventing interception or man-in-the-

middle attacks. Combined, AES and TLS maintain end-to-end data security across distributed

architectures. Java and Spring frameworks provide built-in libraries for implementing both AES and

TLS. Session keys in TLS are generated dynamically to prevent reuse or replay attacks.

Figure 8: Protection of Data at Rest

(Source: Sealpath, 2024)

Cypher suites like AES-256 with GCM provide both encryption and integrity verification (Tacchi

Mondaca,, 2024). Hibernate supports encrypted fields for database entities to secure persisted

information. Research shows that properly configured AES and TLS reduce attack surfaces significantly.

Containerised microservices require secure secrets management for encryption keys and certificates.

TLS mutual authentication strengthens trust between services, ensuring verified endpoints only.

Monitoring frameworks detect anomalies in encrypted traffic patterns, signalling potential threats. AES

encryption also protects backups and archival storage in multi-tenant environments. Performance

benchmarks indicate minimal latency impact when using hardware-accelerated AES and TLS (Dewanta

et al., 2022). Audit logs capture encryption operations and key usage events for compliance. Overall,

integrating AES for data-at-rest and TLS for data-in-transit ensures robust confidentiality, integrity,

and resilience. These mechanisms secure database-driven Java microservices against evolving cyber

threats effectively.

Discussion

The findings indicate RBAC and ABAC enforce precise permissions effectively across services (Sahani

et al., 2022). RBAC simplifies administration but lacks dynamic context evaluation compared to ABAC

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2668

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

models. ABAC enhances security in multi-tenant and dynamic environments through real-time

attribute checks.

Figure 9: RBAC vs ABAC

Source: Frontegg, 2022

 Hibernate ORM prevents SQL injection, but misconfigured entity mappings remain a potential

vulnerability. Transactional integrity is maintained via ACID-compliant sessions, though distributed

transactions add latency. JWT and OAuth2 provide stateless authentication, but token revocation and

short lifetimes remain critical challenges. Encryption with AES and TLS ensures data confidentiality,

yet key management errors can compromise security (Shakor et al., 2024). Combining these

mechanisms strengthens microservice resilience but increases implementation complexity. Real-time

logging and anomaly detection improve threat visibility but generate significant data overhead.

Containerised deployments necessitate the secure propagation of policies, tokens, and keys across pods.

Findings highlight trade-offs between fine-grained security and system performance in distributed

architectures. Hybrid models combining RBAC and ABAC achieve stronger access control without

excessive latency (Aftab et al., 2022). Overall, these results emphasise that layered security, proper

configuration, and monitoring are essential. The discussion reveals practical limitations and necessary

mitigations to implement secure Java-Hibernate microservices effectively.

Conclusion

This study concludes that robust security models are essential for database-driven microservices using

Java and Hibernate. Role-based and attribute-based access control effectively enforces fine-grained

permissions across distributed services. Hibernate ORM prevents SQL injection and maintains

transactional integrity, ensuring consistent and secure database operations. JWT and OAuth2

integration provide stateless authentication, enhancing scalability and endpoint security. AES

encryption safeguards data-at-rest, while TLS ensures secure data-in-transit, collectively protecting

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2669

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

sensitive information from cyber threats. Real-time logging, monitoring, and anomaly detection

complement these mechanisms, allowing rapid identification of unauthorised access or policy

violations. Research findings also highlight that combining RBAC and ABAC with secure ORM practices

reduces privilege escalation and misconfiguration risks. Containerised deployments require careful key

management, policy propagation, and mutual authentication for inter-service communications.

Overall, integrating these security strategies provides a comprehensive, scalable, and resilient

framework. The paper demonstrates that Java-Hibernate microservices can achieve high security

without compromising performance or transactional consistency.

Bibliography

[1] Aftab, M.U., Hamza, A., Oluwasanmi, A., Nie, X., Sarfraz, M.S., Shehzad, D., Qin, Z. and Rafiq,

A., 2022. Traditional and hybrid access control models: A detailed survey. Security and

Communication Networks, 2022(1), p.1560885. Available at

https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1560885

[2] Ajayi, V.O., 2023. A review on primary sources of data and secondary sources of data. Available

at SSRN 5378785. Available at

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5378785

[3] Ameer, S., Benson, J. and Sandhu, R., 2022. Hybrid approaches (ABAC and RBAC) toward

secure access control in smart home IoT. IEEE transactions on dependable and secure

computing, 20(5), pp.4032-4051. Available at

https://ieeexplore.ieee.org/abstract/document/9926074/

[4] Bambhore Tukaram, A., Schneider, S., Díaz Ferreyra, N.E., Simhandl, G., Zdun, U. and

Scandariato, R., 2022, August. Towards a security benchmark for the architectural design of

microservice applications. In Proceedings of the 17th International Conference on Availability,

Reliability and Security (pp. 1-7). Available at

https://dl.acm.org/doi/abs/10.1145/3538969.3543807

[5] Boateng, Y.M. and Asante, A.S., 2023. Using Kubernetes with Dapr for Distributed

Microservice Communication. Available at https://www.researchgate.net/profile/Jummy-

Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microser

vice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-

Distributed-Microservice-Communication.pdf

[6] Chandramouli, R., Butcher, Z. and Chetal, A., 2021. Attribute-based access control for

microservices-based applications using a service mesh. NIST Special Publication, 800(S 41).

Available at

https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

204B.pdf

[7] Chopra, S., Singh, A. and Singh, A., 2022. An Authentication Based Scheme for Mobile

Applications Using THJWT. In WCNC (pp. 13-27). Available at https://ceur-ws.org/Vol-

3244/PAPER_02.pdf

[8] Cristofaro, T., 2023. Kube: a cloud ERP system based on microservices and serverless

architecture (Doctoral dissertation, Politecnico di Torino). Available at

https://webthesis.biblio.polito.it/29515/

[9] Dewanta, F., Yustiarini, B.Y. and Harsritanto, B.I.R., 2022. A study of secure communication

scheme in MQTT: TLS vs AES cryptography. Jurnal Infotel, 14(4), pp.269-276. Available at

https://ejournal.ittelkom-pwt.ac.id/index.php/infotel/article/view/807

[10] Dimitrijević, N., Zdravković, N., Bogdanović, M. and Mesterovic, A., 2024. Advanced Security

Mechanisms in the Spring Framework: JWT, OAuth, LDAP and Keycloak. In Proceedings of

the 14th International Conference on Business Information Security (BISEC 2023) (pp. 64-70).

Available at https://ceur-ws.org/Vol-3676/short_09.pdf

https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/1560885
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5378785
https://ieeexplore.ieee.org/abstract/document/9926074/
https://dl.acm.org/doi/abs/10.1145/3538969.3543807
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://www.researchgate.net/profile/Jummy-Johnson/publication/392526061_Using_Kubernetes_with_Dapr_for_Distributed_Microservice_Communication/links/68472dbad1054b0207fada55/Using-Kubernetes-with-Dapr-for-Distributed-Microservice-Communication.pdf
https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204B.pdf
https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204B.pdf
https://ceur-ws.org/Vol-3244/PAPER_02.pdf
https://ceur-ws.org/Vol-3244/PAPER_02.pdf
https://webthesis.biblio.polito.it/29515/
https://ejournal.ittelkom-pwt.ac.id/index.php/infotel/article/view/807
https://ceur-ws.org/Vol-3676/short_09.pdf

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2670

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

[11] Ekeh, D., 2022. Detect and prevent SQL injection vulnerability. Available at

https://essuir.sumdu.edu.ua/bitstream/123456789/89048/1/Ekeh_bac_rob.pdf

[12] Gowda, P.G.A.N., 2023. Securing Microservices Architecture Using JSON Web Tokens (JWS).

North American Journal of Engineering Research, 4(3). Available at

http://najer.org/najer/article/download/75/82

[13] Henckel, I. and Söderberg, D., 2022. Database Loading Strategies for an In-Memory Cache in

Java. LU-CS-EX. Available at

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9080748&fileOId=908

0752

[14] Huang, Z., Shao, Z., Fan, G., Yu, H., Yang, K. and Zhou, Z., 2022. HBSniff: A static analysis tool

for Java Hibernate object-relational mapping code smell detection. Science of Computer

Programming, 217, p.102778. Available at

https://www.sciencedirect.com/science/article/pii/S0167642322000119

[15] Jangam, S.K., 2023. Importance of Encrypting Data in Transit and at Rest Using TLS and Other

Security Protocols and API Security Best Practices. International Journal of AI, BigData,

Computational and Management Studies, 4(3), pp.82-91. Available at

https://ijaibdcms.org/index.php/ijaibdcms/article/view/242

[16] Sahani, G.J., Thaker, C.S. and Shah, S.M., 2022. Supervised Learning-Based Approach Mining

ABAC Rules from Existing RBAC Enabled Systems. EAI Endorsed Trans. Scalable Inf. Syst.,

10(1), p.e9. Available at https://ieeexplore.ieee.org/abstract/document/9926074/

[17] Shakor, M.Y., Khaleel, M.I., Safran, M., Alfarhood, S. and Zhu, M., 2024. Dynamic AES

encryption and blockchain key management: a novel solution for cloud data security. IEEE

Access, 12, pp.26334-26343. Available at

https://ieeexplore.ieee.org/abstract/document/10382485/

[18] Tacchi Mondaca, A., 2024. Testing TLS 1.3 Implementations Against Common Criteria for

Information Technology Security Evaluation: Using TLS-Attacker to automate collaborative

Protection Profile tests. Available at https://www.diva-

portal.org/smash/record.jsf?pid=diva2:1856439

[19] Tran Florén, S., 2021. Implementation and Analysis of Authentication and Authorization

Methods in a Microservice Architecture: A Comparison Between Microservice Security Design

Patterns for Authentication and Authorization Flows. Available at https://www.diva-

portal.org/smash/record.jsf?pid=diva2:1592510

[20] Uzzaman, A., Jim, M.M.I., Nishat, N. and Nahar, J., 2024. Optimizing SQL databases for big

data workloads: techniques and best practices. Academic Journal on Business Administration,

Innovation & Sustainability, 4(3), pp.15-29. Available at

https://www.researchgate.net/profile/Janifer-

Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKL

OADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMI

ZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-

PRACTICES.pdf

References of Figure

[21] ByteByteGo, 2024. API Gateway. Available at https://blog.bytebytego.com/p/api-gateway

[22] Chiradeep BasuMallick, 2022. What Is an SQL Injection? Meaning, Cheatsheet, Examples, and

Prevention Best Practices for 2022. Available at https://www.spiceworks.com/it-

security/application-security/articles/what-is-sql-injection/

[23] Frontegg, 2023. What Is ABAC and How Does it Enhance Security? Available at

https://frontegg.com/guides/abac-security

https://essuir.sumdu.edu.ua/bitstream/123456789/89048/1/Ekeh_bac_rob.pdf
http://najer.org/najer/article/download/75/82
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9080748&fileOId=9080752
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9080748&fileOId=9080752
https://www.sciencedirect.com/science/article/pii/S0167642322000119
https://ijaibdcms.org/index.php/ijaibdcms/article/view/242
https://ieeexplore.ieee.org/abstract/document/9926074/
https://ieeexplore.ieee.org/abstract/document/10382485/
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1856439
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1856439
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1592510
https://www.diva-portal.org/smash/record.jsf?pid=diva2:1592510
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://www.researchgate.net/profile/Janifer-Nahar/publication/381725561_OPTIMIZING_SQL_DATABASES_FORBIG_DATA_WORKLOADS_TECHNIQUES_AND_BEST_PRACTICES/links/667fcab2f3b61c4e2c99919b/OPTIMIZING-SQL-DATABASES-FORBIG-DATA-WORKLOADS-TECHNIQUES-AND-BEST-PRACTICES.pdf
https://blog.bytebytego.com/p/api-gateway
https://www.spiceworks.com/it-security/application-security/articles/what-is-sql-injection/
https://www.spiceworks.com/it-security/application-security/articles/what-is-sql-injection/
https://frontegg.com/guides/abac-security

Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 2671

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

[24] Isaac Ejeh, 2024. What is role-based access control (RBAC)? Available at

https://stytch.com/blog/what-is-rbac/

[25] José Flora, Nuno Antunes, 2024. Evaluating intrusion detection for microservice applications:

Benchmark, dataset, and case studies. Available at

https://www.sciencedirect.com/science/article/pii/S0164121224001870

[26] Nagraj-todkari, 2024. Building Secure API's: Integrating OAuth2 and JWT with Golang.

Available at https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-

oauth2-and-jwt-with-golang/

[27] Md Amran Hossain, Manoj Debnath, 2024. How To Implement OAuth2 Security in

Microservices. https://dzone.com/articles/how-to-achieve-oauth2-security-in-microservices-

di

[28] Sealpath, 2024. Protecting the three states of data. Available at

https://www.sealpath.com/blog/protecting-the-three-states-of-data/

[29] Frontegg, 2022. RBAC vs ABAC: Differences, Benefits & Use Cases. Available at

https://www.sealpath.com/blog/protecting-the-three-states-of-data/

https://stytch.com/blog/what-is-rbac/
https://www.sciencedirect.com/science/article/pii/S0164121224001870
https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-oauth2-and-jwt-with-golang/
https://www.neovasolutions.com/2024/07/09/building-secure-apis-integrating-oauth2-and-jwt-with-golang/
https://www.sealpath.com/blog/protecting-the-three-states-of-data/

