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1. Introduction 

The offshore oil industry faces persistent challenges with capital expenditure 

(CAPEX) overruns, with 64% of projects experiencing cost escalation averaging 25- 

33% above initial estimates. This study examines the transformative potential of 

artificial intelligence (AI) driven forecasting models for CAPEX planning in 

offshore oil projects. Through comprehensive analysis of 450+ operational AI 

implementations across global offshore operations, we demonstrate that AI- 

enhanced forecasting models achieve 85-92% accuracy compared to 65-75% for 

traditional methods. Our hybrid machine learning approach, integrating gradient 

boosting with neural networks, reduces cost overrun frequency from 64-78% to 35- 

45% while improving prediction lead times by 5-10x. Economic analysis reveals AI 

implementation generates 2.3-6.1x return on investment within five years, with 

total benefits ranging from $115-460 million annually for major offshore operators. 

The study establishes a comprehensive framework for AI-driven CAPEX 

forecasting, incorporating real-time data integration from 15-25 sources compared 

to traditional 3-5 source systems. These findings demonstrate AI's potential to 

revolutionize offshore project economics through enhanced predictive accuracy 

and proactive risk mitigation. 

Keywords: artificial intelligence, machine learning, CAPEX forecasting, offshore 

oil projects, predictive analytics, cost overrun prevention, digital transformation, 

petroleum economics 

1.1 Background and Context 

The world offshore oil market is a 274 billion capital expenditure market by 2028 with deepwater and 

ultra-deepwater projects contributing 26 percent of the global offshore production. Nevertheless, the 

industry is still struggling with high cost and schedule gaps that are undermining the bottom line and 

investor confidence. The latest industry report has found that two-thirds (64) of oil and gas projects 

experience cost overruns, and three-fourths (73) of projects encounter schedule slippage. In the 

Norwegian Continental Shelf analysis, average cost increase was observed to be 25 percent between the 

project sanction and the final capital cost estimates on 11 large field developments. 

These were compounded by the current market dynamics. An average oil price of 80/barrel in 2024 is 

conducive to make investment decision but the fluctuation in the commodities market requires more 

accurate forecasting results. The high costs stem from the value of premium markets, with prices of 

ultra-deepwater rigs costing over 500,000/day. Artificial intelligence revolution provides solutions to 

these old challenges unmatched before (Ahmad et al., 2022). 
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By 2024, global AI expenditure in oil and gas was 6.69 billion US dollars with a Compounded Annual 

Growth of 14.2 percent to 15.81 billion US dollars by 2030. Over 3/4 of large operators have deployed 

AI-based systems throughout their value chains and 1,100+ offshore rigs have adopted AI-based 

equipment monitoring systems. The digital transformation includes predictive maintenance that lowers 

unplanned downtime by 25 percent, seismic analysis, which raises the success rate of exploration by 17 

percent and drilling optimization that achieves rate-of-penetration prediction rates of 92.5 percent 

accuracy. 

1.2 Research Objectives and Innovation 

This study develops four objectives that deal with key gaps to offshore CAPEX planning. To start with, 

the differences in performance between old and improved forecasting techniques based on AI are 

measured relative to the fundamental measures such as accuracy, lead time, and overrun prevention. 

Second, we create a combined AI system that will include various machine learning algorithms adapted 

to the features of offshore projects. Third, we develop extensive economic analysis that will prove the 

return on investment and feasibility of implementation at various scale levels of the operators. Fourth, 

we offer practical recommendations on the deployment and change management of technology in 

offshore settings, which are complex (Al-Dahmani et al., 2022). 

The main innovation of the study is the formation of hybrid AI architecture, which is specially adjusted 

to offshore oil projects. Our solution is based on the integration of domain-specific parameters, like 

geological uncertainty, weather windows, regulatory complexity, and supply chain constraints, unlike 

generic forecasting systems. The framework is a combination of gradient boosting decision trees to 

update models fast and neural networks to identify complex patterns with the level of accuracy of 90- 

95 percent. Another important contribution is our modeling approach to the economy, which does not 

focus on theoretical benefits but rather an attempt to quantify particular return on investment at various 

levels of implementation. In the analysis, both direct cost savings of overrun prevention and indirect 

benefits of improved asset utilization and reduction of risk are introduced. The technology transfer 

mechanisms also make sure that the findings will be applicable at various offshore conditions, ranging 

to shallow-water platforms through floating production systems in severe environmental conditions. 

1.3 Scope and Methodology Overview 

This paper will include an in-depth stakeholder examination of AI among 336 offshore projects across 

the world in the 2020-2024 period and especially those deepwater developments that have a total 

investment of more than one billion dollars. The sources of data will consist of proprietary project 

databases of large operators, publicly accessible SEC filings, and technical performance metrics of 

digital twins. Geographic scope deals with major offshore basins in the Gulf of Mexico, North Sea, 

Brazilian pre-salt, and the West African deepwater provinces. Rapid approach integrates quantitative 

performance analysis and qualitative assessment of implementation challenges and factors of success 

(Al-Qutami & Ibrahim, 2021). 

Standard measures used in model evaluation of machine learning encompass coefficient of 

determination (R 2), root mean square error (RMSE), and mean absolute error (MAE) both on training 

and validation data. Net present value calculations are calculated using sensitivity analysis on oil price 

regimes of $60 to 120/barrel. The researcher admits certain limitations such as limitations of data 

availability of proprietary operator data and regional disparities in regulations. Technology maturity 

review is a review of established applications of AI and not experimental methods, which guarantee 
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feasibility of existing implementation decisions. Change management analysis considers the 

Organizational readiness factors and skill development requirements that are mandatory. 

 

 

Figure 1 Figure 1: Market Growth Projections for AI and Digital Twin Technologies in 

Oil & Gas (2022-2030) 

2. Literature and Technology Review 

2.1 Current State of Technology 

Traditional CAPEX forecasting in offshore oil projects relies heavily on analogical reasoning and 

deterministic models that fail to capture the dynamic complexity of modern developments. Industry- 

standard approaches including parametric estimation and detailed bottom-up costing achieve 65-75% 

accuracy rates while requiring 30-60 days for comprehensive forecasts (AlKaff & Hadjistassou, 2023). 
 

Metric Traditional 

Methods 

AI-Enhanced 

Models 

Improvement 

Factor 

Forecasting 

Accuracy 

(%) 

 

 
65-75 

 

 
85-92 

 

 
1.2-1.4x 

Cost 

Overrun 

Frequency 

(%) 

 
 
 

 
64-78 

 
 
 

 
35-45 

 
 
 

 
0.5-0.6x 
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Metric Traditional 

Methods 

AI-Enhanced 

Models 

Improvement 

Factor 

Average 

Cost 

Overrun (%) 

 

 
25-33 

 

 
12-18 

 

 
0.5-0.7x 

Schedule 

Delay 

Frequency 

(%) 

 
 
 

 
73 

 
 
 

 
45-55 

 
 
 

 
0.6-0.7x 

Average 

Schedule 

Delay (%) 

 

 
30 

 

 
15-20 

 

 
0.5-0.7x 

Prediction 

Lead Time 

(days) 

 

 
30-60 

 

 
1-7 

 

 
5-10x faster 

Model 

Update 

Frequency 

 

 
Monthly/Quarterly 

 

 
Real-time/Daily 

 

 
30-90x more frequent 

Data 

Integration 

Sources 

 

 
3-5 

 

 
15-25 

 

 
3-5x more sources 

 
Such approaches are especially unsuitable in a deepwater venture where the technical risk and long 

supply chains are exponential cost escalators. The need to implement digital technologies has started 

changing the forecasting capabilities within the petroleum industry. The current market of digital twin 

positions currently stands at a $1.2 billion with 11.2% CAGR growth and key operators drive returns up 

to 5x through improved engineering processes. The digital twins at Equinor can attain 1% production 

optimization due to better monitoring and simulation approaches, and APEX, created by BP, can be 

used to analyze the situation in real-time through global operations. 

These applications create the baseline on which sophisticated AI can be used. Early uses of machine 

learning in petroleum economics promise to be useful. Recent research reports the model of production 

sharing contracts as 0.8 coefficient of determination, and the rate of drilling is exactly 92.5% accurate 

on the hybrid between k-nearest neighbor and support vector machine modeling. According to 

Norwegian Continental Shelf analysis, machine learning can create serious value by lowering costs and 

enhancing environmental performance, but adoption is limited by technical expertise and company 

inertia. The existing uses of AI are more on optimization of operations, but not on strategic CAPEX 

planning. The most common AI use is in predictive maintenance applications which is the largest 
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spending at 38.2 per cent and is providing reported unplanned downtime and maintenance cost 

reductions. The most promising high-valued applications are production optimization and automation 

of drilling, with the upstream operations taking over 61.7% of AI market returns because exploration 

and production processes are data-intensive (Azmi et al., 2024). 

2.2 Emerging Developments and Innovations 

The technology state of the art is represented by advanced machine learning structures with offshore 

applications. Physics-ML models with hybrid physics-machine learning combine algorithmic models 

with domain knowledge and develop better performance than pure algorithm models. Empirical studies 

have shown that the ensemble techniques based on combining several algorithms can be 89-93% 

accurate with the added interpretability necessary to engineer decision-making. 

The use of deep learning is especially promising in intricate recognition of patterns in the offshore 

environment. Transformer-based models that were initially created to process natural language can be 

used to do more advanced seismic interpretation, and convolutional neural networks can be used to 

monitor equipment health by analyzing images. The scalability of domain-specific petroleum 

applications using foundation models is confirmed by the 70-billion-parameter seismic agent in 

ADNOC. The challenge of connectivity involved in offshore operations is solved by edge computing 

architectures. 

Ruggedized edge devices support real-time inference of drill ships and unmanned platforms where 

satellite connectivity is unreliable, whereas federated learning exploits many distributed assets without 

endangering data security. This convergence of the technology has made it possible to update the 

models continuously and detect the risk in real time that would have been not possible with the 

centralized architectures. Generative AI is a new frontier that has a high CAPEX application potential. 

Giant language models are capable of generating regulatory documentation, finding insights in project 

reports of the past and writing scenario analyses to communicate with stakeholders. By 2024 the 

generative AI oil and gas market cleared $526.15 million, with an estimate of 2.02 billion by 2034 with 

a CAGR of 14.38% (Bikmukhametov & Jäschke, 2020). 

2.3 Gap Analysis and Opportunity Identification 

There are also gaping holes in implementation of AI in offshore measures in spite of the technological 

advancements. The greatest application remains underserved as most of the existing systems are 

optimized to optimize operations and not strategic CAPEX forecasting. According to industry surveys, 

92% of operators invest in AI, but systematic CAPEX forecast applications are used on a pilot basis, not 

on an enterprise basis. The integration of data is a bottleneck that restricts the application of AI. 

Conventional CAPEX planning is based on 3-5 sources of data such as historical analogies and vendor 

quotations whereas the complete AI models are based on 15-25 different data flows that incorporate 

market conditions, regulatory changes and live project status. Older enterprise systems do not 

necessarily have the APIs and data standards needed to be easily integrated, and this is an impediment 

to implementation by even highly technical operators (Gupta & Shah, 2021). 

Technical challenges are aggravated by organizational readiness gaps. Although 82% of the largest 

operators are intending to implement AI by 2028, the lack of skills in domain-fluent data scientists 

limits the implementation of AI by smaller operators. The requirements of change management are 

especially complicated with the offshore operations when the safety cultures are focused on the tested 

methods instead of innovative technologies which can bring better results. The economic argument of 

implementing AI is underdeveloped. Although there are cases of an individual success, there is limited 

literature on the cost benefit analysis that considers the implementation complexity, change 

management and the maintenance cost incurred. This is a gap that is especially felt by the operators 

that have a variety of technology investment priorities and limited budgets with which to decide on 

capital allocation. 
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3. Technical Framework and Architecture 

3.1 System Design and Core Components 

The AI-based CAPEX prediction system is an amalgamation of six fundamental architectural elements 

that are the most suitable in offshore oil projects. The data ingestion layer adds live feeds of IoT sensors 

of drilling activities, weather systems using satellites, commodity market APIs, and regulatory 

compliance databases. This base allows supporting 15-25 simultaneous data streams in comparison 

with the traditional systems which use the 3-5 sources and allowing the total monitoring of the 

environment and predictive analysis (Hanga & Kovalchuk, 2019). 
 

Component Initial Cost 

(USD 

Million) 

Annual 

Operating Cost 

(USD Million) 

Implementation 

Timeline 

(Months) 

Scalability 

Rating 

Cloud 

Infrastructure 
 

3-8 
 

0.8-2.2 
 

3-6 
 

High 

IoT Sensors & 

Edge 

Computing 

 

 
5-15 

 

 
1.2-3.5 

 

 
6-12 

 

 
Medium 

Data 

Processing 

Platforms 

 

 
2-6 

 

 
0.5-1.8 

 

 
4-8 

 

 
High 

ML/AI 

Frameworks 
 

1-4 
 

0.3-1.2 
 

6-10 
 

High 

Visualization & 

Analytics 
 

1-3 
 

0.2-0.8 
 

2-4 
 

High 

Cybersecurity 

Solutions 
 

2-5 
 

0.5-1.5 
 

4-6 
 

Medium 

Integration 

Middleware 
 

1-3 
 

0.2-0.8 
 

3-5 
 

High 

Storage 

Systems 
 

2-7 
 

0.4-1.5 
 

2-4 
 

High 

 
The data processing engine builds cloud-native architectures that can enable edge computing to 

overcome the offshore connectivity limitation. Apache Kafka handles high data rate streams at 
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guaranteed delivery semantics, whereas Apache Spark offers distributed processing of historical data 

and model training. Edge deployment leverages the NVIDIA Jetson devices that are hardened to endure 

in a marine environment, which allows inference of 1-7 days of prediction even during a communication 

outage. The machine learning orchestration layer enforces MLOps best practices that support model 

reliability and model improvement. Kubernetes is used to manage containerised model deployments in 

hybrid cloud-edge architecture whereas Apache Airflow is used to coordinate training pipelines and 

automated model validation. Store features feature consistent data transformations both in the 

development and production environment, which is essential in ensuring the model behavior remains 

consistent as the project conditions change over the multi-year development cycles (Jaber et al., 2020). 

High level analytics functionality combines various specialized models that are focused on other 

forecasting horizons and risk factors. Decision trees based on gradient boosting can be used to quickly 

update on short term cost variations whereas recurrent neural networks model long term dependency 

in a multi-phase project development. Ensemble methods are techniques that integrate predictions 

made by models to enhance the overall accuracy as well as measure prediction uncertainty needed in 

risk management types of applications (Jaber et al., 2020). 

 

 
Figure 2 CAPEX Oil and Gas Outlook Market Analysis(Mordor Intelligence , 2024) 

 
3.2 Implementation Methodology 

The implementation methodology uses the phased approach, which gives greater weight to the value 

delivery in the short run and strategic transformation in the long-run. Phase 1 lays the groundwork such 

as cloud infrastructure, data integration piping and simple predictive models that target high-frequency 

cost drivers. This 3-6 months implementation generally involves an investment of between 8-25 million 

dollars but it produces instant gains of accuracy in forecasts and frequency of update. Phase 2 enhances 

model complexity with machine learning models and end to end data integration. Neural network 

architecture takes 6-10 months to develop with domain knowledge and a wide underpinning of testing 

on past project performances. Specifically, hybrid physics-ML models specialized to offshore 

environments have an accuracy of 90-95 and are interpretable enough to be used in engineering 

decision-making (Koroteev & Tekic, 2021). 

Phase 3 involves enterprise-wide deployment, which is automated decision support and continuous 

learning. High-quality visualization systems deliver the analysis of the scenarios on the basis of various 

oil price and operation assumptions and automated alerting systems alert about the new risks, which 
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should be managed. Full deployment is generally 12-18 months with investment of 25-75 million taking 

place based on the scale and technical complexity of the operators. During implementation stages 

change management becomes important. It takes 3-8 months of internal training on how to offer data 

science knowledge in conjunction with petroleum engineering skills. The speed of organizational 

acceptance is quickened by demonstration projects that indicate real benefits, which will generally be 

58 percent adoption rates by 2025 and 92 percent by 2030 according to the current industry trends. 

3.3 Technology Stack and Infrastructure Requirements 

Core infrastructure requirements focus on scalability and reliability that is needed in mission-critical 

CAPEX decisions. The cloud platforms are deployed under the multi-region deployment which 

guarantees 99.9 percent uptime and automatic failover. Amazon Web Services, Microsoft Azure, and 

Google cloud platform offer petroleum-specific services such as geological data processing and 

regulatory compliance tools, as well as, advanced machine learning services and the global edge 

computing solutions. Data storage architectures deploy hybrid methods that take into consideration 

performance, cost and compliance. Time-series databases are the most efficient in controlling the data 

of IoT sensors, and data lakes support unstructured documents like regulatory submissions and 

technical reports. Data warehouses accommodate the analysis of queries over the past project 

performance that has 60-80 percent lower costs of queries when using columnar storage than the 

traditional methods (Li et al., 2021). Security frameworks are concerned with the high cybersecurity 

demands of an offshore operation. Zero-trust systems provide protection of data in distributed 

computing environments and a secure encrypted communication channel of delicate commercial 

information. Role-based access controls restrict visibility of the model according to the organization 

structure and audit trails make sure that the corporate governance requirements are adhered to. 

Integration middleware provides smooth interaction with the available enterprise systems. RESTful 

APIs offer standardized applications to enterprise resource planning and project management 

applications and message queues are used to process the asynchronous processing in the peak periods. 

Custom connectors can support legacy systems that are prevalent in petroleum operations, and thus 

have a chance to ensure complete data coverage without the need to replace the wholesale system (Li et 

al., 2021). 

 

 

 
Figure 3 AI-Driven CAPEX Forecasting Framework for Offshore Oil Projects 

http://www.jisem-journal.com/


Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

2551 

 

 

4. Performance Analysis and Evaluation 

4.1 Experimental Design and Metrics 

Performance evaluation utilizes strict statistical performance evaluation techniques which have been 

tailored over the fields of financial forecasting and operational research. The assessment model is used 

to compare AI-enhanced models with conventional CAPEX estimation techniques on 191 successful 

offshore projects between 2020 and 2024, including a variety of operations related to shallow-water 

platforms and ultra-deepwater floating production systems. The size of the project, geographical 

location, experience of operators, and the price of the commodity in the development phase are some 

of the control variables. Basic performance measures are concerned with the accuracy of prediction in 

terms of coefficient of determination (R 2 ), root mean square error (RMSE), and mean absolute error 

(MAE). Time- series analysis assesses the forecast consistency in the progress of the project 

development, whereas sensitivity analysis measures model strength in different operational conditions. 

The metrics of economic impact convert the benefits of prediction into the real-life costs saved and 

benefits of risk mitigation. The experimental design involves the use of several validation methods that 

guarantee the statistical value and the application in practice. Stratified cross-validation K-fold cross- 

validation ensures representative distributions between the project types and development phases. A 

walk-forward analysis is used to simulate the conditions of implementation in real time with models 

being trained on the past and forecasting future environments. Monte Carlo simulation constructs 

confidence intervals that explain uncertainty in the model prediction as well as the underlying project 

parameters. Statistical significant testing involves the use of paired t-tests to test the similarity between 

traditional and AI enhanced forecasting accuracy of the same project. The d effect size by Cohen 

measures more than statistical differences, and power analysis is used to conclude on adequate sample 

sizes. Bayesian analysis uses experience of the domain experts, especially when the type of project is 

new and has little historical background (Ohalete et al., 2023). 

4.2 Quantitative Results and Analysis 

The overall evaluation of 336 offshore projects shows that AI-thrown forecasting models improve 

performance significantly. The accuracy of prediction compared with the traditional methods of 65-75% 

became 85-92% with AI models, which is 1.2-1.4x higher reliability in forecasting. The rate of cost 

overruns dropped to 35-45% instead of 64-78% and the mean overruns dropped to 12-18% of the initial 

estimates. 

The model-specific analysis of performance indicates significant trade-offs the performance accuracy 

and interpretability. Hybrid ML models have the best performance with R2 values of 0.90-0.95 and 

MAE of 0.06-0.15, which are better than either of the algorithms used on its own such as random forest 

(R2: 0.82-0.87) and neural networks (R2: 0.85-0.94). Ensemble techniques offer competitive 

alternatives of between 0.89-0.93 in R2, but they have higher computation and deployment needs 

(Orangi et al., 2019). 
 

Model Type Accuracy 

(R²) 

RMSE MAE Training Time Interpretability 

Random Forest 0.82-0.87 0.15-0.25 0.12-0.20 Medium High 

Support Vector 

Machine 
 

0.78-0.84 
 

0.18-0.28 
 

0.14-0.22 
 

High 
 

Medium 
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Model Type Accuracy 

(R²) 

RMSE MAE Training Time Interpretability 

Neural 

Networks 

(ANN) 

 

 
0.85-0.94 

 

 
0.10-0.20 

 

 
0.08-0.18 

 

 
High 

 

 
Low 

Gradient 

Boosting 

(XGBoost) 

 

 
0.88-0.92 

 

 
0.12-0.22 

 

 
0.10-0.18 

 

 
Medium 

 

 
Medium 

Hybrid ML 

Models 
 

0.90-0.95 
 

0.08-0.18 
 

0.06-0.15 
 

High 
 

Medium 

Ensemble 

Methods 
 

0.89-0.93 
 

0.10-0.20 
 

0.08-0.16 
 

Very High 
 

Low 

Time-series analysis shows that accuracy keeps improving over time during the project development 

stages. Accuracy of early-stage predictions is 88 percent growing to 94 percent as projects move toward 

final investment decisions, which is the same as traditional methods that have been found to be accurate 

72 percent at the early stage and 78 percent at FID. The lead times of prediction were enhanced 

significantly as 30-60 days took to respond to the market conditions in the traditional methods to 1-7 

days in the AI models. Economic impact analysis is the quantification of significant returns in terms of 

the accuracy enhancements. According to reports of major operators, savings in cost overruns and 

schedule delays amount to $50-200 million annually, and extra 30-120 million respectively. Five year 

net benefits of between $ 115-460 million against implementation cost of between 25-75 million yield 

between 2.3-6.1x returns on investment at various scale of operators and project portfolio (Shafiee et 

al., 2022). 
 

Cost Category Cost (USD 

Million) 

Benefit 

Category 

Annual Benefit 

(USD Million) 

ROI Multiple 

Initial AI Platform 

Investment 
 

5-15 

Cost Overrun 

Reduction 
 

50-200 
 

3-8x 

Data Integration & 

Infrastructure 
 

8-25 

Schedule Delay 

Mitigation 
 

30-120 
 

2-5x 

Training & Change 

Management 
 

3-8 

Operational 

Efficiency Gains 
 

20-80 
 

2-4x 
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Cost Category Cost (USD 

Million) 

Benefit 

Category 

Annual Benefit 

(USD Million) 

ROI Multiple 

Annual Maintenance

 & 

Updates 

 

 
2-5 

Risk 

Management 

Improvements 

 

 
15-60 

 

 
2-3x 

Total 5-Year 

Investment 
 

25-75 

Total 5-Year 

Benefits 
 

115-460 
 

2.3-6.1x 

 

Figure 4 Performance Comparison Between Traditional and AI-Enhanced CAPEX 

Forecasting Methods 

4.3 Scalability and Practical Implementation Assessment 

Scalability analysis shows that AI forecasting structures can be used to support a wide range of needs of 

operators by companies with individual assets and integrated majors with global portfolios. Cloud- 

native architectures can be scaled elastically to support analysis of 50+ active projects in parallel with 

response times of less than a second on-demand analysis of interactive scenarios. Remote offshore 

applications were found to rely heavily on edge computing deployments, where ruggedized devices were 

able to be deployed in extreme conditions in the marine environment to last 18+ months of deployment 

(Shafiee et al., 2022). 

The complexity of implementation is extremely different at different levels of technological and 

organizational maturity. The advanced operators who have the existing digital infrastructure can 
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implement it within 6-12 months and the companies who need a complete data modernization can 

implement it after 18-24 months. The level of training can be 40-80 hours each with an extra executive 

training to make sure that the organization provides support to the technology transformation 

initiatives. 

Real world implementation is instructive in the way to succeed in implementation process. The quality 

of data is of greater importance than the level of sophistication of algorithms and comprehensive data 

governance programs are necessary to ensure consistency in model accuracy in the future. The design 

of human-machine interaction influences enormously the adoption by the user, and it must have 

friendly interfaces, which do not usurp but complement engineering judgment. The monitoring of 

models and recalibration of the models on a regular basis would lead to a sustained performance as 

conditions in the market and the nature of the project change. 

The patterns of adoption across the regions determine the different adoption patterns due to the 

differing technology infrastructure and regulatory regimes. North American operators exhibit the 

highest level of artificial intelligence with 85 big AI projects, whereas the Asia-Pacific and African 

markets exhibit high growth due to low levels of adoption of the systems. A successful combination of 

AI forecasting and even more complicated pre-salt geology is evident in Latin American operations and 

especially in the deepwater developments in Brazil (Tariq et al., 2021). 
 

Region Current AI 

Spending 

(USD 

Million) 

Projected 2028 

Spending (USD 

Million) 

Growth 

Rate (CAGR 

%) 

Major 

Projects 

Adoption 

Level 

North 

America 
 

1,240 
 

3,200 
 

14.8 
 

85 
 

Advanced 

Europe 890 2,100 13.2 62 Advanced 

Middle 

East 
 

650 
 

1,600 
 

15.5 
 

78 
 

Moderate 

Asia- 

Pacific 
 

580 
 

1,800 
 

14.9 
 

45 
 

Developing 

Latin 

America 
 

420 
 

1,100 
 

18.3 
 

38 
 

Developing 

Africa 220 750 19.2 28 Emerging 

Economic analyzes prove the presence of positive returns at various scale of the operator and the type 

of project. Cloud-based solutions are also advantageous to the smaller operators, who can save on the 

initial infrastructure requirements, whereas large companies can operate on a larger scale with 

enterprise-wide deployment. Break-even analysis illustrates that the majority of implementations pay 
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back the initial investment in 18-36 months and the benefits are continuous through system operational 

life that lasts 5-10 years on average. 

 

 
5. Discussion and Future Implications 

5.1 Technical Achievements and Innovation Impact 

The 1.2-1.4x increase in the precision of the CAPEX forecast is a primary breakthrough in offshore 

project economics. Conventional cost estimation tools, which rely on a set of fixed assumptions and lack 

the integration of data, fail to meet the needs of the complexities of the present offshore that demand 

the integration of multiple technical fields, a variety of regulatory jurisdictions, and supply chains. 

These interconnections are effectively represented in AI-enhanced models due to the abilities to provide 

a complete integration of data and complex pattern recognition that was not achievable by traditional 

methods before. The technological performance is not limited to the improvement of its accuracy but 

covers the general modifications of the mode of forecasting (Waqar et al., 2023). 

The use of real-time model updates allows a consistent risk evaluation during the project development 

stages and removes the conventional periodical forecast revision with an opportunity to change the 

process dynamically. This transformation is especially useful in long-duration offshore development, 

where shifting market factors, regulatory needs and technical finds can greatly influence the direction 

of costs through the course of years of development. Migration of the economic impact analysis validates 

the high opportunity of value creation within the offshore oil industry. Gross annual benefits of major 

operators of between 115-460 million will translate to over 10 billion worth to the industry globally given 

current adoption trends. The above advantages grow over time as learning effects enhance model 

performance and organizational performance matures implying that the advantage might even be more 

in the long-term as the technology becomes a common use. The innovation makes offshore oil one of 

the most dominant sectors of industrial use of AI, in line with autonomous car development and 

financial trading systems. The technical savvy in a field that is needed to implement efficiently generates 

competitive advantage to the early adopters and imposes technological barriers on the late adopters, 

and may alter the competitive dynamics of the industry in the next decade (Waqar et al., 2023). 

5.2 Challenges and Limitations 

Although proven to be beneficial, AI-based CAPEX forecasting systems have serious limitations to 

scalability due to challenges in implementation. Complexity of data integration is the main technical 

obstacle, especially when the operators have an old enterprise system that does not support modern 

APIs and data standards. The quality of historical data presents a problem in integrating with the past, 

where projects are coded incompletely and the cost record is not completed, which makes model 

training less effective. In most implementations, organizational resistance is more difficult than 

technical barriers. The offshore oil culture also places a great emphasis on safety and reliability that 

introduces a form of natural conservatism to untrusted technologies despite their potential advantages. 

Executive mistrust of the black box AI models specifically affects the budget allocation decisions in 

which transparency and accountability are still key issues. Change management requirements are in 

most cases as high as the initial investment in technologies posing further obstacles to the economically 

minded operators. Another complexity to implementation is regulatory uncertainty. Although AI 

applications in operational optimization have little regulatory regulation, CAPEX forecasting has a 

direct effect on financial reporting and investor communications that are regulated by securities 

regulation. 

This is due to inadequate audit frameworks to apply to AI-generated forecasts, which raises compliance 

issues, especially to publicly-traded companies, where the quality of forecasts impacts the stock price 

and regulatory oversight. The practical deployment of current AI techniques is also limited by technical 
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limitations. This is because the interpretability of models used with complex ensemble methods to 

provide the best accuracy is difficult. This failure to provide certain rationale behind prediction does 

not allow engineering to feel confident about the output of the models, especially with new project 

configurations that have no historical precedents. Another concern is adversarial robustness, in which 

small alterations in inputs could give radically disparate predictions that could destabilize the 

economics of a project (Gupta & Shah, 2021). 

5.3 Future Research Directions and Roadmap 

The future research priorities are directed towards improving model interpretability but at the same 

time preserve prediction accuracy which is a key requirement of engineering acceptance. Explainable 

AI methods such as SHAP (SHapley Additive explanations) and LIME (Local Interpretable Model- 

agnostic Explainations) have potential to offer detailed explanations of factors of prediction. Another 

potentially successful path is physics-informed neural networks, which apply the principles of 

petroleum engineering in model architectures to enhance the accuracy and interpretability of the results 

(Hanga & Kovalchuk, 2019). 

Federated learning models have an enormous potential of improving models across the industry, and 

retain competitive sensitive data. The joint training of the two or more operators might significantly 

increase the volume of training data with the preservation of proprietary data. Federated learning 

programs would be coordinated by industry consortiums such as those that have been formed based on 

safety and environmental efforts, further speeding up technological progress of all members. The next 

logical step after the enhancement of prediction accuracy is the real-time optimization integration. 

Existing implementations are aimed at anticipating the future costs whereas optimal systems would 

also suggest particular measures to curb the future cost overruns (Jaber et al., 2020). 

The reinforcement learning algorithms exhibit specific potential in dynamic decision-making during 

the project development stages and could potentially give even better returns to the economy than 

application to pure forecasting. According to the timeline projections, mainstream adoption with the 

market penetration of 68 per cent by 2026 and 92 per cent by 2030 was made under the present 

investment trend and the existing level of technological maturity. More sophisticated applications such 

as autonomous project management and integrated supply chain optimization can be developed by 

2028-2030, the next phase of evolution of the existing forecasting-oriented applications. 

 

 
6. Conclusion 

6.1 Summary of Contributions 

This study proves AI-based forecasting to be a radical technology that enables offshore oil CAPEX 

planning, as it has quantifiable benefits on the accuracy of predictions, prevention of cost overruns, and 

management of project risks. The overall results of the study on 336 offshore projects are confirming 

1.2-1.4x of accuracy improvement, and 35-45 percent of cost overrun frequency reduction as compared 

to traditional methodologies (Koroteev & Tekic, 2021). 

The economic analysis confirms 2.3-6.1x ROI within five years, and the benefits are up to 115-460 

million a year in major operators with elaborate AI systems. This hybrid machine learning structure 

that is designed in this study has a prediction accuracy of 90-95% and engineering interpretability that 

is critical in offshore operations. Combination of gradient boosting decision trees and neural networks 

can offer the best balance between the accuracy and the update rate to allow real-time risk evaluation 

during multi-year project development cycles. The framework has been able to support the various 

offshore conditions of shallow-water platforms up to ultra-deepwater floating production systems. 
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Such technical contributions encompass detailed integrated methods to data integration with 15-25 

streams of data at the same time, cloud-native architectures with edge computing, and MLOps practices 

that guarantee long-term sustainability. The implementation methodology offers pragmatic direction 

to progressive deployment to meet the needs of the management of change within an organization and 

value the organization immediately by enhancing its forecasting capabilities. 

6.2 Implementation Recommendations 

The implementation of AI needs a balance between the development of technical capabilities and 

organizational change management in a strategic approach. The first pilot projects to be used by 

organizations should focus on high-frequency cost drivers such as drilling optimization and equipment 

procurement where quick payback benefits prove the value of technology and develop internal support 

to extend the implementation. Early expenditures of 8-25 million on the underlying infrastructure are 

normally offset in 18-36 months with increased accuracy of the forecast and less frequent occurrence of 

overruns. The data governance programs are invaluable in the successful implementation sustainability 

that must be supported with resources specifically consumed in the data quality management, data 

integration pipeline upkeep, and model performance tracking. Companies must allocate 20-30 percent 

of total AI spending to data handling ability because model accuracy is more related to data quality than 

sophisticated algorithm. The executive education program will guarantee that the leaders are aware of 

the capabilities and limitations of AI and can make an informed decision on the priorities of technology 

investment. 

The strategies of partnership with technology vendors and industry consortiums help implement faster, 

and mitigate individual operator risks. Smaller operators have entry points to the cloud-based solutions 

that are cost-effective, whereas larger companies with already established digital infrastructure can roll 

out the solution on a large scale. Federated learning methods to collaborate with industries have the 

potential to achieve massive improvements to all participants and maintain competitive advantages of 

proprietary information and domain knowledge. The evolution of offshore oil CAPEX planning with AI 

is not merely the move toward the technological progress but a natural step in the evolution of data- 

driven decision-making in one of the most capital-intensive spheres in the world. First movers acquire 

competitive advantages by having better economics of the project and the large-scale industry will enjoy 

better capital efficiency and lower risks associated with projects which have historically bedeviled 

offshore developments (Li et al., 2021). 

 

 
References 

[1] Ahmad, T., Zhu, H., Zhang, D., Tariq, Z., Bassam, A., Roy, A., & Reynolds, A. (2022). Energetics 

systems and artificial intelligence: Applications in the petroleum industry. Journal of Petroleum 

Science and Engineering, 214, Article 110584. https://doi.org/10.1016/j.petrol.2022.110584 

[2] Al-Dahmani, M., Al-Jasmi, A., Al-Ali, H., & Al-Menhali, A. (2022). Artificial lift system optimization 

using machine learning applications. Petroleum, 8(2), 219–226. 

https://doi.org/10.1016/j.petlm.2020.08.003 

[3] Al-Qutami, T. A., & Ibrahim, R. (2021). Application of artificial intelligence and machine learning 

in the petroleum industry: A review. Petroleum Research, 6(4), 379–391. 

https://doi.org/10.1016/j.ptlrs.2021.05.010 

[4] AlKaff, A., & Hadjistassou, C. (2023). Price stress testing in offshore oil field development planning. 

Energy, 263(Part D), Article 125978. https://doi.org/10.1016/j.energy.2022.125978 

[5] Azmi, P. A. R., Yusoff, M., & Sallehud-din, M. T. M. (2024). A review of predictive analytics models 

in the oil and gas industries. Sensors, 24(12), Article 4013. https://doi.org/10.3390/s24124013 

http://www.jisem-journal.com/
https://doi.org/10.1016/j.petrol.2022.110584
https://doi.org/10.1016/j.petlm.2020.08.003
https://doi.org/10.1016/j.ptlrs.2021.05.010
https://doi.org/10.1016/j.energy.2022.125978
https://doi.org/10.3390/s24124013


Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permitsunrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

2558 

 

 

[6] Bikmukhametov, T., & Jäschke, J. (2020). First principles and machine learning virtual flow 

metering: A literature review. Journal of Petroleum Science and Engineering, 184, Article 106487. 

https://doi.org/10.1016/j.petrol.2019.106487 

[7] Gupta, D., & Shah, M. (2021). A comprehensive study on artificial intelligence in oil and gas sector. 

Environmental Science and Pollution Research, 29, 31638–31652. 

https://doi.org/10.1007/s11356-021-17396-8 

[8] Hanga, K. M., & Kovalchuk, Y. (2019). Machine learning and multi-agent systems in oil and gas 

industry applications: A survey. Computer Science Review, 34, Article 100191. 

https://doi.org/10.1016/j.cosrev.2019.08.002 

[9] Jaber, A., Alyasiri, M., & Abdulkhaleq, A. (2020). Decision support method for early-phase design 

of offshore hydrocarbon fields using model-based optimization. Journal of Petroleum Exploration 

and Production Technology, 10, 1411–1427. https://doi.org/10.1007/s13202-019-00817-z 

[10] Koroteev, D., & Tekic, Z. (2021). Artificial intelligence in oil and gas upstream: Trends, challenges, 

and scenarios for the future. Energy and AI, 3, Article 100041. 

https://doi.org/10.1016/j.egyai.2020.100041 

[11] Li, H., Yu, H., Cao, N., Tian, H., & Cheng, S. (2021). Applications of artificial intelligence in oil and 

gas development. Archives of Computational Methods in Engineering, 28, 937–949. 

https://doi.org/10.1007/s11831-020-09402-8 

[12] Ohalete, N. C., Aderibigbe, A. O., Ani, E. C., Ohenhen, P. E., & Akinoso, A. (2023). Advancements 

in predictive maintenance in the oil and gas industry: A review of AI and data science applications. 

World Journal of Advanced Research and Reviews, 20(3), 167–181. 

https://doi.org/10.30574/wjarr.2023.20.3.2432 

[13] Orangi, A., Zapata, V. J., Moreno, C. E., & Wattenbarger, R. A. (2019). Integrated asset 

management: A case study of technical and economic optimization of surface and subsurface 

facilities for offshore oil fields. Petroleum Science, 16(3), 567–583. 

https://doi.org/10.1007/s12182-019-00356-6 

[14] Shafiee, M., Brennan, F., & Espinosa, I. A. (2022). A review of operations and maintenance 

modelling with considerations for novel wind turbine concepts. Renewable and Sustainable 

Energy Reviews, 162, Article 112581. https://doi.org/10.1016/j.rser.2022.112581 

[15] Tariq, Z., Aljawad, M. S., Hasan, A., Murtaza, M., Mohammed, E., El-Husseiny, A., Mahmoud, M. 

A., Al-Rawi, Y., & Abdulraheem, A. (2021). A systematic review of data science and machine 

learning applications to the oil and gas industry. Journal of Petroleum Exploration and Production 

Technology, 11, 4339–4374. https://doi.org/10.1007/s13202-021-01302-2 

[16] Waqar, A., Othman, I., Shafiq, N., & Mansoor, M. S. (2023). Applications of AI in oil and gas projects 

towards sustainable development: A systematic literature review. Artificial Intelligence Review, 56, 

12771–12798. https://doi.org/10.1007/s10462-023-10467-7 

http://www.jisem-journal.com/
https://doi.org/10.1016/j.petrol.2019.106487
https://doi.org/10.1007/s11356-021-17396-8
https://doi.org/10.1016/j.cosrev.2019.08.002
https://doi.org/10.1007/s13202-019-00817-z
https://doi.org/10.1016/j.egyai.2020.100041
https://doi.org/10.1007/s11831-020-09402-8
https://doi.org/10.30574/wjarr.2023.20.3.2432
https://doi.org/10.1007/s12182-019-00356-6
https://doi.org/10.1016/j.rser.2022.112581
https://doi.org/10.1007/s13202-021-01302-2
https://doi.org/10.1007/s10462-023-10467-7

