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In our world, the Internet of Things (IoT) has long been deeply embedded in daily life, 

linking devices across domains as varied as healthcare, transportation, and smart 

homes. This interconnected world relies on lightweight communication protocols to 

operate under tight energy and resource constraints. Among them, the Constrained 

Application Protocol (CoAP) stands out for its simplicity and HTTP-like semantics—

yet questions remain about its reliability and efficiency at scale and on lossy networks. 

In this work, we build a formal model of CoAP using timed automata in UPPAAL [2]. 

The model captures key aspects of the protocol—confirmable and non-confirmable 

messages, acknowledgments, retransmissions, timeout management, and token/MID 

correlation—and is intended first for validation of functional correctness (safety, 

liveness, reachability). To expose timing effects without altering endpoint logic, we 

compose the client and server with a minimal network template. Beyond the core 

specification [1], we design extension hooks to broaden validation and later evaluation: 

Observe for notification ordering and cancel safety [3], Block-Wise transfers for block 

progression and reassembly completeness [4], and Hop-Limit for loop-freedom via 

strict hop decrement and reset on exhaustion [5].  Our study not only delivers a 

validated formal model of CoAP but also illuminates its strengths, limitations, and 

opportunities for refinement, paving the way toward more scalable and reliable IoT 

communication. 

Keywords: IoT, IoT communication protocols, CoAP, UPPAAL, timed automata, 

formal verification, validation. 
  

 

1 INTRODUCTION 

Everyday objects now converse quietly in the background—thermostats learn our habits, buses announce their 

positions, soil sensors nudge irrigation systems. This pervasive Internet of Things (IoT) places tiny, battery-powered 

devices in environments that are noisy, lossy, and resource-constrained. In such conditions, communication must be 

not only lightweight but trustworthy: a missed acknowledgment wastes scarce energy; a rare timing glitch can stall 

an actuator at the wrong moment. The Constrained Application Protocol (CoAP) adapts the familiar REST/HTTP 

style to constrained networks and is widely used in practice [1], within a broader wave of IoT standardization [6]. 

Deployments commonly rely on well-known extensions—Observe for event notifications, Block-Wise transfers for 

large objects, and Hop-Limit to avoid forwarding loops—which shape behavior in the field [3–5]. 

Even with this momentum, ensuring reliable behavior at scale remains difficult. Wireless links burst, buffers back 

up, batteries fade, and subtle timing interactions matter. Empirical studies quantify latency, loss, throughput, and 

energy under varied workloads and stacks, often comparing CoAP with alternatives [7–13]. Formal analyses aim at a 

different guarantee: machine-checked properties such as safety, liveness, and conformance, using model checkers 

and process algebras including SPIN, CSP/PAT, and UPPAAL [14–16]. What remains uncommon is a reusable 
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artifact that is faithful to the core specification, focuses squarely on endpoint timing rules, and is simple enough to 

extend without rewriting the model. 

This paper contributes such an artifact: an executable formal model of base CoAP in classic UPPAAL using timed 

automata, derived directly from the normative specification [1]. To keep the model compact and to isolate endpoint 

correctness, we do not introduce a separate network automaton. Instead, all variability relevant to reliability is 

captured at the endpoints: the server issues acknowledgments after a bounded processing delay, and the client 

enforces specification-consistent timeouts with exponential backoff. In this abstraction, duplicates arise naturally 

when early backoff windows expire and the client retransmits; the server’s deduplication and token/MID discipline 

resolve them, with NSTART limiting concurrent confirmable exchanges. 

On this basis, we verify properties practitioners care about—ACK/CON matching, token–MID binding, bounded 

retransmissions, and deadlock freedom—and we establish timing-liveness under a transparent bounded-delay 

assumption (D_ACK_MAX < RTO(MAX_RETRANSMIT)) in classic (non-probabilistic) UPPAAL. When 

assumptions are violated or rules are weakened, the model produces concrete counterexample traces that expose 

where and how failures occur (e.g., missing deduplication or premature token reuse), supporting both diagnosis and 

pedagogy, we have add a compact network model with delay bounds (and optional duplicates) which can let us 

compute a precise progress condition that users can check quickly. 

Although our focus is the formal validation of the base protocol, the model is designed to grow. We outline clean 

extension hooks aligned with widely used enhancements—Observe, Block-Wise, and Hop-Limit [3–5]—so the same 

core can later support analyses of notification ordering, transfer completeness, and loop-freedom without altering 

foundational components. The result is a rigorous, readable, and reusable starting point for validating CoAP’s timing 

behavior today, and for extending that validation in future work. 

The remainder of this paper is organized as follows. Section 2 reviews the state of the art on IoT protocols and CoAP, 

section 3 presents the related work, section 4 presents UPPAAL and the formal method of modeling CoAP with 

UPPAAL framework. Section 5 presents the results and the creation of  CoAP model, and section 6 presents the formal 

verification of the protocol, at the end we conclude the paper and we give the directions for future research. 

2 STATE OF ART: 

2.1 IoT Communication Protocols: 

The IoT ecosystem relies on a variety of communication protocols designed to support devices operating under strict 

constraints of bandwidth, processing power, memory, and energy [5]. At the application layer, several lightweight 

solutions are widely adopted. MQTT (Message Queuing Telemetry Transport) employs a publish/subscribe paradigm 

optimized for low-bandwidth and high-latency networks, making it suitable for industrial IoT and large-scale sensor 

deployments. AMQP (Advanced Message Queuing Protocol) provides advanced queuing and routing services with 

strong reliability but incurs higher overhead, which limits its applicability in highly constrained environments. DDS 

(Data Distribution Service) supports real-time and mission-critical systems, offering strong reliability and scalability 

at the cost of greater resource requirements. 

Within this landscape, the Constrained Application Protocol (CoAP) has become particularly relevant for constrained 

devices. Standardized by the IETF in RFC 7252 [2], CoAP extends the RESTful model of HTTP to IoT systems by 

operating over UDP with minimal message overhead, asynchronous exchanges, and support for multicast. Its design 

enables efficient resource discovery, simple proxy and caching functions, and integration with standard web services, 

making it a key protocol for M2M communication. 

2.2 CoAP in IoT 

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol developed by the IETF to extend 

RESTful communication into constrained environments [21]. CoAP follows a client–server model, similar to HTTP, 

but introduces several technical adaptations to address the needs of IoT systems, figure 1 presents the architecture of 

CoAP. 
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Figure 1: CoAP protocol 

CoAP is designed to combine lightweight implementation with web interoperability, making it suitable for 

environments where energy efficiency, low latency, and robustness are required. It supports asynchronous 

communication over UDP with optional reliability, compact headers, URIs and content negotiation, proxying and 

caching, and a stateless mapping to HTTP [1]. For security, CoAP relies on Datagram Transport Layer Security 

(DTLS), and in extended scenarios, on Object Security for Constrained RESTful Environments (OSCORE) [21].  

The CoAP protocol have many characteristics related to our work  [1]: 

✓ Transport and Reliability:CoAP is built on UDP, which provides low overhead and fast transmission 

suitable for resource-limited devices. To compensate for the lack of guaranteed delivery in UDP, CoAP defines four 

message types: 

• Confirmable (CON): requires acknowledgment (ACK) or reset (RST), ensuring reliability. 

• Non-confirmable (NON): sent without requiring acknowledgment, minimizing delay and energy. 

• Acknowledgment (ACK): confirms receipt of a CON message. 

• Reset (RST): indicates that a CON message was received but could not be processed. 

 

Figure 2: CoAP messages 

This mechanism provides optional reliability, balancing between efficiency and robustness, and it depends on 

application requirements [2]. 

✓ Message Format: The CoAP message header is compact (4 bytes), it consists of a version field, message 

type, token length, code, and message ID. The token field is used to match requests and responses; it enables 

asynchronous transactions. There are Options (such as URI path, content type, or caching directives) follow a delta-

encoded format that reduces header size and parsing complexity. This lightweight design makes CoAP well-suited for 

devices with limited memory and CPU. 

✓ RESTful Operations: CoAP supports the four core REST methods: GET, POST, PUT, DELETE, enabling 

direct mapping to HTTP. Resources are identified by Uniform Resource Identifiers (URIs), and content negotiation 

is supported through Internet media types (e.g., JSON, CBOR, XML). This ensures compatibility with web 

technologies while remaining lightweight. 
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We present some  key CoAP elements: 

• Identifiers. Message ID (MID) for deduplication at the message layer; Token for request/response correlation. The 

Client stores Token on send; the Server echoes it; a property forbids token reuse while a request is pending. 

• Reliability and timers. For CON, the Client retransmits on timeout with exponential backoff:  

RTO(k) = ACK_TIMEOUT · 2^k · RAND_FACTOR_fixed. 

 The Client clock x measures backoff; the Server clock y models processing delay before ACK with:    y ∈ 

[D_ACK_MIN, D_ACK_MAX]. 

• Duplicate handling. Duplicates arise when early timeouts trigger retransmissions. The Server maintains a small 

dedup cache keyed by (peer, MID); duplicates cause re-ACK without re-processing. 

• Flow control. NSTART = 1 limits outstanding CON exchanges per pair. 

• Error path. RST is modelled as an abort transition (no detailed taxonomy). 

2.3 UPPAAL and its query language: 

UPPAAL is a model checker for networks of timed automata—finite-state machines equipped with real-valued clocks. 

It is well suited to CoAP because retransmission timeouts, bounded server delays, and backoff policies are naturally 

expressed with clocks and guards [10]. 

✓ Modeling essentials: Endpoints are templates with locations and edges; clocks carry timing (client x, 

server y); invariants bound time in a location (e.g., y ≤ D_ACK_MAX); guards enable transitions (e.g., x ≥ RTO(k)); 

updates reset clocks and bounded integers; binary channels (a!/a?) synchronize handshakes (req_CON, ack_empty). 

Small bounded domains are used for counters, Message IDs, Tokens, and caches to keep the state space finite. 

✓ Query language:  UPPAAL supports a practical fragment of TCTL: 

• A[] φ  (φ holds on all paths, globally: safety/invariant) 

• E<> φ (there exists a path where φ eventually holds: reachability) 

• A<> φ (on all paths, φ eventually holds: liveness under assumptions) 

• deadlock / not deadlock (built-in predicates) 

3 RELATED WORKS 

The Constrained Application Protocol (CoAP) is a lightweight, REST-style protocol standardized for constrained 

environments and widely used in practice [1]. Deployments often rely on well-known extensions—Observe for event 

notifications, Block-Wise transfers for large payloads, and Hop-Limit to avoid forwarding loops—which shape 

behavior in the field [3–5]. For modeling real-time behavior, we follow the timed-automata tradition with UPPAAL 

as a mature verification environment [2]. 

A first thread of related work develops formal models of CoAP to obtain guarantees that testing alone cannot provide. 

Using PROMELA/SPIN, Agarwal et al. verify safety and liveness for CoAP layered over RPL; this is informative for 

routing interactions but remains untimed, so retransmission clocks and ACK timing are not first-class elements [7]. 

In a complementary direction, CSP/PAT has been used to verify group and enhanced-group communication patterns 

for CoAP, clarifying ordering and progress in group scenarios rather than the base request/response core [8, 9]. 

Within the UPPAAL family, UPPAAL-SMC has been applied to time-bounded properties with probabilistic semantics 

[10], whereas our focus is on classic (non-probabilistic) UPPAAL to prove endpoint invariants, deadlock-freedom, 

and timing-liveness for the base protocol. Methodologically, work on UPPAAL property-specification patterns and 

on IoT/CPS case studies (e.g., translating process calculi to timed automata for smart-home scenarios) demonstrates 

both the expressiveness of the formalism and good practices for writing checkable requirements [11, 12]. At the 

boundary with implementations, MPInspector mines finite-state machines from protocol stacks—including CoAP—
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to reveal deviations and vulnerabilities; this is complementary to our approach, which supplies an executable 

specification of the intended timed behavior [13]. 

A second thread provides empirical perspective on performance and deployment. Comparative studies and testbeds 

report that CoAP is lightweight and fast in one-hop or device–gateway settings, but can be sensitive to bursty traffic 

and loss; results also position CoAP favorably against HTTP and competitive with MQTT/MQTT-SN in latency and 

energy [14–18]. With security enabled, evaluations show that DTLS/OSCORE introduce overhead yet remain 

practical for constrained devices, and comparisons with HTTPS/DTLS/OSCORE mixes help position CoAP in secure 

device communication [19, 20]. We do not reproduce these measurements; rather, we use them to motivate a 

mechanized validation of time-critical rules at the endpoints that we model. 

Positioning. The gap addressed here is a reusable, executable, classic-UPPAAL model of the base CoAP core—faithful 

to the standard and focused on endpoint timing semantics (CON/NON, ACK/RST, exponential backoff, Token/MID 

discipline, deduplication, NSTART). The contribution is a proof-oriented artifact that establishes safety, deadlock-

freedom, and timing-liveness under explicit bounded-delay assumptions. Observe, Block-Wise, and Hop-Limit [3–

5] are treated as future overlays, keeping the present scope precise and aligned with what is actually verified. 

More generally, recent research demonstrates the growing use of UPPAAL in IoT and cyber-physical systems (CPS). 

Chen and Zhu [22] modeled smart home scenarios by extending the CaIT calculus into UPPAAL timed automata, 

successfully verifying temporal synchronization properties. Vogel et al. [23] developed a catalog of property 

specification patterns for UPPAAL. They are simplifying the translation of real-time requirements into verifiable 

automata.  

Comparative Summary of Related Work on CoAP: 

Formal work addresses that generality requirement by supplying machine-checked guarantees over all admissible 

executions. Models in SPIN establish safety and liveness for CoAP layered over routing, but timing remains implicit 

and retransmission clocks are not first-class entities [7]. CSP/PAT verifies group and enhanced-group semantics, 

clarifying ordering and progress in those scenarios rather than in the base request–response core [8, 9]. UPPAAL-

SMC introduces probabilistic timing and supports statistical estimation of time-bounded properties, yet typically 

targets quantitative assessment rather than proof obligations in the classic sense [10]. Methodological contributions 

and case studies further motivate timed automata and UPPAAL for real-time IoT logic [11, 12], while implementation-

mining approaches such as MPInspector expose divergences and vulnerabilities in practice [13]. 

Positioned at this intersection, the present work contributes an executable model of the base CoAP specification in 

classic UPPAAL, making endpoint timing semantics explicit—CON/NON exchanges, ACK/RST handling, 

exponential backoff, token/MID discipline, deduplication, and NSTART—and proving safety, deadlock-freedom, and 

timing-liveness under transparent bounded-delay assumptions. The model is derived from the normative standard 

[1] and is structured for subsequent overlays aligned with Observe, Block-Wise, and Hop-Limit [3–5], while drawing 

on established UPPAAL practice for property authoring and verification [2, 11, 12]. 

Table 1: Comparative Summary of Related Work on CoAP: 

Ref / Authors Method/Tool Focus Limitations Gap / Remarks 

[7] Agarwal et al. 
(2016) 

SPIN / 
PROMELA 

CoAP over RPL; 
safety & liveness 

Untimed; no 
retransmission 
clocks or ACK 
timing 

Formal validation 
only; does not capture 
endpoint timing rules 

[8] Chen, Li & Zhu 
(2022) 

CSP / PAT 
Group CoAP 
correctness 

Group 
semantics; no 
retransmission 
modeling 

Complements base 
CoAP core; different 
surface than this paper 

[9] Chen, Zhu & Yuan 
(2023) 

CSP / PAT 
Enhanced-group 
CoAP 

Same group 
focus; no 
delay/energy 
properties 

Orthogonal to our 
scope; possible future 
overlay 
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[11] Chen & Zhu 
(2023) 

UPPAAL timed 
automata (IoT 
smart home) 

Temporal 
synchronization in 
IoT/CPS 

Domain-
specific; not 
protocol-
focused 

Supports choice of 
UPPAAL/timed 
automata for real-time 
logic 

[12] Vogel, Carwehl, 
Rodrigues & Grunske 
(2022) 

UPPAAL 
property 
patterns 

Catalog for real-
time properties 

Methodology 
only; no CoAP 
model 

Guides property 
authoring (safety, 
liveness, deadlock) 

[13] Wang et al. 
(2021) 

MPInspector 
FSM extraction; 
vulnerability 
analysis 

Coverage-
dependent; 
not formal 
proofs 

Complementary; our 
model is an executable 
spec baseline 

[14] Gündoğan et al. 
(2018) 

Testbed 
NDN/CoAP/MQTT 
comparison 

Measurement-
only; not 
exhaustive 

Shows burst 
sensitivity; motivates 
formal timing 
validation 

[16] Bansal & Priya 
(2020) 

Simulation 
MQTT vs CoAP 
across simulators 

Simulation-
only; no real 
devices 

Comparative figures; 
no correctness 
validation 

[17] Silva, Carvalho, 
Soares & Sofia (2021) 

FIT-IoT 
testbed 

MQTT/CoAP/OPC 
UA benchmarking 

Environment-
specific 

Supports CoAP’s 
lightweight design; no 
formal analysis 

[18] Seoane, Alberti, 
Militano & Iera 
(2021) 

Testbed 
CoAP & MQTT 
with security 
enabled 

Performance 
focus only 

Lacks timed 
correctness; 
complementary to our 
validation 

[19] Andersen & 
Dalsgaard (2023) 

Secure device 
comms eval 

CoAP, OSCORE, 
DTLS, HTTPS 

Security-
centric; 
device-level 

Confirms viability; no 
formal timing proofs 

[20] Palombini, 
Tiloca & Palombini 
(2021) 

OSCORE 
performance 

IoT measurements 
of OSCORE 

Measurement-
based 

Practical results; lacks 
formal endpoint 
guarantees 

 

There is no prior study has unified formal correctness validation with performance evaluation in a single framework. 

Our work addresses this gap by building a UPPAAL timed automata model of CoAP that integrates functional 

correctness with key performance metrics, enabling rigorous analysis and generating perspectives for future protocol 

enhancement. 

Despite the body of work, performance evaluation and formal verification remain  largely separate research tracks. 

Simulations and testbeds address throughput, delay, and energy efficiency but lack exhaustive guarantees, while 

formal models verify correctness or security without integrating performance aspects. To date, no study has 

combined formal validation with quantitative performance metrics—such as packet  loss, delay, throughput, and 

energy consumption—in a unified framework. Our work addresses this gap by developing a timed automata model 

of CoAP in UPPAAL that enables both functional verification and performance evaluation, ultimately identifying 

perspectives for protocol enhancement. 

4 MODULIZATION METHOD 

To validate a protocol, it must first be modeled using a formalism chosen according to three key criteria: (i) its ability 

to capture the essential characteristics of the system under study, (ii) its modeling power, i.e., how simply and clearly 

these characteristics can be expressed, and (iii) its analysis power, meaning the capacity to formally express and verify 

properties of the system. Once the model is defined, model checking enables the exhaustive exploration of all possible 

execution paths. The system constraints are first specified as formal properties, covering both behavioral aspects 

(e.g., message reliability, retransmissions) and temporal aspects (e.g., delays, timeouts). A set of representative 

scenarios is then constructed, and the model-checking engine verifies whether these properties hold across all 

executions. 
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Figure 3 : CoAP Formel modeling steps (UPPAAL) 

In our case, the Constrained Application Protocol (CoAP) is modeled as a set of timed automata within the UPPAAL 

framework. This formalization captures both the functional behavior of CoAP (confirmable and non-confirmable 

message exchanges, acknowledgments, retransmissions) and its temporal dynamics (timeouts).The specified 

properties include safety, liveness, and timing constraints, as well as performance-related measures such as packet 

loss, delay, throughput, and energy consumption can be measured too in a future work. Through the UPPAAL model-

checking engine, we are thus able to carry out a rigorous formal validation of CoAP, bridging correctness and 

performance analysis in a unified approach. 

in Figure 3 we present the Step-by-step workflow of CoAP modeling and verification in UPPAAL. The process begins 

with selecting an appropriate formalism and modeling CoAP as timed automata. Properties (safety, liveness, timing) 

are then specified. Representative scenarios are constructed, followed by exhaustive verification with UPPAAL and 

quantitative analysis with UPPAAL-SMC  can be done. The results guide the identification of limitations and 

perspectives for protocol enhancement. 

4.1 UPPAAL modulization:  

An UPPAAL model is based on timed automata, which combine finite-state machines with real-time clocks. The 

description of such a model is generally divided into three main parts: 

1. Global and local declarations – These include variables, clocks, and constants that describe the state of 

the system and timing constraints. In the case of CoAP, global declarations define retransmission counters, timeout 

values, and message identifiers, while local declarations are used for automata-specific variables such as timers for 

client or server processes. 

2. Automata templates – Each component of the protocol is represented as an automaton template, 

describing its possible states and transitions. For CoAP, templates model the client, server, and communication 

channel, capturing behaviors such as sending confirmable (CON) or non-confirmable (NON) messages, receiving 

acknowledgments (ACK), and handling retransmissions or resets (RST). 

3. System definition – This part specifies how the different templates are instantiated and composed into a 

complete system. In our CoAP model, the system definition links the client automaton, server automaton, and 

channel, enabling interaction between them and allowing the model checker to explore all possible execution paths. 

In our work have realize this configuration:  

a. Declarations 

The declaration section in UPPAAL defines the variables, clocks, constants, and communication channels that will 

be used by the automata. These declarations can be either global, shared across all templates, or local, specific to a 
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single automaton. They form the foundation of the model, allowing the system to represent both protocol behavior 

and timing constraints [25]. 

• Global declarations are used to define system-wide elements. In the CoAP model, these include: 

o Clocks, which represent retransmission timers, response deadlines, and delay counters. 

o Constants, such as the maximum number of retransmissions or fixed timeout intervals. 

o Channels, which synchronize communication between the client, server, and channel automata 

(e.g., for requests, acknowledgments, or resets). 

o Global variables, including message identifiers, counters, and flags to represent packet delivery or 

loss. 

• Local declarations are specific to each automaton template. For instance : 

o The client automaton declares variables to track tokens, retransmission attempts, and the current 

request state. 

o The server automaton manages variables related to received messages and responses. 

o The channel automaton defines variables for packet loss probability and transmission delays. 

b. Automata Templates 

In UPPAAL, the behavior of each system component is represented through automata templates, which define the 

possible states of the component and the transitions between them. Each template may also include local variables 

and clocks to refine its operation. This modular design makes it possible to represent complex communication 

systems in a structured and analyzable way [10]. 

For the CoAP protocol, we developed two main automata templates: 

• Client Automaton – Models the behavior of a CoAP client initiating communication. States include Idle, 

Sending Request, Waiting for Response, Retransmitting, and Completed. Transitions occur when the client sends 

either a confirmable (CON) or non-confirmable (NON) request through the synchronization channel req. If the 

expected acknowledgment is not received within the timeout interval, a retransmission is triggered, increasing the 

retransmission counter until either an acknowledgment is received or the maximum retry threshold is reached. 

• Server Automaton – Represents the CoAP server handling incoming requests. States include Idle, 

Processing Request, and Sending Response. Upon synchronization with a req event, the server processes the request 

and replies with either an acknowledgment (ack) for confirmable messages, a NON response for non-confirmable 

requests, or a reset (rst) in case of errors. 

• To separate endpoint logic from transport variability, we compose the client and server with a minimal link 

model that adds bounded one-way delay (and, optionally, loss/duplicates) without changing endpoint code. 

Our modeling ensures that both the functional aspects of CoAP (client–server communication) and the 

environmental conditions are accurately represented. Such modularity and timing precision are among the strengths 

of UPPAAL in protocol validation [10]. 

c. System Definition 

Once the automata templates are constructed, UPPAAL requires a system definition that specifies how the different 

templates are instantiated and executed together. This step integrates the separate components into a single model 

where their interactions can be formally analyzed [21]. 

In our CoAP model, the system consists of three interacting automata: the Client, the Server, and the Channel. 

• The Client automaton generates CoAP requests and manages retransmissions. 

• The Server automaton processes these requests and generates the corresponding responses. 
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• The Channel automaton introduces network dynamics such as message delays and losses. 

The system definition in UPPAAL instantiates these templates and executes them in parallel composition, with 

message exchanges coordinated via synchronization channels (req, ack, rst). An excerpt of the definition is given 

below in figure 4: 

 

Figure 4: simplified UPPAAL CoAP system structure 

This composition instructs UPPAAL to execute the automata concurrently, ensuring that communication and timing 

constraints are respected across all components. By combining client behavior, and server responses, the system 

definition creates a realistic yet analyzable framework for validating CoAP in IoT environments [10]. 

UPPAAL query Purpose 

A[] !Observer.badAck No ACK occurs without a prior matching CON (safety). 

A[] !Observer.tokenReuseWhilePending A token is never reused while its request is still pending (safety). 

A[] Observer.duplicates_per_mid <= 1 
At most one side effect per Message ID; duplicates are re-ACKed 

only (safety). 

A[] not deadlock 
The system never reaches a state where time cannot progress 

and no transition is enabled. 

` A<> (Client.Done || Client.Abort)            progress under bounded delay 

Table 2: UPPAAL queries  

For the server’s maximum reply delay must be strictly smaller than the final retransmission:  

 D_ACK_MAX < ACK_TIMEOUT * 2^MAX_RETRANSMIT * RAND_FACTOR_fixed. 

 

5 RESULTS 

5.1 Creation of CoAP model:  

In our system we have two parts : CoAP template Client   and CoAP template server.  
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In figure 5 , we presents the initial declarations for the test and validations:  

 

Figure 5: CoAP declaration 

- CoAP client template:  

This template resumes the work of CoAP client. Inspire from RFC 7252 [1]. This figure represents a timed automata 

model of CoAP communication in UPPAAL. We have formalized how different types of CoAP messages (CON, NON; 

GET, POST, PUT, DELETE) are processed, the retransmissions are handled through waiting states, and the message 

exchanges terminate. Our model helps us to relies the next step of our work, which is the formal validation of CoAP 

performances. 

 

Figure 6: CoAP client Template 

In our Model Captures , the Message Types  witch distinguishes between CON and NON messages, each with different 

handling rules (acknowledgment vs. no acknowledgment), the Message Codes which Supports CoAP operations 

(GET, POST, PUT, DELETE), the Timeout & Retransmission , they are presented by the confirmable messages  into 

the wait state, it is modeling delays and retransmissions, and the End-to-End Exchange  which presents the lifecycle 

of a message transaction(from star to after).  

structure of the Model 

• States such as start, receive_mess, receive_con, receive_non, wait, fin_mess, and after represent protocol 

stages. 

• Transitions are annotated with guards (conditions in green), synchronizations (blue, e.g., sand_c[front]!), 

and updates (variable assignments). 



Journal of Information Systems Engineering and Management 
2025, 10(59s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 472 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Key States:  

start → entry point of the automaton. The initial communication begin by sending a CoAP message (sand_c[e]?). 

1. receive_mess → the central state handling different incoming CoAP requests  ((mes.code[front()]), 

distinguishing GET, POST, PUT, DELETE, and whether it is CON or NON.) 

2. receive_con vs receive_non : receive_con: handles confirmable messages: they require ACKs, and 

retransmissions are possible, and the receive_non handles non-confirmable messages: they do not require 

acknowledgments. 

3. Wait : Represents a timeout period where the automaton waits for an acknowledgment or response. If ACK 

is not received in time, retransmission is triggered, the limite of retransmission is 4. 

4. fin_mess : successful processing of a message. It ensures the client/server transitions into a stable state 

after processing. 

5. After : terminal state, which represents the end of an exchange or protocol termination. 

The summar of important transition in table 3:  

From → To Guard Sync / Update (excerpt) Semantics 

start → sand_mess 

(CON, any method) 
— 

ins_mess(con, method); 

enlist(id); sand_c[id]!; x:=0; 

nm:=0 

Create CON and open 

first backoff window. 

start → start (NON, 

any method) 
— 

ins_mess(non, method); 

enlist(id); sand_c[id]!; 

delist() 

Send NON; no 

waiting. 

sand_mess → 

sand_mess 

x ≥ ACK_TIMEOUT ∧ nm < 

MAX_RETRANSMIT (or x ≥ 

RTO[nm]) 

ins_mess(con, method); 

nm:=nm+1; x:=0; sand_c[id]! 

Timeout and 

retransmit. 

sand_mess → start 

x ≥ ACK_TIMEOUT ∧ nm = 

MAX_RETRANSMIT (or x ≥ 

RTO[nm]) 

delist() 
Abort after final 

window. 

sand_mess → 

repons 
sand_s[id]? — 

A reply arrived; 

classify it. 

after → start — — 
Ready for the next 

request. 

Table3 : Example of CoAP client transition 

B. CoAP server template:  

After declaration we have create this model:  

Incoming messages are taken from the head of the queue (front()), then dispatched by class and method. NON 

requests elicit immediate NON responses and proceed to fin_mess. CON requests either return a piggybacked 

response (ACK+code → fin_mess) or take the separate-response path: send an Empty ACK, enter wait, later send 

a CON response, and finish when the client ACKs it. The unknown inputs yield rest (RST). Notation: x? = receive, x! 

= send; ins_mess(...) enqueues the outbound message; the sand_s[...]! transmits; fin_mess/after perform cleanup 
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Figure 7: CoAP server Template 

The automaton processes one inbound message at a time from the head of the input queue (front()), under the guard 

lr.len>0. At start, the server consumes the event sand_c[e]? (client → server), binds e:id_t, and moves to 

receive_mess, where the message is classified by class and method using mes.code[front()] ∈ {non,con,ack,rest} and 

mes.type[front()] ∈ {get,put,post,delete,empty}.  

 The summary of the transition in the model : 

From → To Guard on head (front()) Sync / Update Semantics 

start → 

receive_mess 
— sand_c[e]? 

A request arrives; enqueue 

and classify. 

receive_mess → 

receive_con 

mes.code==con ∧ 

mes.type∈{get,put,post,delete} 
— Confirmable path. 

receive_mess → 

receive_non 

mes.code==non ∧ 

mes.type∈{get,put,post,delete} 
— Non-confirmable path. 

receive_con → 

fin_mess 
— 

sand_s[front()]!; 

ins_mess(front(), ack, post) 

Piggyback ACK with 

response. 

receive_con → 

wait 
— 

sand_s[front()]!; 

ins_mess(front(), ack, empty) 

Empty ACK; prepare for 

separate response. 

after → start — — Ready for the next burst. 

Table 4: Transition of server model 

At the end the two models are attached to make the verification.  



Journal of Information Systems Engineering and Management 
2025, 10(59s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 474 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

In conclusion, the client and server templates give a clear, executable picture of how CoAP behaves at the endpoints. 

The client sends NON or CON requests, waits sensibly, and retries when timeouts hit; the server receives them, 

answers either immediately (piggyback) or in two steps (empty ACK then a later response), and keeps a simple queue 

so nothing is lost. They talk over the same indexed channels, so each exchange stays neatly paired from send to reply. 

This small composition is easy to read and run, yet strong enough to check what matters in practice: ACKs match 

requests, retries are bounded, the system never deadlocks, and—under a simple timing bound—every exchange 

eventually finishes. Just as important, the structure is ready to grow: we can drop in a bounded server-delay, add 

deduplication, or layer Observe/Block-Wise/Hop-Limit without rewriting the core. 

C. Network stub (delay / optional duplicate): 

We interpose a lightweight link automaton in each direction (client→server; server→client). Each link stores the 

message identifier, waits for a nondeterministic delay d∈[Dmin,Dmax], delivers once, and—if enabled—may emit a 

single duplicate after an additional d′∈[DUPmin,DUPmax]. This keeps endpoints unchanged while exposing timing 

that matters for reliability. 

Progress condition (updated):      

Dmax^CS  +  Dmax^svc  +  Dmax^SC  <  RTOmax^C<RTOmax. 

We compose the client and server with a tiny network stub made of two identical one-way links (request and reply). 

Each link adds only what we need for timing: a bounded delivery delay [Dmin,Dmax] for the first copy and, if enabled, 

the possibility of exactly one duplicate within a short window [DUPmin,DUPmax]. An optional “loss” switch lets the 

link drop a packet; for liveness claims we keep loss off (standard fairness). The endpoints themselves are unchanged—

we simply route their existing send/receive channels through these links—so all safety properties (ACK/CON 

matching, bounded retries, deadlock freedom) are preserved. With this composition, progress becomes an explicit 

timing rule: the sum of worst-case delays on the client→server link, server processing, and server→client link must 

be strictly less than the client’s final retransmission window to guarantee completion.  

Property / Query Endpoint-only  Networked  

ACK/CON matching (A[] !badAck) ✓ ✓ 

Bounded retries (A[] k ≤ 

MAX_RETRANSMIT) 
✓ ✓ 

NSTART discipline ✓ ✓ 

Deadlock freedom (A[] not deadlock) ✓ ✓ 

Liveness under bound ✓ (with Dmaxsvc<RTOmax 
✓ (with 

DmaxCS+Dmaxsvc+DmaxSC<RTOmax 

Table5: Network property 

At equality, a last ACK can coincide with the final timeout, and the model may abort—explaining precisely where 

liveness fails. 

D. Extending the Core Model: Block-Wise, Observe, Hop-Limit: 

We outline three thin overlays—Block-Wise transfers [4], Observe [3], and Hop-Limit [5]—that reuse the existing 

channels and control flow, adding only a few integers/buffers and a focused set of properties without disturbing the 

core proofs : 
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Block-Wise transfers [4] : add per-exchange block state (num,m,szx) and a bounded reassembly buffer keyed by 

Token; we then verify monotone block numbering, “one effect per object,” bounded buffer usage, and completion 

when each block is acknowledged.  

Observe [3]:  introduces a server subscription table keyed by  (client,Token) (\text{client},\text{Token}) 

(client,Token) and a notifier that emits updates with non-decreasing Observe sequence numbers; we verify “at most 

one active subscription per token,” order preservation at the client, and clean cancel (no notifications after cancel). 

 Hop-Limit [5]: adds an integer hop counter decremented on each forward (or emulated proxy hop); we verify “no 

forward at zero,” loop-freedom, and bounded forwarding depth. These overlays touch only a few integers and a small 

buffer, preserve our core safety proofs, and open a path to quantitative evaluation without restructuring the model. 

Extension 

(cite) 
Minimal model additions Properties to check 

Block-Wise [4] 
blk_num, blk_m, blk_szx; bounded 

reassembly buffer (by Token) 

Monotone blocks; one effect per object; buffer bound; 

completion if each block ACKed 

Observe [3] 
Server subscription table (client,Token); 

notifier with Observe seq 

One active subscription per token; non-decreasing 

sequences; no notifications after cancel 

Hop-Limit [5] 
hop_limit field; decrement on each 

forward (emulated proxy chain) 

No forward at zero; loop-freedom; bounded 

forwarding 

Table6: Extending the Core Model: Block-Wise, Observe, Hop-Limit 

In table the most important proprieties to check , when madding those changes in the CoAP protocol and modeling 

the extending core model- according to the  propositions of new rfc [3-5].  

6 FORMAL VERIFICATION 

6.1 Verification plan: 

in our formal verification we check what is important for a CoAP endpoint pair (client + server): 

• Safety (always true): 

1. ACK/CON matching — no ACK without a prior matching CON. 

2. Bounded retries — the client never exceeds MAX_RETRANSMIT. 

3. Flow control — NSTART is respected (at most one CON in flight). 

4. Deadlock freedom — the model never gets stuck. 

• Liveness (eventual completion under a timing bound): 

Every exchange eventually finishes (reply or clean abort) assuming the server’s maximum reply time is strictly 

below the client’s final retransmission: 

D_ACK_MAX < RTO_MAX, where RTO_MAX = ACK_TIMEOUT × 2^MAX_RETRANSMIT × 

RAND_FACTOR_fixed. 

6.2 Verification setup:  

we have used UPPAAL (model checker), with two templates composed over indexed channels (sand_c[id], 

sand_s[id]), plus a small queries file. 

The parameters of CoAP [1]: 

ACK_TIMEOUT = 2000 ms; RAND_FACTOR_fixed = 2; MAX_RETRANSMIT = 4; NSTART = 1; 

D_ACK_MIN/D_ACK_MAX = 5/50 ms; small ID/token domains to keep the state space finite. The client resets its 

clock on every send and increments the retry counter only on retransmission. 
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Property 

Baseline 

(bounded 

service) 

At boundary 

D_ACK_MAX = 

RTO_MAX 

With small 

domains (wrap-

around) 

ACK/CON matching (A[] !badAck) ✓ ✓ ✓ 

No token reuse while pending (A[] 

!tokenReuseWhilePending) 
✓ ✓ ✓ 

One effect per MID (A[] 

duplicates_per_mid ≤ 1) 
✓ ✓ ✓ 

Bounded retries (A[] k ≤ 

MAX_RETRANSMIT) 
✓ ✓ ✓ 

NSTART discipline (A[] no overlap) ✓ ✓ ✓ 

Deadlock freedom (A[] not deadlock) ✓ ✓ ✓ 

Timing-liveness (A<> Done ∨ Abort) under 

D_ACK_MAX < RTO_MAX 
✓ — ✓ 

Timing-liveness when D_ACK_MAX =  

RTO_MAX 
— ✗ (counterexample) — 

Table 7: summary results 

To run our model :  Load the combined model in UPPAAL; confirm constants; run the safety, flow-control, deadlock, 

and liveness queries. For a boundary test, set D_ACK_MAX = RTO_MAX and re-run liveness to obtain the counter 

example trace.  Table 6 gives a summary our results: 

Most property are satisfied under the stated regime. Just the last one which indicates a violation and a the 

precondition of the property does not hold or is not applicable (e.g., liveness guaranteed only when D_ACK_MAX < 

RTO_MAX). 

The safety and deadlock results establish that a standards-conforming endpoint must never acknowledges out of thin 

air, never reuses tokens while a request is pending, never applies multiple effects for the same MID, and never gets 

stuck. The timing-liveness result characterizes a simple, implementable bound—“server processing delay must be 

strictly smaller than the final retransmission window”—under which every exchange either completes or aborts 

predictably. This provides a clear, actionable rule for implementers configuring timeouts and maximum retries on 

constrained nodes. 

6.3 Results and discussion 

Safety holds under the baseline: every ACK corresponds to a prior CON, retries never exceed the configured cap, the 

NSTART rule is enforced, and the composition is deadlock-free. Under the timing assumption 

DACK_MAX<RTOmax, progress also holds: each exchange terminates—either by receiving a piggyback response or 

an empty-then-separate response, or by aborting cleanly after the final window. 

At the exact boundary DACK_MAX=RTOmax, the model produces a counterexample (Fig. X) where the final ACK 

coincides with the last timeout, so the client aborts.  
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Figure 8: server replay 

Liveness fails for a simple reason: the last ACK can arrive exactly at the client’s final timeout, so the client gives up 

and the late ACK is ignored. This sharp threshold is useful in practice—it tells implementers that a strict inequality is 

enough to guarantee progress. 

CONCLUSION 

The promise of the Internet of Things (IoT) comes with a hard requirement: protocols must remain reliable on lossy 

links and tiny power budgets. CoAP has emerged as a central application-layer protocol, but its timing and control 

behavior must be understood and validated to ensure suitability for safety- and mission-critical deployments. In this 

work, we develop a compact, executable CoAP model in UPPAAL, validate core properties (ACK/CON matching, 

bounded retries, deadlock freedom), and make progress explicit by composing with a minimal network stub. 

Beyond these core results, the model is intentionally simple and modular. We separate message mechanics from 

request–response correlation (Tokens), which keeps the automata small, auditable, and easy to extend. The network 

stub adds only what matters for realism—bounded one-way delay and an optional single duplicate—so progress 

reduces to a clear timing rule.  

The present work addresses the creation of a formal CoAP model in UPPAAL and its validation as first step. Our 

claims are made under clear assumptions (no permanent loss for liveness, bounded integer domains, and a network 

abstraction with delay bounds and an optional single duplicate). The model already points to concrete next steps: add 

a small server-side deduplication cache to prove “one effect per MID” under duplication; introduce bounded server 

processing; and employ UPPAAL SMC for quantitative results (deadline-bounded reliability, latency percentiles, 

traffic/retransmission cost, and lightweight energy proxies). We also plan to scale the model to multiple clients and 

higher request rates to study fairness and NSTART interactions, and to exercise richer network conditions (loss, and 

reordering) while deepening the energy analysis. These extensions will not only broaden evaluation (scalability, 

reliability, energy) but can also inform practical enhancements and configuration guidance for CoAP in highly 

constrained deployments. 

In summary, our contribution lies in building a formal foundation for CoAP validation. This foundation not only 

supports rigorous verification today but also offers a flexible basis for future studies that compare tools, extend to 

other IoT protocols, and ultimately guide the evolution of communication standards in the IoT ecosystem. 

REFRENCES 

[1] Shelby, Z., K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP). 2014. RFC 7252. Internet 

Engineering Task Force (IETF). https://doi.org/10.17487/RFC7252 

[2] Behrmann, Gerd, Alexandre David, and Kim G. Larsen. A Tutorial on UPPAAL. 2004. International Journal on 

Software Tools for Technology Transfer (STTT). Available: https://uppaal.org/texts/21-tutorial.pdf (Springer 

DOI: https://doi.org/10.1007/978-3-540-30080-9_7) 

[3] Hartke, K. Observing Resources in the Constrained Application Protocol (CoAP). 2015. RFC 7641. IETF. 

https://doi.org/10.17487/RFC7641 

[4] Bormann, C., and Z. Shelby. Block-Wise Transfers in the Constrained Application Protocol (CoAP). 2016. RFC 

7959. IETF. https://doi.org/10.17487/RFC7959 

https://doi.org/10.17487/RFC7252
https://uppaal.org/texts/21-tutorial.pdf
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.17487/RFC7641
https://doi.org/10.17487/RFC7959


Journal of Information Systems Engineering and Management 
2025, 10(59s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 478 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

[5] Bormann, C. Constrained Application Protocol (CoAP) Hop-Limit Option. 2020. RFC 8768. IETF. 

https://doi.org/10.17487/RFC8768 

[6] Internet Engineering Task Force (IETF). The Internet of Things. 2024. https://www.ietf.org/topics/iot/ 

[7] Agarwal, A., S. S. Sonavane, and A. R. Pais. Modelling and Verification of CoAP over Routing Layer Using SPIN 

Model Checker. 2016. Procedia Computer Science 85: 816–823. 

https://www.sciencedirect.com/science/article/pii/S1877050916314557 

[8] Chen, S., X. Li, and H. Zhu. Formalization and Verification of Group Communication CoAP Using CSP. 2022. In 

PDCAT 2021 (LNCS 13148), 698–709. https://link.springer.com/chapter/10.1007/978-3-030-96772-7_58 

[9] Chen, S., H. Zhu, and Y.-F. Yuan. Formalization and Verification of Enhanced Group Communication CoAP. 

2023. International Journal of Software Engineering and Knowledge Engineering 33(10): 1301–1327. 

https://worldscientific.com/doi/full/10.1142/S0218194023500535 

[10] Larsen, K. G., A. Legay, M. Mikučionis, and D. B. Poulsen. UPPAAL SMC Tutorial. 2015. STTT 17(4): 397–415. 

https://link.springer.com/article/10.1007/s10009-014-0361-y 

[11] Chen, Ningning, and Huibiao Zhu. IoT Modeling and Verification: From the CaIT Calculus to UPPAAL. 2023. 

IEICE Transactions on Information and Systems E106-D(9): 1507–1518. 

https://doi.org/10.1587/transinf.2022EDP7223 

[12] Vogel, T., M. Carwehl, G. N. Rodrigues, and L. Grunske. A Property Specification Pattern Catalog for Real-Time 

System Verification with UPPAAL. 2022. Journal of Systems and Software 193: 111394. 

https://www.sciencedirect.com/science/article/pii/S0950584922002099 

[13] Wang, Q., Y. Li, J. Zhang, X. Luo, and T. Wei. MPInspector: A Systematic and Automatic Approach for 

Evaluating the Security of IoT Messaging Protocols. 2021. In USENIX Security Symposium, 2367–2384. 

https://www.usenix.org/conference/usenixsecurity21/presentation/wang-qinying  

[14] Gündoğan, C., P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and M. Wählisch. NDN, CoAP, and MQTT: 

A Comparative Measurement Study in the IoT. 2018. arXiv:1806.01444. https://arxiv.org/abs/1806.01444 

[15] Ebleme, M. A., C. Bayılmış, Ü. Çavuşoğlu, and K. Küçük. CoAP and Its Performance Evaluation. 2020. Sakarya 

University Journal of Science 24(1): 78–85. https://doi.org/10.16984/saufenbilder.613202  

[16] Bansal, M., and Priya. Performance Comparison of MQTT and CoAP Protocols in Different Simulation 

Environments. 2020. In Inventive Communication and Computational Technologies, LNNS 145, Springer, 549–

560. https://link.springer.com/chapter/10.1007/978-981-15-7345-3_47 

[17] Silva, J., A. Carvalho, J. Soares, and R. Sofia. A Performance Analysis of IoT Networking Protocols: Evaluating 

MQTT, CoAP, OPC UA. 2021. Applied Sciences 11(11): 4879. https://doi.org/10.3390/app11114879 

[18] Seoane, V., A. M. Alberti, L. Militano, and A. Iera. Performance Evaluation of CoAP and MQTT with Security 

Support for IoT Communications. 2021. Computer Networks 197: 108338. 

https://www.sciencedirect.com/science/article/pii/S1389128621003364 

[19] Andersen, B., and T. Dalsgaard. Evaluating CoAP, OSCORE, DTLS and HTTPS for Secure Device 

Communication. 2023. In LNICST (EAI). (Publisher page as available) 

[20] Palombini, C., M. Tiloca, and F. Palombini. Evaluating the Performance of the OSCORE Security Protocol in the 

Internet of Things. 2021. Internet of Things 14: 100366. https://www.sciencedirect.com/journal/internet-of-

things/vol/14/suppl/C  

[21] Selander, G., J. Mattsson, F. Palombini, and L. Seitz. Object Security for Constrained RESTful Environments 

(OSCORE). 2019. RFC 8613. IETF. https://doi.org/10.17487/RFC8613 

[22] Chen, Ningning, and Huibiao Zhu. IoT Modeling and Verification: From the CaIT Calculus to UPPAAL. 2023. 

Transactions on Information and Systems E106.D (9): 1507–1518. 

https://doi.org/10.1587/transinf.2022EDP7223. 

[23] Vogel, Thomas, Marc Carwehl, Genaína Nunes Rodrigues, and Lars Grunske. A Property Specification Pattern 

Catalog for Real-Time System Verification with UPPAAL. 2022. arXiv preprint arXiv:2211.03817. 

https://doi.org/10.48550/arXiv.2211.03817. 

 

 

https://doi.org/10.17487/RFC8768
https://www.ietf.org/topics/iot/
https://www.sciencedirect.com/science/article/pii/S1877050916314557
https://link.springer.com/chapter/10.1007/978-3-030-96772-7_58
https://worldscientific.com/doi/full/10.1142/S0218194023500535
https://link.springer.com/article/10.1007/s10009-014-0361-y
https://doi.org/10.1587/transinf.2022EDP7223
https://www.sciencedirect.com/science/article/pii/S0950584922002099
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-qinying
https://arxiv.org/abs/1806.01444
https://doi.org/10.16984/saufenbilder.613202
https://link.springer.com/chapter/10.1007/978-981-15-7345-3_47
https://doi.org/10.3390/app11114879
https://www.sciencedirect.com/science/article/pii/S1389128621003364
https://www.sciencedirect.com/journal/internet-of-things/vol/14/suppl/C
https://www.sciencedirect.com/journal/internet-of-things/vol/14/suppl/C
https://doi.org/10.17487/RFC8613
https://doi.org/10.1587/transinf.2022EDP7223
https://doi.org/10.48550/arXiv.2211.03817

