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ARTICLE INFO ABSTRACT

Received: 05 Oct 2024 Hypertext Transfer Protocol (HTTP) injection is a security vulnerability in which attackers
manipulate HTTP Headers for malicious intent which facilitate various types of attacks like
Downgrade-attack, Session fixation, Session hijacking, Cross-site scripting (XSS), Script
injection, Referer forgery, Host header injection and Cache poisoning. These HTTP header
manipulations can also be used for phishing and malware attacks. This study proposes leveraging
signature attack patterns enhanced with Machine Learning (ML) and Deep Learning (DL) for
detection of malicious header. HTTP request headers will be intercepted using Mitmproxy, and
known attacks such as Downgrade attacks, Session fixation, Session hijacking, Token
manipulation, Script injection will be detected based on their unique signatures. Malicious
Internet Protocol (IP) addresses in the headers are detected using a blacklist sourced from the
IPsum GitHub repository. Additionally, the malicious classifier model utilizes a hybrid approach
for feature extraction based on Natural Language Processing (NLP) and traditional methods
followed by generation of adversarial samples using Generative Adversarial Network (GAN).
Multiple supervised ML and DL models are employed to classify URLSs as phishing, malware, or
benign and detect the specific attack type such as Referer forgery, Host header injection and
other malware-related activities. The dataset is sourced from trusted repositories like Phishing
URL dataset by Mendeley, Malicious URLs dataset from Kaggle and IPSum GitHub repository
to construct a curated dataset. Adversarial samples generated using GAN are augmented in the
dataset used for training the model to make it resistant to adversarial attack. The detection of
Malicious HTTP headers using the proposed model is evaluated using performance metrics.
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I. INTRODUCTION

Hypertext Transfer Protocol (HTTP) is a protocol used for transferring messages between the web server and
web client(browsers) over the internet. The web server hosts data resources which can be accessed by users using
web browsers via HTTP request messages and HTTP response messages with the requested resource in its body. The
structure of the HTTP request message is divided into request line, headers in key-value pairs containing additional
information and an optional body. Similarly, a status line, headers and an optional body constitute the HTTP
response message. An HTTP header consists of its case-insensitive name followed by a colon (:), then by its value
[14]. The HTTP header injection vulnerability is a web application security term that refers to a situation when the
attacker tricks the web application into inserting extra HTTP headers into legitimate HTTP responses [16]. This is
used to carry out a variety of attacks, including HTTP response splitting, often referred to as Carriage Return Line
Feed (CRLF) injection, Information disclosure, Cache poisoning, and Security bypass. The following attack types are
examined in this study on malicious HTTP request headers:

()Downgrade-attack: The attacker forces the web applications to use less secure protocols like downgrading from
Hypertext Transfer Protocol Secure (HTTPS) to HTTP which allows Man In The middle (MITM) attacks where the
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messages exchanged between the client and server are intercepted and altered by the attacker [4]. This can be
achieved by changing the value of Upgrade-Insecure-Requests header to o.

(ii) Token manipulation: This attack involves the use of forged, stolen, or duplicate authorization or session tokens
to impersonate a user, bypass authentication, or hijack sessions. The Authorization header contains the bearer token
used for user authentication, while the Cookie header contains session tokens that help maintain the user's session.
These tokens can be manipulated to perform unauthorized actions.

(iii)Session fixation: A session ID known to the attacker is enforced for use by the user, and then this compromised
Session ID is used to hijack a session after the user logs in. Websites that do not change the session ID after login are
particularly prone to these attacks. This is achieved by injecting a known session ID into the Cookie header before
the user logs in and then exploiting it to take control of the user session after the user logs in.

(iv)Session hijacking: The attacker captures or steals a valid user session ID to mimic the user and breach security
restrictions to achieve unauthorized access to sensitive user information. Similar to attack (ii), the Cookie header can
be exploited in this attack.

(v) Script injection: The attacker injects malicious scripts through HTTP request headers or other user inputs. These
scripts are often executed without the user’s consent intended at manipulating the browser behavior. They are of
various types like SQL injection and Cross-site scripting (XSS). Database queries are executed to manipulate database
or access data without authorization in SQL injection.

(vi) Cross-site Scripting (XSS): Reflected XSS is a technique to exploit security vulnerabilities by permitting the
attackers to inject malicious scripts which will be immediately executed by the browser allowing the attacker to obtain
private user information [15]. This can be done by injecting JavaScript statements similar to (iv) in headers like
Referer, User-agent, Host, Origin, Content-type, X-forwarded-for, X-request-id. XSS is a subset of script injection
and the key difference between them is that while script injection targets the server-side application by injecting
malicious code into the server, XSS targets the users of the server application by executing scripts in their browsers
to affect them directly.

(vii) Host header injection: An attacker can spoof the Host header in the HTTP request with a malicious URL or IP
address to give the request an appearance that it is coming from a safe domain to perform a range of attacks aimed
at bypassing security controls and gaining unauthorized access [23].

(viii) Referer forgery: Referer header usually contains an URL or IP address of the web page that has sent the request
to the server. By manipulating this header, the server can be deceived to assume that the request is coming from a
trusted source.

This study proposes a dual approach to detect above mentioned attacks, which involves analyzing the headers
to identify vulnerabilities using signature patterns of certain attacks and employing a deep learning model to detect
malicious URLs within the Host and Referer. This enables the detection of specific attacks and their classification as
benign, phishing, or malware.

II. RELATED WORK

Neda Ali [1] defines HTTP response header injection as the exploitation of security vulnerabilities by injecting
content malicious in intent into the response headers sent by the web server. The attacks include Security bypass,
Cache poisoning, Cross-site scripting (XSS), Session hijacking, and phishing.

Using supervised machine learning techniques, Ashley Laughter et al. [9] gathered web traffic data and examined the
HTTP headers to identify malicious and benign requests. After the experimental research, the author concluded four
important observations as

e The header usage of malicious and benign requests differs,

e Content-type, Accept-encoding and Accept-language are HTTP headers used to efficiently classify a request
as malicious or benign with 93.6% accuracy,

e The malicious and benign request lines differ in their lengths and can be used to differentiate the HTTP
requests with 96.9% accuracy.
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W. Tao et al. [24] and L. Xu et al. [28] worked on eleven previously recognized features. J. McGahagan et al.
[12] worked on 22 features after adding newly detected 11 features. The author found that the top two features,
content-length and content encoding gzip, are prevalent from earlier study after employing ensemble approaches
(RandomForest, AdaBoost, ExtraTree, and Gradient Boosting) to understand feature relevance. However, according
to the authors, their method was able to identify the third feature, Transfer-encoding chunked. Vary accept header
ranked fifth, third, and fourth while not sampling, over-sampling, and under-sampling respectively. Other recently
discovered header fields of significance are X-XSS-protection, HSTS, and the X content-type header with value of
nosniff. The average Matthews Correlation Coefficient (MCC) for the selected 22 features was better than for the 11
previously studied features.

Mizuno et al. [13] offer a novel approach to automating the feature extraction process from the HTTP headers
by using an automatic template creation methodology based on the DBSCAN algorithm. By eliminating the less
important traits and building the templates statistically without requiring any prior domain knowledge, this increases
the detector's resilience. The suggested method by the author shows false positive rate below 1% while discriminating
between hostile and benign traffic with up to 97.1% precision. The employment of DNN with four layers and adaptive
moment estimation to optimize the classifier produced the maximum accuracy while SVM produced the second
highest accuracy. The system does, however, draw attention to how ineffective it is in capturing HTTPS and UDP-
based protocols.

Martin Grill et al. [6] use HTTP User-Agent Discrepancy Identification to detect malware. According to them,
a user-agent field could look like one of these: Browsers used by legitimate users, empty, specific, spoof, and
inconsistent. The study suggests methods for identifying malware that fits into one of three categories: Discrepant,
Specific, or Empty. They model domain usage for empty User-agents and categorize sites visited by a minority as
anomalous. The frequency of User-Agents among network users is used to classify unknown, non-browser User-
Agents. The authors note that a single user only utilizes a single web browser version on a single computer. This data
serves as the foundation for identifying unusual, well-known browser User-Agents. The authors point out that a single
user only uses one version of the web browser on one computer. Identification of uncommon, well-known browser
User-Agents is based on this data. It is verified whether the user updated their browser if the User-Agent is different
from an older one. If not, it is classified as abnormal. However, User-Agent feature cannot be identified to detect
malware that uses Spoofed User-Agent.

According to Reyes-Dorta et al. [18], the false negatives of the confusion matrix should receive particular
attention when comparing models in this area of cybersecurity since they indicate that harmful URLs are being taken
into account as legitimate. The Fi-score is therefore the optimum metric for comparing models, according to this
study. This study suggests three distinct neural networks and concludes that using the "relu" activation function
followed by the Sigmoid activation function in the output layer produced the best results. Additionally, the "adam"
optimizer, the "binary_accuracy" metric, and the "binary_crossentropy" loss function were employed.

Comparison of various ML algorithms used in previous research studies is given in table 1.

Table 1: Comparison of methodologies used in previous research studies

Year |Author name |Proposed Accuracy |Dataset used Description
method given
2023 |Abdul Karim et |[Ensemble 95.23% Kaggle:  Phishing|The feature selection technique
al. [8] model based on website detector by|based on canopy method coupled
SVM, Linear Eswar Chand with cross fold validation and grid
regression, and search hyper parameter tuning
decision tree technique for phishing detection
using malicious URLSs
2023 |Sanjeev Shukla|Random Forest|97.8% Not mentioned 16 new HTTP headers, primarily
et al. [20] algorithm security headers were used to
determine if the web page was
phishing or legitimate
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2022 |Tiefeng et al.|Bidirectional [97.92% Kaggle: Malicious{Word2Vec is used to train word
[25] Gated URLs dataset by|vectors and attention mechanism
Recurrent Unit Manu Siddhartha |is introduced to learn sequence
(DA-BiGRU) correlations enhancing the
malicious URL detection
2021 |Zhigiang Wang|Dynamic 98.7% Malicious = URLs:|The pooling layer is replaced with
et al. [27] convolutional GitHub,  uci.edu, k-max pooling, and a new folding
neural network Kaggle layer is added for malicious URL
(DCNN) Benign URLS: Alexa detection. The pool.lng parameters
are dynamically adjusted based on
the URL length and current layer
depth.
2021 |Ashley Supervised 93.6%- Not mentioned Detects malicious HTTP request
?a]ughter et al. ;nach.lne 96.9% using headers
9 carning and line length of HTTP headers
algorithm
2018 |Mizuno et al.Deep neural{97.1% Malwr, Four layered DNN with adaptive
[13] network (DNN) TrendMicro, moment estimation and
Kaspersky,MalShar |automatic template generation
e, VirusShare, using DBSCAN for malware
Campus network detection
filtered using
MalwareDomain
Blocklist
2018 |Buber et al. [3] |[Random Forest|97.2% Malicious  URLs:|The algorithm utilized NLP-based
algorithm PhishTank and|features combined with
Yandex Search API |vectorization-based features for
detection of phishing URLs
2016 |Vanhoenshove [Multilayer 97.28% Dataset provided by|A feature set comprising the
netal. [26] perceptron Ma et al. [10] features with the highest absolute
(MLP) Peart@or.l coefﬁmen‘ts relatw.e to th'e
prediction class is used in this
feed-forward artificial neural
network model

Rasheed et al. [17] states that adversarial attacks exploit security vulnerabilities in ML & DL by making
minimal modifications to the malicious URLSs using greedy approach which will lead to its misclassification as benign
URL by the model. This research uses the Blackbox scoring strategies-DeepWordBug algorithm proposed by J. Gao
et al. [5] to identify key segments or characters of the URL that, when altered, can lead to misclassification. The
authors test their attack against three kinds of CNN based classifiers. An accuracy decrement of 60% for Character-
based CNN model, 77% decrease for word-level CNN model and 56% decrease for a joint CNN model was observed.
Augmenting the adversarial samples in the training set and adding domain name of detected malicious URLs to a
blacklist is suggested as a way to make the detection model robust against these attacks.

III. PROPOSED METHOD

The initial GET request forwarded to the web server when the user initially searches for the URL is
intercepted using Mitmproxy. Mitmproxy is a proxy server that allows to intercept and record all HTTP & HTTPS
communication. The intercepted headers are displayed to the user, allowing them to modify the header values. The
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proposed model analyzes the modified headers and detects any malicious attempts using a dual approach. The flow

of the proposed model is illustrated in figure 1.

User Interface

l Requested Web URL

Proxy server

l Intercapied HTTP regquest

HTTP header axtraction

l Structured HTTF headers

Display headers

Ne

Headers

modified?
Signature based aftack Malicious URL classifier
datection module model
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. Flag malicious headers and
display detected attacks

)

\ | Forward request to web
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Figure 1: Flow diagram of proposed method

The signature-based attack detection module extracts the following headers if modified and analyzes their
values to detect signature-based attacks:

(i)Upgrade-Insecure-Requests: A value of 0 in this header indicates a potential downgrade attack.

(ii)Authorization: This header is used to detect token manipulation attacks by performing basic validation of the
token's structure and format. The standard JSON Web Tokens (JWT) format in the Authorization header consists of
three base64url-encoded segments separated by periods and preceded by the Bearer keyword (Bearer <token>) [2].
For advanced token validation, the JWT secret key and the signing algorithm used by the web server are required,
but these are not accessible as they are private to the server-side application. Therefore, the scope of this detection is
limited to identifying violations of the JWT structure.

(iii)Cookie: If the session ID is dynamically assigned by the user in the Cookie header, it indicates a potential session
fixation attack. Session hijacking, on the other hand, involves the use of a stolen valid session ID. Detection of Session
hijacking therefore requires access to server-side session data which is not accessible to the client. Therefore,
modification of Cookie header with session id is flagged as potential Session fixation or hijacking attempt.
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(iv) X-Forwarded-For, X-Request-Id, Referer, User-Agent, Host, Origin, Content-Type: If SQL query patterns are
detected within these headers, the request is flagged as a potential SQL injection attack. Similarly, if JavaScript
keywords are found within <script> tags, the request is flagged as a potential Cross-Site Scripting (XSS) attack.

(v) Host: The URL or IP address present in the Host header is checked for host header injection. The IP addresses
are validated for malicious activity using a blacklist sourced from the IPsum GitHub repository [21]. URLs are
forwarded to the Malicious Classifier model, which is the second step in our dual detection approach.

(vi) Referer: The detection of Referer forgery follows the same step as given in (v).

After detecting these attacks and flagging the exploited headers, URLs in the Host and Referer headers are

classified as phishing, malware or benign using the malicious URL classifier model illustrated in figure 2.
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Figure 2: Architecture of malicious classifier model

Multiple supervised ML and DL models as described below are employed for a comparative analysis on both

the original and augmented datasets.

Random Forest is a classification method that employs an ensemble approach, where multiple decision tree
classifiers are trained simultaneously on various subsets of the data. The final prediction is made by
aggregating the results through majority voting or averaging [19].

Gradient Boosting just like Random Forest is an ensemble classification model that uses a sequence of
individual models typically decision trees where each model corrects the errors of the preceding model to
give the final classification [19].

A Support Vector Machine (SVM) is a supervised learning algorithm used to separate two classes by
identifying the optimal hyperplane that maximizes the margin between the nearest data points of each class
[22]. Support Vector Classifier (SVC), a type of SVM is used with the Radial Basis Function (RBF) kernel for
handling non-linear decision boundaries.

Multilayer perceptron (MLP) is a feed-forward Artificial Neural Network (ANN) that captures complicated
non-linear relationships in data through hidden layers [19]. The MLPClassifier implemented is a fully
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connected network consisting of an input layer, three hidden layers using ReLU activation, and an output
layer. The model uses L2 regularization and Adam optimizer that increases accuracy for augmented dataset.
Deep neural network (DNN): DNN is an extension of the MLP with more hidden layers, enabling the model
to detect more diverse and complicated patterns in the data. The DNN implemented consists of an input
layer, followed by four deep blocks, each containing a dense layer with LeakyReLU activation,
BatchNormalization, L2 regularization (weight decay) and Dropout to enhance model robustness, especially
against adversarial samples. Softmax activation is used in the output layer. Learning Rate Scheduler
(ReduceLROnPlateau) and the Early Stopping callback is added to ensure better convergence. Adam
optimizer with learning rate set as 0.001 and sparse categorical cross-entropy loss function is used.
Dynamic convolution neural network (DCNN): DCNN is a type of CNN that consists of convolutional layers,
pooling layers and fully connected layers suitable for sequential data analysis [19]. DCNN is implemented
using three convolutional layers using ReLU activation with different kernel sizes followed by Dropout,
MaxPooling and BatchNormalization layers making the model architecture dynamic and flexible to diverse
input data. Softmax activation is used in the output layer. The model is compiled similarly to the DNN, using
sparse categorical cross-entropy loss and Adam optimizer.

Iv. DATASET USED

The blacklist used for detection of malicious IP addresses is sourced from a public GitHub repository named

IPSum by Miroslav Stampar [21]. IPsum is a threat intelligence resource derived from over 30 distinguished publicly
accessible lists of suspicious and malicious IP addresses. The data is automatically collected, processed daily, updated
in this repository and displayed in the decreasing order of the number of occurrences provided by the dataset.
Malicious URLs dataset [11] from Kaggle is used. It is a collection of a huge dataset of 651191 URLs, which consists
of 428103 benign URLs, 96457 defacement URLSs, 94111 phishing URLSs, and 32520 malware URLs extracted from
various sources as shown in figure 3 (a). The sources include Faizan git repo for benign data, URL dataset (ISCX-
URL-2016), Phishtank dataset and PhishStorm dataset for malware and phishing data. The URLSs of the defacement
class are removed since it cannot be detected solely from HTTP headers. After removal of duplicate values, the dataset
obtained consists of 545811 URLSs with composition as Benign: 78.47%, Phishing: 17.25% and Malware: 4.33%. This
dataset is highly unbalanced, so additional phishing URLs are added from Phishing URL dataset by Mendeley [7] as

shown in figure 3(b).
3> type 3> type
benign 33231 phishing 54387
defacement 8269 Name: count, dtype: inte4
phishing 2698
malware 1089 url type
Name:::count; diype::int64 0 https://docs.google.com/presentation/d/e/2PACX... phishing
url type
1 https://btttelecommunniccatiion.weeblysite.com/  phishing
0 br-icloud.com.br phishing
2 https:/fkqOhgp.webwave.dev/ phishing
1 mp3raid.com/music/krizz_kaliko.html benign
3 https:/ibrittishtele 1bt-69836.getresponsesite....  phishing
2 bopsecrets.org/rexroth/cr/1.htm benign
4 hitps://bt-internet-105056.weeblysite.com/ phishing
3 http://iwww.garage-pirenne.be/index.php?option=... defacement
6 hitps:/fteleej.weebly.com/ phishing
4 http://adventure-nicaragua.net/index.php?optio... defacement
6 https:imaryleyshon.wixsite.com/my-site-1  phishing
5 http://buzzfil.net/m/show-art/ils-etaient-loin... benign
” 7 https:fichamakhman.wixsite.com/my-site-4  phishing
6 espn.go.com/nba/player/_/id/3457/brandon-rush benign
: 8 https:/fposts-ch.buzz/ch/ phishing
7 yourbittorrent.com/?g=anthony-hamilton-soulife benign
; 2 2 9 https:/itinyurl.com/bdfpfyur  phishing
8 http://www.pashminaonline.com/pure-pashminas defacement
https:/fwww. h { hishi
9 allmusic.com/album/crazy-from-the-heat-r16990 benign i A 12 SR TR T (A UL
10 corporationwiki.com/Ohio/Columbus/frank-s-bens... benign " hitps:iA msagezusshubsnk.top - phishing
1" http://www.ikenmijnkunst.nl/index.php/expositi... defacement i2 PlipeAvw mesezulub it lop R phishing
12 myspace.com/video/vid/30602581 benign 13 https://docs.google.com/presentation/d/e/2PACX... phishing
13 http://www.lebensmittel-ueberwachung.de/index.... defacement 14 hitpsilidocs.google.com/presentation/d/e/2PACK... - phishing
Figure 3: (a) Snapshot of Kaggle dataset [11] URL Figure 3: (b) Snapshot of Phishing by Mendeley [7]

dataset
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To further balance the dataset, Synthetic Minority Over-sampling Technique (SMOTE) was applied using a
hybrid approach for feature extraction. The hybrid approach used for the extraction of features in the proposed
malicious classifier model is outlined in figure 4.

Malicious URLs Dataset (CSV) @

NLP (Word2Vec) Traditional feature
feature extractlon englneenng

100 features extracted

L Combine 4 115 feature set
StandardScaler
slandardlzatlon

Synthetic data generauon

SMOTE)
Final Dataset | ==.! %

15 features extracted

O
210

ik

Figure 4: Illustration of data preprocessing

Traditional feature extraction method is used to obtain lexical and structural patterns from the URLs by
extracting the following 15 features:

e URLlength: The aggregate count of characters in the URL

e Domain length: The aggregate count of characters in the domain part of the URL

e HTTPS vs HTTP: Value is set to 1 for HTTPS protocol and o for HTTP

e Dot count: The aggregate count of dots (.) in the URL

e Dash count: The aggregate count of dashes (-) in the URL

e Underscore count: The aggregate count of underscores (_ ) in the URL

¢ Question mark count: Total number of question marks (?) in the URL which indicate query parameters

e Special characters count: Total number of special characters in the URL like (! @, #, $, %)

¢ Digits count: Total number of digits (0-9) in the URL

e IP address presence: Value is set to 1 if the domain is an IP address and o if the domain is a hostname

e URL parameters count: Total number of query parameters in the URL

e PHP in URL: Indicates the presence of substring php in the URL with 1 and absence with o

e HTML in URL: Indicates the presence of substring php in the URL with 1 and absence with o

e Malicious TLD (Top-Level Domain): Checks if the URL ends with a suspicious TLD for example. xyz, .abc,
ru

e Shortened URL check: Checks if the URL uses any known shortening services for example bit.ly, t.co, ow.ly

Subsequently, NLP based features are generated for capturing the semantic and contextual information from
the URLs using tokenization followed by vectorization and aggregation using Word2Vec model. The two feature sets
are combined and standardized using StandardScaler as shown in figure 5.
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url_length domain_length is_https dot_count dash_count underscore_count question_mark_count special chars_count digits count is_ip address ... word2vec 99 word2vec 91  word2vec 92

count 601041.000000 601041.000000 601041.000000 601041.000000 601041.000000 601041.000000 601041.000000 6010410 601041.000000 601041.000000 601041.000000 601041.000000 601041.000000
mean 56.188420 4595841 0.108181 0.418038 1472780 0.380367 0.158134 00 5666732 0.020872 0.047791 4148368 0626843
std 66.238354 10674958 0.310609 0912738 2943117 1215876 0.398059 00 13.910584 0.142956 0.125346 0.199962 0.356876

min 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 00 0.000000 0.000000 2.3536%4 -1.075473 1741812

25% 31000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 00 0.000000 0.000000 0.128359 0278197 0471820
50% 43000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 00 1.000000 0.000000 0.056238 0.195867 0696081
75% 68.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 00 7.000000 0.000000 0025100 -0.069372 0.855715
max  25523.000000 236.000000 1.000000 26.000000 88.000000 79.000000 20.000000 00 3413.000000 1.000000 0.717686 1.485479 2026401

3 rows x 115 columns
Figure 5: Snapshot of final generated dataset

After application of SMOTE for synthetic data generation, a balanced dataset is achieved for implementation.
To make the proposed model robust against adversarial attacks, adversarial samples are generated using Generative
Adversarial Network (GAN) and augmented to the dataset. The model's performance is compared on both the original
and augmented dataset. Generator and discriminator are the two primary components of GAN. Conditional GAN
(CGAN), one of the types of GAN is used in the proposed model since class labels namely phishing, malware, benign
are one-hot encoded and added to the generator and discriminator along with the random noise as conditional
parameters. This makes sure that the synthetic adversarial samples generated are corresponding to the features of
the given classes. The generator which is responsible for the synthetic data generation and the discriminator which
is responsible for classification of the input URL features as real or fake are both implemented using two layers with
Rectified Linear Unit (ReLU) activation that are fully connected, followed by an output layer. The generator uses
batch normalization with Tanh activation in the output layer while the discriminator uses activation and dropout
with sigmoid activation in the output layer. The Adam optimizer, set with a learning rate of 0.0002 along with binary
cross-entropy loss is leveraged for training both the generator and the discriminator which is then combined to give
the required GAN model.

V. EXPERIMENTAL RESULTS

Total 115 features generated dataset is used and various models are applied for comparison as described in
Section III and IV. The adversarial samples were generated using different epoch values for GAN and Random Forest
classifier was used to determine which augmented dataset gave the best detection performance. The comparative
analysis for GAN epoch 50,70,100 and 120 is as depicted in figure 6.

Performance Metrics vs GAN Epochs

—e— Accuracy
—&— Precision
—&— Recall

—&— Fl-Score

0.94 4

0.92 4

Score

0.90 -

0.88

0.86

50 60 J0 80 90 100 110 120
No. of Epochs

Figure 6: Comparative analysis of GAN for various epochs

The augmented dataset generated using GAN with 100 epochs is considered for further testing of models.
The performance of the supervised ML models — Random Forest, Gradient Boosting, SVM and DL model-MLP was
verified using cross-validation with 5 folds while sparse categorical cross-entropy loss function was used for DNN
and DCNN. K fold cross validation is not used for DNN and DCNN as training these models is computationally
expensive, and repeating this process for each fold significantly increases the training time. Comparison of
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performance metrics for the original and augmented datasets across different numbers of estimators (70, 100, and
150) for Random Forest classifier and Gradient Boosting classifier is given in table 2 and table 3. The results of SVM
classifier are given in table 4.

Table 2: Result of Random Forest Classifier

Random Forest Classifier
Dataset No. of Accuracy | Precision | Recall |F1Score| CV |CV Std| Training
Estimators Mean Time (s)
Original 70 0.9037 0.9063 0.9036 | 0.9041 |0.8944 | 0.0025 11.476
100 0.9027 0.9055 0.9026 | 0.9030 |0.8945|0.0030 15.864
150 0.9067 0.9001 0.9065 | 0.9070 |0.8954 | 0.0032 24.413
Augmented 70 0.8997 0.9022 0.8995 | 0.8999 |0.8925 | 0.0071 12.267
100 0.9023 0.9052 0.9022 | 0.9025 |0.8950 | 0.0068 16.050
150 0.9020 0.9047 0.9020 | 0.9022 |0.8940|0.0082| 23.715
Table 3: Result of Gradient Boosting Classifier
Gradient Boosting Classifier
Dataset No. of Accuracy |Precision | Recall | F1 Score Cv CVStd | Training
Estimators Mean Time (s)
Original 70 0.8737 0.8745 0.8735 0.8735 0.8753 | 0.0029 155.839
100 0.8810 0.8816 0.8809 | 0.8808 0.8826 | 0.0040 219.257
150 0.8930 0.8938 0.8929 0.8929 0.8891 0.0035 324.887
Augmented 70 0.8740 0.8750 0.8739 0.8737 0.8728 0.0104 151.401
100 0.8840 0.8849 0.8838 | 0.8838 0.8794 0.0106 218.224
150 0.8923 0.8935 0.8923 0.8923 0.8853 0.0106 328.505
Table 4: Result of SVM Classifier
SVM Classifier
Dataset Accuracy | Precision | Recall | F1Score | CVMean | CV Std Training Time
(s)
Original 0.8880 0.8904 0.8879 0.8884 0.8788 0.0079 43.271
Augmented 0.8870 0.8895 0.8869 0.8874 0.8756 0.0109 44.225

According to the results obtained, Random Forest gives the best performance followed by SVM. However,
Random Forest and SVM are not adaptable to noisy or augmented data reducing the accuracy of these models on
augmented data. Gradient Boosting due to its sequential learning process adapts better to the adversarial samples in
the augmented data. The experimental results of MLP for different max iterations is given in table 5. DNN and DCNN
is also applied with various epochs to determine which DL model is best suitable for classification as shown in table

6 and table 7.
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Table 5: Result of MLP Classifier
MLP Classifier
Dataset No. of | Accuracy |Precision| Recall |F1 Score Cv CV Std | Training
max Mean Time (s)
iterations
Original 100 0.9200 0.9208 0.9187 0.9197 0.9106 | 0.0032 | 127.996
150 0.9206 0.9214 | 0.9192 | 0.9203 | 0.9121 | 0.0019 | 132.925
200 0.9203 0.9209 | 0.9189 | 0.9199 | 0.9051 | 0.0035 | 133.221
300 0.9205 0.9211 0.9191 | 0.9201 | 0.9042 | 0.0035 | 143.898
Augmented 100 0.9280 0.9287 0.9263 0.9275 0.9067 | 0.0072 | 129.432
150 0.9319 0.9325 0.9298 0.9311 0.9118 | 0.0074 | 135.672
200 0.9260 0.9268 0.9242 | 0.9258 0.9033 | 0.0066 | 138.992
300 0.9263 0.9270 | 0.9245 | 0.9257 | 0.9047 | 0.0064 | 147.223
Table 6: Result of DNN
DNN
Dataset No. of | Accuracy | Precision | Recall | F1Score | Test Loss | Training
Epochs Time (s)
Original 70 0.9283 0.9298 0.9275 0.9286 0.2956 150.003
100 0.9286 0.9302 0.9279 0.9290 0.2865 188.059
150 0.9297 0.9315 0.9288 0.9301 0.2933 289.547
200 0.9308 0.9327 0.9296 0.9311 0.2746 380.003
500 0.9327 0.9342 0.9319 0.9330 0.2789 874.396
Augmented 70 0.9375 0.9412 0.9361 0.9386 0.3669 177.265
100 0.9410 0.9453 0.9389 0.9421 0.3797 216.172
150 0.9440 0.9482 0.9421 0.9453 0.3694 338.159
200 0.9433 0.9471 0.9413 0.9441 0.3425 412.107
500 0.9425 0.9458 0.9403 0.9433 0.3502 992.326
Table 7: Result of DCNN
DCNN
Dataset No. of | Accuracy | Precision | Recall | F1Score |Test Loss| Training
Epochs Time (s)
Original 70 0.9083 0.9102 0.9075 0.9088 0.2831 1552.439
100 0.9105 0.9119 0.9093 0.9106 0.2796 1764.167
150 0.9113 0.9128 0.9106 0.9117 0.2757 1825.569
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Augmented 70 0.8927 0.8945 0.8920 0.8932 0.2956 1649.627
100 0.8953 0.8978 0.8941 0.8960 0.2927 1758.058
150 0.8932 0.8949 0.8924 0.8936 0.2890 1822.648

It is observed that DNN achieved the highest results on both the original and GAN- augmented datasets. MLP
showed reasonable performance while DCNN consistently underperformed, suggesting it is less suited for the task.
The augmented datasets led to a drop in DCNN accuracy due to the increased diversity and complexity of the samples.
In contrast, MLP and DNN showed improved accuracy on the augmented dataset with appropriate architecture and
hyperparameter tuning which indicates the improvement of the models' robustness to adversarial URL samples
making it more equipped for real-world applications. Models with their corresponding parameters that achieved the
best performance are listed below along with the visual comparison of the accuracy achieved by them in figure 7.

e Random Forest with 150 estimators

e Gradient Boosting with 100 estimators
e SVM with rbf kernel

e MLP with 150 maximum iterations

e DNN with 150 epochs

e DCNN with 100 epochs

3% Initializing Word2Vec model...
Word2Vec model initialized successfully.

URL: https://paypal.com/authenticate
1/1 [==== — ] - @s 134ms/step
1/1 [s=============================] - 0s 121ms/step

Classification Results:
Original Model Prediction: Benign
Augmented Model Prediction: Phishing

- @s 24ms/step
- @s 23ms/step

Classification Results:
Original Model Prediction: Benign
Augmented Model Prediction: Phishing

r wn
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Classification Results:
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Augmented Model Prediction: Malware
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Classification Results:
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Classification Results:
Original Model Prediction: Benign
Augmented Model Prediction: Phishing

Figure 7: Accuracy comparison of implemented models on original and augmented dataset
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The experimental results show that the DNN with 150 epochs achieved the highest accuracy 92.97% on the
original dataset and 94.40% on the augmented dataset highlighting its capacity to capture complex patterns as
presented in figure 8.

Model Performance: Original vs Augmented Datasets

095

mmm Original
e Augmented

0.9440

0.94

092

Accuracy

091

0.90

0.89

Random Forest  Gradient Boosting

Models

Figure 8: Classification result comparison of DNN trained on original and augmented dataset

Once the model classifies a URL as phishing or malware, it flags the HTTP header containing the URL and
based on that the HTTP header attack is detected. For example, if the URL in the Host header is flagged as phishing,
the system detects it as a "Phishing attack via Host header injection". Similarly, if the URL is in the Referer header
and flagged as malware, it’s recognized as a "Malware attack via Referer forgery."

VI. CONCLUSION

This study intercepts HTTP request headers and enables the user to modify these headers. A dual approach
for detecting HTTP header injection attacks via the modified headers is proposed. Initially, signature-based attacks
are identified, followed by the detection of advanced attacks using malicious URLSs through a comprehensive machine
learning model. The study leverages a large and balanced dataset retrieved from various sources, with features
extracted using a combination of traditional feature engineering and NLP-based methods through Word2Vec.
Robustness is further enhanced by augmenting adversarial samples using GAN, and a comparative analysis of
classification models-Random Forest, Gradient Boosting, SVM, MLP, DNN, and DCNN was conducted. When epoch
is 150, DNN and MLP showed increase in the accuracy for augmented dataset. This proposed framework has
significant real-world applications, as it can be seamlessly integrated into web application to strengthen its security
by detecting and mitigating phishing and malware attacks through HTTP header analysis. Additionally, its capability
to intercept and modify HTTP headers via mitmproxy provides a valuable learning tool for studying various methods
of HTTP header injection attacks.

This research is primarily focused on analyzing and detecting attacks through HTTP request headers. Future
work could expand the scope to include HTTP response headers, such as Location redirection attacks, which are
commonly exploited in phishing and malware campaigns. Furthermore, the framework can be extended to study
attacks requiring deeper analysis of complete HTTP traffic patterns. Reinforcement Learning approaches could also
be explored to dynamically adapt to new attack vectors while optimizing computational performance and improving
model accuracy.
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