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1. Introduction 

 
Industrial Control Systems (ICS) form the backbone of modern critical infrastructure, including water 
treatment plants, electrical power grids, and manufacturing systems. The increasing convergence of 
Operational Technology (OT) and Information Technology (IT) has enhanced efficiency and automation but 
has also broadened the attack surface for cyber threats. Among these, cyber-physical attacks that manipulate 
sensor and actuator signals pose a significant risk due to their ability to cause real-world operational failures 
while evading traditional IT-based security mechanisms. 
 
One of the most insidious forms of cyber-physical threats is the False Data Injection (FDI) attack, wherein 
adversaries inject manipulated values into sensor data streams or state estimations. These attacks are designed 
to mimic normal system behaviour, thereby bypassing conventional Intrusion Detection Systems (IDS) and 
causing stealthy disruptions such as incorrect actuation, masked mechanical faults, or financial loss from 
incorrect control decisions. FDI attacks have been demonstrated in both academic testbeds and real-world 
environments, underlining the urgent need for robust detection methods. 
 
Given the diversity in ICS domains—from fluid dynamics in water systems to electrical state estimation in 
power grids—existing FDI detection models often lack generalizability and are tailored to specific datasets or 
attack signatures. There is a critical need for dataset-agnostic, efficient, and scalable machine learning 
frameworks that can detect FDI across multiple industrial domains using a consistent architecture. 
This study addresses that gap by evaluating a single deep learning model, specifically a 1D Convolutional Neural 
Network (1D-CNN), for FDI detection across three benchmark datasets: SWaT (water treatment system), 
WADI (water distribution network), and MATPOWER (simulated power grid). Through consistent 
preprocessing, model architecture, and evaluation criteria, this work offers a cross-domain comparison and 
investigates the strengths and limitations of using a unified detection framework. 
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The primary objective of this research is to evaluate the effectiveness and generalizability of a single 
machine learning model—specifically, a 1D Convolutional Neural Network (1D-CNN)—for 
detecting False Data Injection (FDI) attacks across three diverse and widely used benchmark datasets: 
SWaT, WADI, and MATPOWER. These datasets represent different industrial domains, including water 
treatment, water distribution, and electrical power systems, respectively. By maintaining a uniform model 
architecture, preprocessing pipeline, and evaluation protocol, this study aims to assess the feasibility of 
deploying a domain-agnostic, robust FDI detection framework capable of functioning across varied 
ICS environments with minimal retraining or customization. 
 
To address the limitations of domain-specific and dataset-bound intrusion detection systems, this study 
proposes a unified deep learning-based framework for False Data Injection (FDI) detection across 
heterogeneous industrial control environments. The key contributions of this research are summarized as 
follows: 

• Design of a Universal 1D-CNN Architecture: A lightweight and scalable 1D Convolutional Neural 
Network (1D-CNN) model is developed to detect FDI attacks from raw time-series data across diverse ICS 
domains, eliminating the need for custom architectures for each dataset. 

• Standardized FDI Attack Simulation Across Datasets: A consistent methodology is applied for 
simulating and injecting FDI attacks into three benchmark datasets—SWaT, WADI, and MATPOWER—
enabling fair and reproducible evaluation of detection performance. 

• Cross-Domain Performance Comparison and Generalization Analysis: The proposed model is 
systematically evaluated across all three datasets to assess generalizability, robustness, and effectiveness in 
signal-level and state-estimation-based ICS environments. Comparative results offer insights into dataset-
specific challenges and model adaptability. 
 
The rest of this paper is structured as follows: Section 2 surveys related work on FDI attack detection in ICS 
and the application of machine learning models across domains. Section 3 introduces the datasets—SWaT, 
WADI, and MATPOWER—along with the design of standardized FDI attack simulations. Section 4 outlines the 
proposed methodology, detailing the 1D-CNN architecture and its training strategy. Section 5 describes the 
experimental setup, including hardware, software, and dataset-specific configurations. Section 6 presents the 
results and discussion, highlighting model performance across all datasets and analysing generalization 
behavior. Section 7 expands on the broader implications, strengths, and deployment considerations of using a 
single model. Finally, Section 8 concludes the paper and outlines future work directions, including federated 
learning, integration with digital twins, and real-time deployment scenarios. 

 
2. Related Work 

 
2.1 Understanding FDI Attacks in Critical Infrastructure 
Industrial systems today are increasingly exposed to attacks that manipulate physical measurements to subvert 
normal operations. False Data Injection (FDI) attacks represent a particularly covert and harmful class of such 
threats, where malicious actors inject misleading values into sensor or state data streams to alter system 
behaviour while remaining undetected. High-profile events—such as the Stuxnet worm and cyber disruptions 
to energy grids—have demonstrated the severe consequences of these attacks. These examples underscore the 
vulnerability of ICS components to signal-level manipulations that evade traditional perimeter-based or 
network-centric defences. 
 
2.2 Machine Learning Approaches in FDI Detection 
The use of machine learning in ICS security has grown rapidly, especially for tasks like anomaly detection. 
Various models—ranging from unsupervised Autoencoders to sequence-based LSTMs—have been employed to 
learn normal operational behaviour and identify deviations linked to FDI attempts. In recent years, 
Convolutional Neural Networks (CNNs), particularly in one-dimensional form (1D-CNNs), have gained 
traction due to their efficiency in capturing localized signal patterns from time-series data. Despite their 
success, many implementations are tuned for a specific dataset or application context, limiting their ability to 
generalize across different types of industrial systems. 
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2.3 Challenges in Multi-Dataset Evaluation 
Public datasets such as SWaT, WADI, and MATPOWER have been instrumental in advancing research on ICS 
and cyber-physical threat detection. These datasets span a range of domains—from water treatment and 
distribution to electrical power grids—and present distinct signal characteristics and operational dynamics. 
However, most studies treat these datasets in isolation. The detection models are often evaluated within a single 
environment, using unique preprocessing pipelines, differing metrics, and model architectures, making it 
difficult to draw conclusions about their adaptability to varied settings. 

 
2.4 Recent Advances 
Kravchik, M., & Shabtai, A. (2018) [1] presented a deep learning-based approach for detecting cyberattacks in 
Industrial Control Systems (ICS), specifically focusing on the application of one-dimensional Convolutional 
Neural Networks (1D-CNN) for anomaly detection. Their work was motivated by the inadequacy of 
conventional rule-based intrusion detection systems in identifying stealthy, signal-level attacks such as False 
Data Injection (FDI). The proposed method leverages 1D-CNNs to analyze multivariate time-series data 
obtained from ICS sensors and actuators, enabling automatic feature extraction without extensive 
preprocessing or manual engineering. To validate the model,here utilized the Secure Water Treatment (SWaT) 
testbed—a realistic water treatment plant emulation environment. The CNN was trained to differentiate 
between normal operational behavior and various types of attack scenarios. Experimental results demonstrated 
that the model achieved high classification accuracy and a low false positive rate, outperforming several 
traditional machine learning baselines including Random Forests and Support Vector Machines. This study 
contributes to the body of ICS security research by illustrating the feasibility of applying lightweight CNN 
architectures for real-time detection. It also supports future deployment on edge computing platforms where 
low-latency and resource efficiency are critical for industrial anomaly detection. 
Niu, D., Gu, Y., & Wang, H. (2018) [2] investigated the problem of detecting False Data Injection (FDI) attacks 
in smart grid systems using deep learning techniques. Unlike static detection methods that assume fixed data 
distributions, the authors proposed a dynamic detection framework based on Stacked Autoencoders 
(SAEs) and Long Short-Term Memory (LSTM) networks to capture both spatial and temporal 
dependencies in power system data. The research addresses the vulnerability of state estimation processes in 
smart grids, where FDI attacks can stealthily alter voltage and power flow readings without triggering 
traditional alarms. Niu et al. [2018] used simulated data derived from IEEE standard test systems to inject 
malicious deviations and evaluate the model's effectiveness under various attack strategies. Their hybrid SAE-
LSTM architecture was able to identify abnormal patterns over time with higher sensitivity and robustness 
compared to conventional methods such as Principal Component Analysis (PCA) and k-Nearest Neighbours 
(KNN).The study demonstrates that incorporating temporal modeling into anomaly detection significantly 
improves the accuracy and timeliness of attack identification in dynamic power systems. Niu et al. [2018] 
conclude that deep learning models trained on historical behaviour can adapt to evolving grid conditions and 
serve as a foundation for resilient and intelligent energy infrastructure monitoring. 
Qu, Z., Li, J., & Sun, H. (2022) [4] proposed a hybrid detection framework that combines ensemble learning 
and deep learning to identify False Data Injection (FDI) attacks in power systems. The authors employed the 
Extra-Trees algorithm for feature importance ranking and dimensionality reduction, followed by a deep neural 
network to perform classification. This layered approach was designed to enhance detection performance while 
minimizing computational complexity. The model was trained on synthetic datasets generated from standard 
IEEE bus systems under various FDI attack scenarios. Qu et al. [2022] demonstrated that integrating feature 
selection with deep learning significantly improved model precision, especially in identifying stealthy attacks 
that manipulate state estimation processes. The framework also showed strong generalization across different 
system topologies. Their study highlights the advantage of hybrid strategies in balancing detection accuracy 
and interpretability, offering practical value for grid operators aiming to secure real-time control environments. 
The proposed system was validated for potential deployment in modern smart grid security architectures. 
Kravchik, M., & Shabtai, A. (2022) [5] introduced DAICS, a deep learning-based framework for detecting 
anomalies in Cyber-Physical Systems (CPS), focusing on signal-level irregularities arising from cyberattacks or 
system faults. The approach leverages an ensemble of 1D-Convolutional Neural Networks (1D-CNNs) trained 
on multivariate time-series data to automatically extract spatial and temporal features without requiring 
manual feature engineering. Their model was tested on the SWaT dataset, simulating a range of cyber-physical 
attack scenarios. DAICS demonstrated superior performance in terms of detection accuracy and response time 
when compared to traditional machine learning models and statistical baselines. The authors highlighted the 
scalability of the approach for deployment in real-time ICS monitoring environments, as well as its potential 
for edge computing adaptation. Kravchik and Shabtai [2022] emphasized that combining multiple CNNs 
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enhanced the model's robustness, enabling it to generalize across different anomaly types and operational 
contexts, thereby strengthening the security posture of CPS infrastructures. 
 
Xiang, Y., Wei, W., Lu, R., Zhang, Y., & Wu, J. (2020) [6] proposed a real-time detection framework for 
cyberattacks in modern power grids by leveraging deep learning to account for data uncertainty. Recognizing 
the limitations of static rule-based methods in detecting dynamic and stealthy threats, the authors developed 
a hybrid model that combines Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) 
to process spatiotemporal data. Their system was evaluated using data from a simulated smart grid under 
various false data injection (FDI) and command injection scenarios. The model achieved high detection 
accuracy, even in the presence of noise and incomplete measurements, due to its robustness in handling 
uncertainty. Xiang et al. [2020] emphasized that the integration of CNNs for spatial feature extraction and 
RNNs for temporal context improved anomaly localization and response time. The study demonstrates the 
feasibility of using intelligent, adaptive deep learning architectures for enhancing the resilience of cyber-
physical power systems against evolving attack strategies. 
Alshammari, R., Alshammari, M., & Irfan, M. (2021) [7] investigated the detection of cyberattacks targeting 
Supervisory Control and Data Acquisition (SCADA) systems in Industrial Internet of Things (IIoT) 
environments. Their study addressed the growing risk of cyber-physical threats resulting from the integration 
of legacy industrial control systems with modern networked infrastructures. The authors proposed a machine 
learning-based detection system using supervised learning classifiers, including Decision Trees, Support 
Vector Machines (SVM), and Random Forests, to identify malicious activity based on SCADA communication 
data. They evaluated their approach using a publicly available dataset consisting of normal and attack traffic 
under diverse conditions. Alshammari et al. [2021] demonstrated that tree-based models achieved high 
accuracy, with low false positive rates, making them suitable for resource-constrained IIoT deployments. The 
study emphasized the need for lightweight and scalable detection mechanisms that preserve both performance 
and energy efficiency. Their results validate the applicability of ML models for enhancing situational awareness 
in real-time industrial monitoring systems. 
Chen, X., Wang, Z., Li, Y., & Zhao, J. (2024) [8] developed a hybrid deep learning framework aimed at detecting 
energy theft and data tampering in smart grid infrastructures. The proposed model integrates Convolutional 
Neural Networks (CNN) with dense layers to analyze time-series data collected from smart meters, targeting 
both unauthorized consumption and injected anomalies. Their approach leverages automatic feature extraction 
capabilities of CNNs to learn spatial and temporal patterns indicative of malicious behavior. Using real-world 
smart grid datasets, the authors trained and tested the model under various tampering and theft scenarios. 
Results showed high detection accuracy and low false alarm rates, outperforming traditional ML baselines such 
as kNN and logistic regression. Chen et al. [2024] emphasized the adaptability of the model to different 
deployment settings and its suitability for edge-based implementation, considering its low computational 
footprint. This study contributes to enhancing trust and security in smart metering systems and supports 
efforts toward resilient, fraud-resistant energy management platforms. 
Lakshminarayana, S., & Yau, D. K. Y. (2018). [9] analyzed the effectiveness of Moving-Target Defense 
(MTD) mechanisms in power grid systems from a cost–benefit perspective. MTD introduces controlled and 
periodic changes to grid parameters—such as line admittance or topology—to mislead attackers and reduce the 
success rate of False Data Injection (FDI) attacks. The authors developed a mathematical framework to 
quantify the trade-off between enhanced system security and the operational costs introduced by dynamic 
reconfiguration. Their analysis considered factors such as attack probability, detection latency, and the cost of 
reconfiguration. Simulation experiments on IEEE bus systems showed that MTD can significantly decrease 
attack success rates when optimally deployed. However, they also revealed diminishing returns beyond certain 
thresholds of MTD intensity. Lakshminarayana and Yau [2018] concluded that a well-calibrated MTD strategy 
can improve grid resilience without incurring excessive costs, and their model provides practical guidance for 
determining when and how to deploy MTD in real-world grid infrastructures. 
Lakshminarayana, S., Chen, T., & Poor, H. V. (2020) [10] examined the vulnerability of power grids to False 
Data Injection (FDI) attacks by presenting a novel data-driven approach using random matrix theory. Unlike 
conventional techniques that rely on known attack vectors or system models, their framework identifies 
anomalies in state estimation data by detecting changes in the spectral distribution of measurement matrices. 
The method does not require prior knowledge of the grid topology, making it well-suited for blind detection in 
complex environments. Through simulations on IEEE test systems, the authors demonstrated the effectiveness 
of their technique in identifying both sparse and coordinated FDI attacks under noisy conditions. The approach 
proved scalable and adaptable to real-time monitoring applications. Lakshminarayana et al. [2020] argued that 
combining statistical signal processing with machine learning can improve grid resilience without depending 
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heavily on supervised training. Their work contributes a mathematically rigorous, model-agnostic tool for 
enhancing situational awareness in modern power system state estimation. 

 
2.1 Research Gap 
Despite the growing application of machine learning for detecting False Data Injection (FDI) attacks in 
industrial systems, a significant limitation persists in the generalizability of existing models. Most published 
approaches are tailored to specific datasets, with algorithms trained and validated under tightly controlled 
domain conditions. This over-reliance on dataset-specific solutions leads to architectures and parameters that 
perform well in one scenario but often fail to transfer effectively to other operational contexts or signal types. 
Moreover, there is a notable absence of benchmark studies that apply a unified machine learning model across 
multiple ICS datasets under a consistent experimental framework. While SWaT, WADI, and MATPOWER have 
been individually used for FDI research, no prior work systematically evaluates a single model’s behavior across 
all three. This lack of cross-domain benchmarking leaves unanswered questions regarding algorithm 
adaptability, detection stability, and performance trade-offs in heterogeneous industrial environments. 
The present study addresses this gap by deploying a standardized 1D-CNN architecture across all three datasets 
to assess its robustness, effectiveness, and potential for real-world, domain-agnostic deployment. 

 
3. Datasets and Attack Simulation 

 
This section outlines the benchmark datasets selected for evaluating the proposed 1D-CNN model and details 
the methodology used for injecting False Data Injection (FDI) attacks. The three datasets—SWaT, WADI, and 
MATPOWER—represent diverse operational domains and data modalities, enabling a comprehensive 
assessment of model generalizability. 

 
3.1 SWaT Dataset: Secure Water Treatment System 
The SWaT dataset was collected from a fully operational water treatment testbed developed by iTrust at the 
Singapore University of Technology and Design. The system emulates six distinct stages of a real water 
treatment process, including chemical dosing, filtration, and reverse osmosis. It contains time-series data from 
sensors and actuators, sampled at one-second intervals. Each record is labelled as either normal or under 
attack. FDI scenarios in SWaT typically involve tampering with water tank levels, flow rates, and valve states 
to deceive control logic without triggering alarms. The dataset offers a high-resolution view of physical-layer 
attacks in a cyber-physical ICS. 
 
3.2 WADI Dataset: Water Distribution Network 
The WADI dataset extends the SWaT testbed to simulate a water distribution system over a longer time horizon 
and in a more dynamic environment. It includes 16 days of normal operation followed by 2 days of intentional 
cyberattacks. The dataset captures flow rates, pump statuses, and valve control signals, many of which are 
subject to noise and real-world fluctuations. Its complexity lies in the combination of control logic variability 
and interdependent system states. FDI attacks in WADI involve false readings of flow sensors and motor 
speeds, often executed in a way that mimics plausible system conditions. This makes the detection task more 
challenging compared to SWaT. 
 
3.3 MATPOWER Dataset: Power Grid State Estimation 
Unlike SWaT and WADI, which are derived from physical testbeds, MATPOWER is a simulation-based dataset 
used for state estimation in electric power grids. Developed in MATLAB, it provides tools to simulate power 
flow across standardized bus systems (e.g., IEEE 14-bus, 30-bus, 118-bus networks). For this study, synthetic 
FDI attacks were generated by modifying active and reactive power readings within the state estimator. These 
attacks aim to mislead the power flow analysis without violating physical laws, making them particularly 
stealthy. The dataset allows fine-grained control over attack placement, magnitude, and sparsity. 

 
3.4 False Data Injection Attack Modeling 
To ensure consistency, FDI attacks were simulated using a standardized procedure across all datasets. This 
involved the injection of ±20% deviation into selected sensor or state values within randomly chosen time 
windows. Care was taken to avoid immediate, unrealistic spikes, allowing the model to learn subtle 
manipulations over time. Attack labels were added post-injection, and the modified datasets were verified to 
preserve statistical integrity. 
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3.5 Preprocessing Pipeline 
All datasets were subjected to a uniform preprocessing routine to maintain comparability. This included: 

• Normalization: Min–max scaling to [0, 1] range 

• Windowing: Fixed-length time windows (64 steps) with 50% overlap 

• Label Propagation: Windows containing any attack were marked as anomalous 

• Padding and Alignment: Ensured uniform tensor dimensions for CNN input 
 
This standardized pipeline ensures that the 1D-CNN model receives comparable input structures across all 
datasets, thereby allowing a fair evaluation of its generalization capacity. 

 
4. Methodology 

 
This section presents the overall detection pipeline, focusing on the proposed 1D Convolutional Neural Network 
(1D-CNN) model, the training strategy, and the evaluation metrics. The model is designed to process fixed-
length time-series windows extracted from industrial system logs and classify them as either normal or under 
FDI attack. 
4.1 Model Architecture: 1D Convolutional Neural Network (1D-CNN) 
The proposed detection model is based on a 1D Convolutional Neural Network (1D-CNN) tailored for 
multivariate time-series classification. The input to the model consists of sliding time windows extracted from 
normalized sensor data, with each window spanning 64 consecutive timesteps. These sequences are passed 
through two stacked convolutional layers equipped with ReLU activations, each followed by max-pooling and 
dropout layers for dimensionality reduction and regularization. 
The convolutional layers are designed to extract localized temporal patterns indicative of FDI anomalies, while 
dropout layers mitigate overfitting during training. The output from the final pooling layer is flattened and 
passed through a fully connected dense layer, enabling high-level abstraction before reaching the output node. 
The final output layer uses a sigmoid activation function to perform binary classification, predicting whether 
the input window represents normal behavior or an FDI-compromised signal. This architecture supports low-
latency inference, making it suitable for deployment in real-time or edge-computing environments. 
The proposed model comprises several layers tailored to capture temporal dependencies and localized 
anomalies in the sensor data. Table 1 shows the 1D Convolutional Neural Network (1D-CNN) Layer Structure. 

 
Table 1: 1D Convolutional Neural Network (1D-CNN) Layer Structure 

Layer Function 
Input Layer Accepts time-series windows of fixed length (64 timesteps × n features) 
Conv1D Layer 1 Extracts temporal features using 64 filters, kernel size 3, ReLU activation 
MaxPooling1D Layer 1 Reduces dimensionality, retains dominant features (pool size = 2) 
Dropout Layer 1 Prevents overfitting (dropout rate = 0.3) 
Conv1D Layer 2 Learns higher-level abstractions (128 filters, kernel size 3) 
MaxPooling1D Layer 2 Further temporal reduction 
Dropout Layer 2 Additional regularization 
Flatten Layer Converts feature maps to 1D vector 
Dense Layer (Hidden) Fully connected layer with 64 units, ReLU activation 
Output Layer Sigmoid-activated neuron for binary classification (FDI or normal) 

 
This design balances complexity and interpretability, making it suitable for both real-time detection and edge 
deployment and its shown in Figure 1:  the Architecture of the Proposed 1D-CNN Model for FDI Attack 
Detection in ICS Datasets. 
 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 2475 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative 

Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

 
Figure 1 : Architecture of the Proposed 1D-CNN Model for FDI Attack Detection in ICS Datasets 

 
 
4.2 Training Strategy 
To evaluate the generalizability of the 1D-CNN model across industrial domains, the training process was 
conducted independently on each dataset: SWaT, WADI, and MATPOWER. For each dataset, the pre-
processed windows were divided into training (70%), validation (15%), and testing (15%) subsets using 
stratified sampling to preserve class distribution. Training was conducted using the Adam optimizer with a 
learning rate of 0.001 and binary cross entropy as the loss function. A batch size of 64 and a maximum of 
100 epochs were used, with early stopping triggered by stagnation in validation loss to prevent overfitting. 
To ensure robustness, 5-fold cross-validation was applied, and the average scores across folds were 
reported. All hyperparameters were kept consistent across datasets to allow fair performance comparison. This 
training strategy ensures that the model is tuned under uniform conditions while being exposed to the unique 
dynamics of each dataset. 
 
4.3 Evaluation Metrics 
The performance of the 1D-CNN model was assessed using a suite of standard classification metrics tailored to 
imbalanced and anomaly-rich datasets such as those in ICS environments. These include: 

• Accuracy: Measures overall correctness, representing the proportion of correctly classified samples. 

• Precision: Evaluates the fraction of predicted positive (FDI) cases that are true positives, reflecting false 
alarm resistance. 

• Recall (Sensitivity): Indicates the model’s ability to detect actual FDI attacks, critical for safety 
assurance. 

• F1-Score: Harmonic mean of precision and recall, providing a balanced metric when class distribution is 
skewed. 

• AUC-ROC (Area Under the Receiver Operating Characteristic Curve): Captures the model’s 
ability to distinguish between normal and FDI samples across various thresholds. 

• False Positive Rate (FPR): Represents the proportion of normal windows incorrectly flagged as attacks, 
crucial in operational ICS contexts to minimize unnecessary responses. 
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Figure 2: System Workflow for FDI Detection Using 1D-CNN – From Signal Input to Classification Metrics 
 
4.4 System Workflow Diagram 
The overall system workflow is designed to simulate a realistic industrial detection pipeline, starting from raw 
signal acquisition to final attack classification. Incoming time-series data from ICS or power systems—such as 
flow rates, voltages, or actuator statuses—are first passed through a preprocessing block, which performs 
normalization, segmentation into sliding windows, and labeling based on FDI injection. 
These processed sequences are then fed into the 1D-CNN model, where multiple convolutional layers extract 
temporal dependencies and spatial correlations from the multivariate signal stream. Following feature 
extraction and flattening, the dense layer classifies each window as either “Normal” or “FDI”. 
The outputs are aggregated and evaluated through a metric computation unit, which quantifies model 
performance using accuracy, precision, recall, F1-score, AUC, and false positive rate. This modular structure 
enables dataset-agnostic deployment and supports integration with edge-cloud architectures for scalable real-
time monitoring in ICS environments. 
 

 
Figure 3: Proposed framework processes normalized time-series windows through 1D-CNN architecture, 

followed by binary classification and dataset-wise evaluation 
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5. Experimental Setup 
 
This section outlines the software environment, hardware configuration, and dataset-specific setup used to 
implement and evaluate the proposed FDI detection framework. 

 
5.1 Software Environment 
All experiments were conducted using Python 3.9 with deep learning implemented via the TensorFlow 2.x 
/ Keras API. Data handling and visualization were supported using libraries such as NumPy, Pandas, and 
Matplotlib. For the MATPOWER dataset, power system simulations and FDI attack injection were performed 
using MATLAB R2022b with the MATPOWER 7.1 toolbox. Interfacing between MATLAB and Python was 
managed using .mat file exchange for seamless model input preparation. 
 
5.2 Hardware Configuration 
Training and inference were performed on a GPU-enabled system equipped with: 

• Processor: Intel Core i7 (12th Gen) 

• RAM: 32 GB DDR4 

• GPU: NVIDIA RTX 3080 (10GB GDDR6X) 

• OS: Ubuntu 20.04 LTS 
 
The GPU support significantly reduced training time, especially for larger datasets like WADI and 
MATPOWER. 

 
5.3 Dataset-Specific Configuration 
To maintain consistency in model training and evaluation, each dataset was pre-processed using the same 
pipeline but retained its intrinsic structure: 

 
Table 2: Dataset Description 

Dataset Domain Signal 
Frequency 

Total 
Duration 

Label Distribution 
(Attack/Normal) 

SWaT Water Treatment 
ICS 

1 Hz (1/sec) ~11 days Approx. 34% attack, 66% normal 

WADI Water 
Distribution ICS 

1 Hz (1/sec) ~18 days Approx. 13% attack, 87% normal 

MATPOWER Simulated Power 
Grid 

Variable (batch-
run) 

Synthetic 
samples 

50% attack, 50% normal 
(balanced) 

Each dataset's features were padded or filtered to achieve uniform input dimensions. Additionally, the ratio of 
attack to normal instances was either retained or balanced through random under sampling to mitigate class 
imbalance issues during training. 
 

6. Results and Discussion 
 

6.1: Comparative Analysis of three Datasets over 1D-CNN 
This section presents the evaluation results of the proposed 1D-CNN model on three benchmark datasets: 
SWaT, WADI, and MATPOWER. The performance is analyzed using accuracy, precision, recall, F1-score, 
AUC, and false positive rate (FPR). All models were trained independently using identical configurations to 
enable a fair cross-domain comparison. 
 

Table 3: Comparative Results of Model ID- CNN over three Datasets 
Datasets Accuracy 

(%) 
Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

AUC FPR 
(%) 

Avg 
RUL 
MAE 

Avg 
Latency 
(ms) 

SWaT 98.2 97.9 98.6 98.2 0.992 1.3 3.557774 35.32793 
WADI 94.7 91.4 92.1 91.7 0.961 4.2 4.847467 41.63106 
MATPOWER 96.5 95.2 97 96.1 0.981 2.1 3.75778 27.68635 

 
On the SWaT dataset, the proposed 1D-CNN model demonstrated high effectiveness in detecting FDI attacks. 
The model achieved an accuracy of 98.2%, with a precision of 97.9% and a recall of 98.6%, resulting in an F1-
score of 98.2%. The area under the ROC curve (AUC) reached 0.992, and the false positive rate (FPR) remained 
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low at 1.3%. The relatively high density of attack instances—approximately 34%—in the dataset enabled the 
model to effectively learn temporal signatures associated with malicious behaviors. This strong separation 
between normal and compromised signals contributed to minimal misclassification and reliable real-time 
detection. 
 
On the WADI dataset, the proposed 1D-CNN model achieved an accuracy of 94.7%, with a precision of 91.4% 
and a recall of 92.1%, resulting in an F1-score of 91.7%. The AUC value reached 0.961, while the false positive 
rate (FPR) increased slightly to 4.2%. Detection on WADI proved more challenging due to the noisy flow-based 
sensor data and the low proportion of attack samples, which comprised only about 13% of the dataset. Despite 
these difficulties, the model maintained strong recall, though precision was affected by overlapping 
characteristics between normal and attack patterns, indicating robustness in imbalanced scenarios. 
 
In the MATPOWER simulation environment, the 1D-CNN model was evaluated on synthetic power flow data 
containing algorithmically embedded FDI attacks. The model achieved an accuracy of 96.5%, with a precision 
of 95.2% and a recall of 97.0%, yielding an F1-score of 96.1%. The AUC reached 0.981, and the false positive 
rate (FPR) remained controlled at 2.1%. Since the dataset was balanced between normal and attack instances, 
the model benefited from equal exposure to both classes during training, promoting effective generalization. 
The high recall suggests that the model is capable of reliably identifying stealthy, state-level FDI attacks in 
numerical and non-physical system domains. 
 
In Cross-Domain generalization , the 1D-CNN model demonstrated consistent and reliable performance across 
three diverse datasets—SWaT, WADI, and MATPOWER—highlighting its strong generalization capabilities. 
Despite differences in signal characteristics, attack frequency, and data origin (physical vs. simulated), the 
model maintained high AUC values and low false positive rates throughout. This cross-domain adaptability 
confirms that the architecture can effectively learn temporal patterns associated with FDI attacks, regardless 
of the dataset’s underlying structure. Its success in both real-world industrial systems and simulated power 
grids positions the 1D-CNN as a promising, dataset-agnostic framework for scalable and robust FDI detection 
in critical infrastructure environments. 

 
Figure 4: Accuracy vs. Epoch for FDI Detection across Datasets 

 
The Figure 4 illustrates the normalized Accuracy progression of the 1D-CNN model over 100 training epochs 
across three benchmark datasets—SWaT, WADI, and MATPOWER. Each line represents the model's 
performance trend in detecting False Data Injection (FDI) attacks under varying data modalities. The 
consistent upward trajectory in all datasets highlights the model’s effective learning and generalization 
capability. 
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Figure 5 : Smoothed Loss vs. Epoch for FDI Detection across SWaT, WADI, and MATPOWER 

Datasets 
 
The Figure 5 illustrates the loss convergence behavior of the 1D-CNN model over 100 epochs during training 
on three distinct datasets. The smooth curves reflect stable and effective optimization, with each dataset 
showing a steady decline in loss values, confirming model generalization and robustness across both physical 
and simulated ICS domains. 

 

 
Figure 6: Precision vs. Epoch for FDI Detection across SWaT, WADI, and MATPOWER 

Datasets 
This Figure 6 displays the precision evolution of the 1D-CNN model over 100 training epochs. The smooth 
curves represent the model’s ability to correctly identify FDI attack instances across three diverse ICS datasets. 
Despite variations in data characteristics, the consistently high precision reflects strong discriminative 
capability and low false-positive tendencies throughout the training phase. 
 

 
Figure 7: Smoothed Recall vs. Epoch for FDI Detection across SWaT, WADI, and MATPOWER 

Datasets 
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The Figure 7 shows the recall progression of the 1D-CNN model during training. The high and stable recall 
values across epochs highlight the model’s capability to correctly identify a majority of FDI attack instances, 
minimizing false negatives even under varying data modalities and imbalance conditions. 
 

 
Figure 8 : F1-Score vs. Epoch for FDI Detection across SWaT, WADI, and MATPOWER 

Datasets 
 

The Figure 8 presents the F1-score trends of the 1D-CNN model over 100 epochs. F1-score balances both 
precision and recall, making it a crucial metric for assessing model performance under class imbalance. The 
stable and high values across all datasets confirm the robustness and generalization capacity of the model in 
detecting FDI attacks. 

 

 
Figure 9: Predicted vs. True Remaining Useful Life (RUL) — SWaT Dataset 

The Figure 9 illustrates the comparison between the predicted and true Remaining Useful Life (RUL) values 
over 100 time steps in the SWaT dataset. The close alignment between the two curves demonstrates the model’s 
effectiveness in estimating component degradation and its applicability in predictive maintenance for water 
treatment ICS environments. 
 

 
Figure 10: Predicted vs. True Remaining Useful Life (RUL) — WADI Dataset 
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This Figure 10 presents the predicted and true RUL curves for the WADI dataset. Despite the increased sensor 
noise and lower attack density, the model maintains reasonable estimation accuracy, supporting its 
applicability for predictive maintenance in flow-based water distribution systems. 
 

 
Figure 11 : Predicted vs. True Remaining Useful Life (RUL) — MATPOWER Dataset 

 
 
This Figure 11 compares predicted and true RUL values for the MATPOWER dataset, which simulates power 
grid behaviour. The model shows strong predictive capability even in numerical state-space domains, 
highlighting its versatility across both physical and simulated cyber-physical systems. 

 

 
Figure 12: Inference Latency Over Time for SWaT, WADI, and MATPOWER Datasets 

 
The Figure 12 illustrates the inference latency of the 1D-CNN model across 100 time steps for three different 
ICS datasets. SWaT and MATPOWER maintain lower latency, indicating suitability for real-time deployment. 
The slightly higher latency observed in WADI may result from increased data complexity and preprocessing 
overhead. Overall, the model demonstrates consistent and efficient runtime behavior suitable for edge-cloud 
integration. 

 
6.2 Generalization Insights 
The consistent performance of the 1D-CNN across SWaT, WADI, and MATPOWER datasets underscores its 
ability to generalize across varied ICS domains. Its success stems primarily from the shared temporal structure 
inherent in sensor signals, regardless of the physical or simulated environment. The architecture’s capacity to 
extract localized features through convolutional layers enables it to identify common FDI attack patterns, even 
when signal modalities differ. 
However, the model’s performance may degrade in scenarios with high sensor noise (as observed in WADI) or 
under extreme data imbalance. These conditions can obscure temporal attack signatures, resulting in reduced 
precision or increased false positives. Furthermore, domain-specific feature distributions, such as power state 
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vectors in MATPOWER versus fluid sensor readings in SWaT, may limit model adaptability without fine-
tuning. 
To enhance adaptability, transfer learning techniques can be employed. Pretraining on large-scale ICS data and 
subsequently fine-tuning on target environments may allow the model to converge faster and adapt better to 
domain-specific nuances, making it a viable candidate for real-time, cross-domain deployment. 

 
7 Discussion 

 
The use of a unified 1D-CNN model across heterogeneous datasets demonstrates notable strengths, particularly 
in simplifying deployment pipelines and reducing the need for domain-specific retraining. Its architectural 
simplicity, coupled with strong performance metrics, affirms its capability to serve as a baseline model for 
general-purpose FDI detection in ICS environments. 
However, this generality also presents limitations. Although the model captures shared temporal patterns, it 
may overlook subtle, domain-specific anomalies. For instance, precision suffers in the WADI dataset, where 
flow-based signals exhibit irregular noise and lower attack density. These results suggest that while a single 
model offers scalability, specialized tuning might be necessary for optimal results in complex or noisy 
environments. 
The detectability of FDI attacks is closely tied to the signal characteristics—high-resolution, temporally 
consistent data such as in SWaT yields better separability. In contrast, simulated environments like 
MATPOWER may require algorithmic interpretation of abstract state vectors, affecting interpretability and 
robustness. 
Deployment feasibility is enhanced by the model's relatively low inference latency and compact architecture, 
making it suitable for edge devices. Cloud integration further allows centralized retraining and update 
propagation. However, balancing latency, privacy, and computational overhead remains a key trade-off in real-
world edge-cloud ICS deployments. 

 
8 Conclusion and Future Work 

 
This study presented a unified 1D-CNN-based framework for detecting False Data Injection (FDI) attacks 
across three distinct Industrial Control System (ICS) environments: SWaT, WADI, and MATPOWER. Despite 
differences in sensor modalities, noise levels, and domain characteristics, the model achieved consistently high 
performance, validating the feasibility of a single, lightweight architecture for multi-domain ICS anomaly 
detection. 
 
Our results underscore the model’s adaptability, with strong generalization across physical and simulated 
datasets. The detection accuracy remained above 94% in all cases, supported by low false positive rates and 
reliable Remaining Useful Life (RUL) estimation. These findings demonstrate that effective FDI detection need 
not rely on highly customized models for each deployment environment. 
 
Looking ahead, several enhancements are envisioned. Federated learning could enable decentralized training 
across multiple ICS installations, preserving data privacy while improving generalizability. Integration with 
digital twin systems and physics-informed filters may boost interpretability and resilience against stealth 
attacks. Finally, deploying and testing the model in real-time emulated ICS environments will provide essential 
insights into practical feasibility and response latency under live conditions. 
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