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Credit card fraud is a critical concern for financial institutions, as it leads to significant economic 
losses and compromises customer confidence. Detecting fraudulent activity remains challenging 
due to the extreme imbalance between legitimate and fraudulent transactions in real-world 
datasets. In this study, the publicly available dataset is analyzed to investigate the effectiveness 
of machine learning algorithms for fraud detection. The dataset exhibits a severe skew, with 
fraudulent cases representing only a small fraction of all transactions. To address this imbalance, 
the Synthetic Minority Oversampling Technique (SMOTE) is employed, enabling models to 
better learn discriminatory patterns. Several machine learning approaches, including Logistic 
Regression, Random Forest are implemented and evaluated. Performance is measured using 
accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic 
curve (ROC-AUC), ensuring a comprehensive assessment of classification capability. 
Experimental results demonstrate that resampling combined with ensemble methods 
significantly improves the detection of minority fraud cases while minimizing false positives. 
This work emphasizes the importance of handling imbalanced data in fraud detection and 
provides insights into the potential of machine learning to enhance the security and reliability of 
electronic payment systems. 

Keywords:  Credit card fraud detection, Imbalanced dataset, Machine learning, SMOTE, 
Classification, Ensemble methods, Fraud analytics 

1. Introduction 

The banking industry has been profoundly impacted by the evolution of information technology (IT). Credit card and online net 
banking transactions, which are currently the majority of banking system transactions, all present additional vulnerabilities [1]. 
Hackers have increasingly targeted banks with enormous quantities of client data. Therefore, banks have been in the forefront of 
cyber security for business. In the past thirteen years, cyber security industry expanded fast. The market is predicted to be valued 
170.4 billion in 2022 [2]. In the next three years, the cost of cybercrime is expected to rise by 15% every year, finally exceeding 
$10.5 trillion USD each year by 2025 [3]. 

In the banking industry, cyber fraud using credit cards is a significant concern that costs billions of dollars annually. Banking 
industry has made strengthening cyber security protection a priority. Multiple systems have been developed for monitoring and 
identifying credit card cyber fraud. However, because of the constantly evolving nature of threats, banking industry must be 
equipped with the most modern and effective cyber fraud management technologies [4], [5] 

The acceptance of credit card and other forms of online payments has exploded in recent years; this resulted in an increase in 
cyber fraud in credit cards. In credit card, there are several forms of cyber fraud. The first type is the actual theft of a credit card. 
The theft of confidential details of credit card is the second type of cyber fraud. When the credit card information is entered without 
the cardholder’s permission during an online transaction, further fraud is [5], [6]. 

The detection of cyber fraud in credit cards is a challenging task that attracted the interest of academics working in the fields of 
machine learning (ML). Datasets associated with credit cards have significant skewness. A great number of algorithms are unable 
to discriminate items from minority classes when working with datasets that have a considerable skew. In order to achieve 
efficiency, the systems that are used to identify cyber fraud need to react swiftly. Another important matter of concern is the way 
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in which new methods of attack, influence the conditional distribution of the data over the time period [7]. According to [8], there 
are a number of challenges need to be addressed for cyber fraud detection in credit card. These challenges contain massive volume 
of data, that is unbalanced or incorrectly categorised, frequent changes in the type of transaction, and real-time detection. As 
current technology being progressed, cyber credit card fraud is also developing rapidly, making cyber fraud detection a crucial 
area. The conventional techniques to resolve this problem is no longer sufficient. In the conventional technique, domain experts 
in cyber fraud compose the algorithms which are governed by strict rules. In addition, a proactive strategy must be used to combat 
cyber fraud. Every industry is attempting to employ ML-based solutions due to their popularity, speed, and effectiveness [9]. 

While there are numerous cyber fraud detection techniques available, as yet no fraud detection systems have been able to deliver 
high efficiency and high accuracy. Thus, it necessary to provide an overview in cyber fraud detection and an analysis of the most 
recent studies in this field to conduct innovation projects for cyber fraud detection. To achieve this goal, this review will provide a 
detailed analysis of ML techniques and their function in credit card cyber fraud detection and also offer recommendations for 
selecting the most suitable techniques for detecting cyber fraud. The study also includes the trends of research gaps, and 
limitations in detecting cyber fraud in credit card. This study therefore seeks to compare six classification and prediction 
techniques, namely; Decision Tree, Logistic Regression, and Random Forest in classifying and predicting financial transactions 
as either fraudulent or not fraudulent. 

2. Literature Review 

Credit card fraud detection has evolved from rule-based and statistical systems to advanced machine learning (ML) and deep 
learning approaches. Traditional models such as logistic regression and decision trees were among the earliest techniques, offering 
interpretability but limited adaptability to complex fraud patterns [10]. Machine learning algorithms, including Support Vector 
Machines (SVM), Random Forests (RF), and k-nearest neighbors (KNN), provided improvements by capturing nonlinear 
relationships in high-dimensional data [11]. Ensemble methods, particularly Random Forest and Gradient Boosting, further 
enhanced classification accuracy by aggregating multiple weak learners [12]. 

Recent studies have focused on addressing challenges inherent in fraud detection datasets, especially high dimensionality and 
class imbalance. A hybrid feature-selection framework that combines information gain with a genetic algorithm wrapper has been 
proposed, ensuring that only the most relevant attributes are used for classification [13]. This approach improved both sensitivity 
and specificity, demonstrating the effectiveness of dimensionality reduction in fraud detection. In another study, SMOTE was 
applied to balance the fraud dataset and classifiers such as Naïve Bayes (NB), Random Forest (RF), and Multilayer Perceptron 
(MLP) were tested [14]. The results showed MLP achieving a remarkable accuracy of 99.95%, outperforming other algorithms, 
thus highlighting the impact of oversampling on imbalanced data.  

Another line of research has emphasized developing fraud detection frameworks that balance adaptability and robustness. A 
comprehensive ML framework incorporating exploratory data analysis, feature scaling, and class balancing using SMOTE and 
undersampling has been proposed [15]. In this study, Random Forest (RF) and Support Vector Machine (SVM) were compared, 
with results showing that RF offered a better trade-off between precision and recall, while SVM suffered from overfitting. 
Importantly, the research highlighted the necessity for continuous monitoring and model adaptation in response to evolving fraud 
patterns. 

Despite these advances, the issue of imbalanced datasets remains central to the literature. The Synthetic Minority Oversampling 
Technique (SMOTE) was introduced as a solution and has since been widely adopted to generate synthetic minority-class samples 
and improve detection performance [16]. Alternative strategies include cost-sensitive learning, where misclassification costs are 
adjusted to prioritize fraud detection [17]. Moreover, while accuracy remains a standard metric, recent studies emphasize recall, 
precision, F1-score, and ROC-AUC, as missing fraudulent transactions incurs significant financial losses [18]. 

3. Data and Methods 
3.1 Data 

The data collection included credit card transaction simulations from January 1, 2020, to December 31, 2020, including both 
legitimate and fraudulent transactions in the western side of the United States of America available at 
https://www.kaggle.com/datasets/kartik2112/fraud-detection. The dataset contains 555,719 credit card transactions with 23 
attributes, including transaction details, customer demographics, merchant information, and a binary target variable is_fraud 
indicates whether a transaction is fraudulent (1) or genuine (0). Out of all records, only 2,148 transactions (0.39%) are fraudulent, 
highlighting a significant class imbalance.  
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Figure 1: Oversampling Data. 

Table 1: Basic Statistics for the character variables. 

Variable count unique top frequency 
Trans_Date_Trans_Time 555719 544760 05-10-2020 19:37 4 
Merchant 555719 693 fraud_Kilback LLC 1859 
Category 555719 14 gas_transport 56370 
First 555719 341 Christopher 11443 
Last 555719 471 Smith 12146 
Gender 555719 2 F 304886 
Street 555719 924 444 Robert Mews 1474 
City 555719 849 Birmingham 2423 
State 555719 50 TX 40393 
Job 555719 478 Film/video editor 4119 
Dob 555719 910 23-03-1977 2408 
Trans_Num 555719 555719 1765bb45b3aa3224b4cdcb6e7a96cee3 1 

 

Table 2: Basic statistics for the numeric variables. 

Variable count mean std min 25% 50% 75% max 
Unnamed: 0 555719 277859 160422.4 0 138929.5 277859 416788.5 555718 
Cc_Num 555719 4.18E+17 1.31E+18 6.04E+10 1.8E+14 3.52E+15 4.64E+15 4.99E+18 
Amt 555719 69.39281 156.7459 1 9.63 47.29 83.01 22768.11 
Zip 555719 48842.63 26855.28 1257 26292 48174 72011 99921 
Lat 555719 38.54325 5.061336 20.0271 34.6689 39.3716 41.8948 65.6899 
Long 555719 -90.2313 13.72178 -165.672 -96.798 -87.4769 -80.1752 -67.9503 
City_Pop 555719 88221.89 300390.9 23 741 2408 19685 2906700 
Unix_Time 555719 1.38E+09 5201104 1.37E+09 1.38E+09 1.38E+09 1.39E+09 1.39E+09 
Merch_Lat 555719 38.5428 5.095829 19.02742 34.7553 39.37659 41.95416 66.6793 
Merch_Long 555719 -90.2314 13.73307 -166.672 -96.9051 -87.4452 -80.2646 -66.952 
Is_Fraud 555719 0.00386 0.062008 0 0 0 0 1 
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In the pre-processing stage, the dataset was cleaned by removing irrelevant fields (e.g., names, street) and standardizing formats 
for timestamps and dates of birth. Categorical variables such as gender, state, category, and job were encoded using one-hot or 
frequency encoding, while numeric features like transaction amount, city population, and geolocation were standardized. Feature 
engineering introduced additional attributes including transaction hour, customer age, geographic distance between customer 
and merchant, and transaction frequency. To address the strong class imbalance (0.39% fraud), techniques such as SMOTE 
oversampling were applied. Figure 1 shows the oversampling data. Table 1 and Table 2 shows the summery statistics of the types 
of variables used in the study. 

3.2 Methods 

This section covers the use of supervised machine learning models for fraud classification, including Random Forest, Decision 
Tree, logistic regression XGBoost, KNN and voting classifier. 
 
3.2.1 Decision Tree 
 
Decision Trees are supervised; non-parametric learning algorithms commonly applied in classification tasks such as fraud 
detection [19]. They operate by recursively partitioning the dataset into smaller subsets based on feature values, ultimately forming 
a tree-like structure. The tree is composed of a root node, decision nodes, and leaf nodes, where the root node initiates the split 
using the most informative feature, and the leaf nodes represent the final class labels [20]. Graphically, they show information in 
a tree pattern that is easy to understand. The decision tree structure is made up of nodes, edges, and leaf nodes. According to [21], 
it consists of a set of branches/nodes that are connected by edges. Figure. 2 shows the flow diagram of a decision tree. The decision 
tree’s root node chooses a feature to partition the data into two or more sub nodes to develop decision nodes after the partition 
into 
sub nodes and subtrees at the end of the root node [22]. Each sub-tree of the data will once more be partitioned into two sub 
nodes. Until every training sample is gathered, this process will be repeated. So, at the end of the decision tree, we end up with a 
leaf node which serves as a representation of the class which aims at classifying.  
 
The Decision Tree algorithm is advantageous because it does not require feature scaling, can effectively manage outliers, and 
automatically handles missing values. It is relatively fast to train and highly effective for both classification and prediction tasks. 
For splitting nodes, the algorithm relies on metrics such as the Gini index, information gain, and entropy. The overall modelling 
process of the Decision Tree is illustrated in Figure 2. 
 
Entropy is a measure of impurity or randomness in a dataset and is widely used in Decision Tree algorithms to determine the 
quality of a split. It quantifies the uncertainty associated with class distributions. If all samples in a node belong to the same class, 
the entropy is zero, indicating perfect purity. Conversely, when the classes are evenly distributed, entropy reaches its maximum 
value of one, indicating maximum disorder [23]. 

The general formula for entropy is: 

𝐸(𝑋) = −' 𝑝(𝑥!) log" 𝑝(𝑥!)
#
!$%       (1) 

where: 

• 𝑝(𝑥!)= probability of class i in the dataset 
• The logarithm is base 2, because entropy is measured in bits 

 

For binary classification (Fraud vs. Not Fraud): 

𝐸(𝑋) = −𝑝(𝐹𝑟𝑎𝑢𝑑) log" 𝑝 (𝐹𝑟𝑎𝑢𝑑) − 𝑝(𝑁𝑜𝑡	𝐹𝑟𝑎𝑢𝑑) log" 𝑝 (𝑁𝑜𝑡	𝐹𝑟𝑎𝑢𝑑)   (2) 

The Gini Index measures the probability of incorrectly classifying a randomly chosen instance if it were randomly labeled 
according to the distribution of classes in the node. A Gini value of 0 represents a perfectly pure node, while higher values indicate 
greater impurity [24]. The Gini index value ranges between the values of 0 and 0.5. This implies that an attribute with a lower Gini 
index is automatically selected for the splitting. The formula for calculating the Gini Index is 

𝐸(𝑋) = 1 −7𝑝(𝑥!)"
#

!$%

 
 
(3) 
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where: 

• 𝑝(𝑥!) = Probability of class i in the dataset. 

Information Gain (IG) is a statistical measure that evaluates how well a feature separates the dataset into distinct classes [25]. It 
is defined as the reduction in entropy achieved after a split, representing the amount of useful information obtained. In Decision 
Tree construction, the objective is to select the attribute that produces the highest information gain and, correspondingly, the 
lowest entropy. The formulas for calculating IG are presented as follows. 

𝐺(𝑋, 𝑌	) 	= 	𝐸(𝑋)	− 	𝐸(𝑋|𝑌	) (4) 

 

𝐺(𝑋, 𝑌) = −𝑝(𝐹𝑟𝑎𝑢𝑑) log" 𝑝 (𝐹𝑟𝑎𝑢𝑑 − 𝑝(𝑁𝑜𝑡	𝐹𝑟𝑎𝑢𝑑) log" 𝑝(𝑁𝑜𝑡	𝐹𝑟𝑎𝑢𝑑) −7
|𝑆𝑣|
𝑆 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) 

(5) 

  

Information Gain represents the reduction in uncertainty about 	𝑌	when additional knowledge of 𝑋 is provided. It is computed by 
subtracting the entropy of 𝑋 from the entropy of 𝑌. The greater the reduction in uncertainty, the more information 𝑋 contributes 
toward predicting 𝑌. 

 
 

Figure 2: Decision Tree 
 
 

3.2.2 Logistic Classification 
Logistic Regression is a widely used supervised learning algorithm for binary classification problems, making it suitable for 
detecting fraudulent credit card transactions. The model predicts the probability that a transaction belongs to a particular class 
(fraud or not fraud) by mapping a linear combination of input features through the sigmoid function [26]. This ensures that the 
output is constrained between 0 and 1, representing the likelihood of fraud. 
 
The logistic model is expressed as: 

𝑃(𝑦 = 1 ∣ 𝑋) =
1

1 + 𝑒&(()*!)*"+")⋯)	*#+#)
 (6) 

where: 

• 𝑦	 ∈ {0,1}  is the dependent variable (1 = 𝐹𝑟𝑎𝑢𝑑, 0 = 𝑁𝑜𝑡	𝐹𝑟𝑎𝑢𝑑)   

• 𝑋 = (𝑥%, 𝑥", …	𝑥#) represents the input features (e.g., transaction amount, merchant type, transaction time, customer 
demographics), 

• 𝛼 is the intercept (bias term), 
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• 𝛽 are the coefficients (weights) learned by the model for each feature, 

• 𝑒 is the natural exponential function. 

Once the probability is computed, classification is performed using a threshold (commonly 0.5): 
 

ŷ = L
1	𝑖𝑓	𝑃(𝑦 = 1|𝑋) ≥ 𝜃
0	𝑖𝑓	𝑃(𝑦 = 1|𝑋) < 𝜃 (7) 

 
where 𝜃 is the classification threshold. 

• If, 𝑃(𝑦 = 1|𝑋) ≥ 0.5, the transaction is classified as Fraud. 
• Otherwise, it is classified as Not Fraud. 

 
Since the relationship between 𝑃(𝑦) and xxx is nonlinear, the parameters α and β are not as straightforward to interpret as in 
linear regression. The logistic curve, shown in Figure 3, represents probabilities and is confined to values between 0 and 1. 
 

 
 

Figure 3: Logistic Regression Curve for Fraud Detection 
 

3.2.3 Random Forest 

Random Forest is an ensemble learning method based on the combination of multiple Decision Trees [27]. It is widely used in 
fraud detection because of its ability to handle large, imbalanced datasets and capture complex, nonlinear relationships between 
features. Unlike a single Decision Tree, which may suffer from overfitting, Random Forest aggregates the predictions of many 
trees to improve accuracy, robustness, and generalization [28].  Random Forest uses the bagging technique to build a collection 
of Decision Trees. For a dataset (𝑋, 𝑌) with (𝑁) observations, where 𝑋 represents the predictor variables and 𝑌 the outcome, the 
algorithm creates random subsets of the data. Each subset is used to train a separate Decision Tree. This results in multiple trees 
(𝑑𝐾%(𝑋), (𝑑𝐾"(𝑋),… . (𝑑𝐾/(𝑋)),. The final prediction is then made by combining the outputs of all trees, typically through majority 
voting in classification tasks. 

𝐷 = {V𝑥%,	𝑦%W, V𝑥",	𝑦"W,… , V𝑥/,𝑦/W (8) 
 
where: 

• 𝑥! = (𝑥!%, 𝑥!", .		.		 . .		 , 𝑥!#	 are the feature vectors (e.g., amount, time, merchant). 
• 𝑦	𝜖	{0,1} is the class label (0 = Not Fraud, 1 = Fraud). 

 
Random Forest usually does not need a separate feature selection process [29]. However, one limitation is that it may sometimes 
treat variables with many possible values or wide ranges as more important, which can lead to biased results in fraud detection. 
Despite this, it is considered one of the most accurate algorithms used in the financial sector for detecting fraud [30]. When 
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building the trees, Random Forest can be less certain at the start, so it becomes important to identify and use the most relevant 
features for splitting the nodes during analysis. 

3.2.3 XGBoost 

XGBoost (Extreme Gradient Boosting) is an optimized implementation of the gradient boosting framework. It is one of the most 
powerful algorithms for credit card fraud detection because it handles large, imbalanced datasets efficiently, captures nonlinear 
feature interactions, and includes regularization to reduce overfitting [31]. 

Unlike Random Forest, which uses bagging (parallel trees), XGBoost builds trees sequentially, where each new tree attempts to 
correct the errors of the previous ones. 

𝐷 = {(𝑥%, 𝑦%), (𝑥"	, 𝑦"), . . . . , (𝑥#, 𝑦#)},								𝑦!	𝜖	{0,1} (9) 

where: 

• 𝑥!	transaction features (amount, time, merchant, etc.), 

• 𝑦! = label (1 = Fraud, 0 = Not Fraud). 

3.2.4 K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple yet powerful instance-based learning algorithm. It classifies a new transaction by 
looking at the k most similar past transactions in the dataset and assigning the majority class among them (Fraud or Not Fraud) 
[32]. 

In fraud detection, KNN is useful because it does not make strong assumptions about data distribution. Fraudulent transactions 
can often be identified by their “closeness” to other fraudulent cases in feature space. The expression used for computing KNN: 

𝐷 = {(𝑥%, 𝑦%), (𝑥", 𝑦"), … . . , (𝑥/, 𝑦/)} (10) 

where: 

• 𝑥! = (𝑥!%, 𝑥!", .		.		 . .		 , 𝑥!#	 are the feature vectors (e.g., amount, time, merchant). 
• 𝑦	𝜖	{0,1} is the class label (0 = Not Fraud, 1 = Fraud). 

3.2.5 Voting Classifier 

Credit card fraud detection is a challenging task due to the highly imbalanced nature of transaction data (very few fraudulent cases 
compared to legitimate ones) and the complexity of fraud patterns. A single machine learning algorithm may fail to capture all the 
nuances of fraud. To address this, ensemble learning techniques are widely used, as they combine the strengths of multiple 
classifiers to improve accuracy and robustness [33]. 

One of the simplest yet powerful ensemble approaches is the Voting Classifier. The Voting Classifier integrates predictions from 
multiple base models to make a single, more reliable decision. In fraud detection, this is particularly useful because models like 
Logistic Regression, Random Forest, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) may perform differently 
on various patterns of fraud [34]. By combining them, we obtain a model that is generally more accurate and less biased toward 
one particular type of fraud pattern. 

𝐷 = {(𝑥%, 𝑦%), (𝑥", 𝑦"), … . . , (𝑥/, 𝑦/)} (11) 
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where: 

• 𝑥! = (𝑥!%, 𝑥!", .		.		 . .		 , 𝑥!#	 are the feature vectors (e.g., amount, time, merchant). 
• 𝑦	𝜖	{0,1} is the class label (0 = Not Fraud, 1 = Fraud). 
• A set of classifiers: 

𝐶 = {𝐶%, 𝐶", ……… . , 𝐶1} (12) 

where 𝑀is the total number of classifiers. 

Each classifier 𝐶2 produces either a class label prediction ŷ(𝑥)	or a probability estimate 𝑃2(𝑦 = 1|𝑥). 

We evaluated the model’s performance using metrics such as accuracy, precision, recall, specificity, and F1-score to compare 
different algorithms. While accuracy is the most common way to measure performance [35], it is not always suitable for our highly 
imbalanced dataset. Relying only on accuracy could be misleading, since the majority of transactions are legitimate. Therefore, it 
is more reliable to assess models using additional metrics, such as the area under the curve (AUC) [36], along with accuracy, to 
better identify fraudulent transactions. 

The confusion matrix's entries are defined as follows:  False positive (FP) is the total number of incorrect predictions classified as 
positive; false negative (FN) is the total number of incorrect predictions classified as negative; true positive (TP) is the total number 
of true predictions classified as positive; and true negative (TN) is the total number of true predictions classified as negative. 

Accuracy measures how often the model makes correct predictions, whether for fraud or not fraud [37]. It is the ratio of all correct 
predictions to the total number of predictions made. It is calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃	 + 	𝑇𝑁	 + 	𝐹𝑃	 + 	𝐹𝑁 (13) 

 
Precision metric measures the ratio of correctly classified fraud transactions (TP) to the total transactions predicted to be fraud 
transactions (TP + FP) [38]. It is calculated as 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (14) 

 
Recall/ Sensitivity, as a metric, measures the ratio of correctly classified fraud transactions (TP) to the total number of fraud 
transactions [39]. It is calculated as 
 

𝑅𝑒𝑐𝑎𝑙𝑙	/	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (15) 

 
 

Specificity measures the ratio of correctly classified not fraud transactions (TP) to the total number of Not Fraud transactions 
[40]. It is calculated as; 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (16) 

 
F1-score is a metric that balances Precision and Recall. It is especially useful in fraud detection, where the dataset is imbalanced. 
The F1-score is the harmonic mean of Precision and Recall, giving a single measure of a model’s accuracy on fraud cases. 
 

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2	 × 	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙  (17) 
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AUC (Area Under the Curve) is measured from the ROC curve, which plots the False Positive Rate (x-axis) against the True Positive 
Rate (y-axis) for different threshold values between 0 and 1. It shows how well the model separates fraud from non-fraud cases. A 
higher AUC means the model is better, as its curve is closer to the top-left corner of the graph. A poor model will lie closer to the 
45-degree diagonal line, which represents random guessing where the False Positive Rate equals the True Positive Rate. 

4. Results 

The feature correlation heatmap illustrates the pairwise relationships between the variables in the dataset. As shown in the Figure 
4, most features exhibit weak correlations with each other and with the target variable (is_fraud). The transaction amount (amt) 
demonstrates a mild positive correlation (0.18) with fraudulent transactions, indicating that higher amounts are slightly more 
likely to be associated with fraud. In contrast, features such as cc_num, city_pop, and unix_time show negligible correlation with 
the target, suggesting that their predictive power may emerge only through complex interactions rather than direct linear 
relationships. The heatmap also highlights cases of redundancy among features. Specifically, lat and merch_lat (0.99) as well as 
long and merch_long (≈1.0) are highly correlated, reflecting near-identical values. Additionally, zip exhibits a strong negative 
correlation (≈-0.91) with long and merch_long. Such highly correlated pairs may contribute to multicollinearity and can be 
considered for dimensionality reduction or feature selection. Overall, the heatmap emphasizes the need for advanced machine 
learning methods that can capture non-linear and multivariate patterns rather than relying on simple correlations. 

 

 
Figure 4: Correlation plot of quantitive variables. 

Figure 5 shows the transaction amount distributions reveal clear differences between fraudulent and non-fraudulent activities. 
The overall and non-fraud distributions are highly skewed toward smaller values, with the majority of legitimate transactions 
occurring below 200 units. In contrast, the distribution of fraudulent transactions is more dispersed, with notable concentrations 
in the mid-to-high ranges (200–1200). This suggests that while small-value transactions dominate the dataset overall, fraudulent 
activities are more likely to involve larger amounts. These findings align with the correlation analysis, where transaction amount 
showed a modest positive relationship with fraud, reinforcing its importance as a discriminative feature. 

Figure 6 shows the analysis of occupational distribution among fraudulent transactions reveals that certain job titles are 
disproportionately represented. The top three professions most associated with fraud are science writers, licensed conveyancers, 
and systems developers, each accounting for nearly 30 fraudulent cases. Other occupations, including biomedical engineers, 
occupational therapists, colour technologists, counsellors, comptrollers, research scientists, and commissioning editors, also 
appear frequently in the dataset. The diversity of professions represented suggests that fraud is not limited to a particular 
occupational group but occurs across a wide range of professional backgrounds. However, the higher counts observed in specific 
job categories may reflect underlying differences in income levels, transaction behaviors, or sampling biases in the dataset. 
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Figure 5: Distribution of transaction amounts across the dataset. 

 

Figure 6: Job titles most frequently associated with fraudulent transactions. 

 

Figure 7: Fraud rate by U.S. state. 
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As illustrated in Figure 7, the state-wise analysis of fraud rates indicates notable geographic variation in fraudulent activity. Alaska 
records the highest fraud rate at over 1.6%, followed by Connecticut with a rate of approximately 1.2%. Other states such as Idaho, 
Hawaii, Montana, and the District of Columbia also report relatively high fraud rates compared to the national average. 
Meanwhile, Virginia, Mississippi, and Oregon fall at the lower end of the top ten but still maintain rates above 0.6%. These findings 
suggest that fraud is not uniformly distributed across regions and may be influenced by state-level demographic, economic, or 
transactional factors. 

Figure 8 shows the temporal analysis of fraudulent transactions revealed a distinct concentration of fraudulent activity during 
late-night hours. Fraud rates were notably higher between 22:00 and 23:00, with nearly 2% of all transactions in these periods 
being fraudulent, compared to less than 0.1% during most daytime hours. Absolute counts also confirmed this trend, with more 
than 1,000 fraud cases recorded in the two-hour window before midnight, while morning and afternoon hours recorded fewer 
than 30 fraudulent cases per hour on average. Moderate fraud activity was also observed between midnight and 3:00 AM, 
suggesting that fraudsters exploit the reduced monitoring or lower transaction scrutiny that may occur overnight. Conversely, 
daytime hours, particularly between 8:00 AM and 4:00 PM, showed consistently low fraud rates. These findings indicate that 
fraudulent behavior is temporally skewed, with late evenings and early mornings presenting the highest risk for financial 
institutions and customers. 

 

Figure 8: Number of Fraudulent Transactions by Hour of Day. 

 

 

Figure 9: Distribution of age group and fraud status. 
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Figure 9 shows the analysis of fraudulent transactions across age groups revealed clear demographic patterns. Fraud rates were 
lowest among individuals under 20 years of age, accounting for only 0.14% of their total transactions. In contrast, older 
populations exhibited markedly higher vulnerability, with the highest fraud rates observed in the 70–79 age group (0.56%), 
followed by those aged 50–59 (0.50%) and 60–69 (0.45%). In terms of absolute numbers, the 30–39 and 50–59 groups recorded 
the largest volumes of fraudulent cases (479 and 425, respectively), reflecting both their higher transaction activity and moderate 
fraud susceptibility. By comparison, the youngest (<20 years) and oldest (80+) segments reported fewer total fraud cases, partly 
due to smaller transaction volumes. These findings suggest that while middle-aged individuals contribute significantly to the 
absolute number of fraudulent cases, older adults face a disproportionately higher fraud risk relative to their transaction activity.  

Figure 10 shows the analysis of fraud status by gender reveals that fraudulent transactions are distributed almost evenly between 
males and females. Females recorded 1,164 fraud cases out of 304,886 total transactions, while males recorded 981 fraud cases 
out of 250,833 transactions. Although the absolute number of fraudulent transactions is slightly higher among females, this 
difference corresponds to their larger overall transaction volume. When expressed as a fraud rate, females show 0.38 percent 
fraudulent transactions, and males show 0.39 percent. This negligible difference indicates that gender does not play a significant 
role in determining fraud susceptibility within the dataset. 

 

 

Figure 10: Fraud status by gender. 

 

 

Figure 11: Decision Tree Model. 
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Table 3: Confusion matrix of prediction using logistics regression. 

Prediction Not Fraud Fraud 
Not Fraud 158268 7804 

Fraud 150 494 

The Logistic Regression model (Table 3) achieved a reasonable recall (76.7%), indicating that it was able to capture a majority of 
fraudulent transactions. However, this came at the cost of precision (5.95%), meaning that the vast majority of flagged transactions 
were actually false positives. This imbalance leads to a relatively low F1 score, reflecting poor trade-off between precision and 
recall. The overall accuracy (95.3%) and specificity (95.3%) appear high but are inflated by the overwhelming number of legitimate 
transactions in the dataset. From a fraud detection standpoint, while the model successfully identifies most fraud cases, the high 
false alarm rate reduces its practical utility, as it would burden investigators with a large volume of false alerts. 

 

Table 4: Confusion matrix of prediction using Random Forest. 

Prediction Not Fraud Fraud 
Not Fraud 165992 80 

Fraud 353 291 

The Random Forest model achieved (Table 4) very high accuracy (99.74%) and excellent specificity (99.95%), confirming its strong 
performance in correctly identifying legitimate transactions. Precision was also relatively high (78.5%), meaning that most 
transactions classified as fraudulent were indeed fraud. However, the recall rate (45.2%) indicates that more than half of 
fraudulent cases were missed, limiting the model’s overall effectiveness in fraud detection. The F1 score (0.58) reflects this 
imbalance, showing moderate trade-off between precision and recall. In practice, Random Forest reduces false positives and 
ensures reliable fraud alerts, but its low sensitivity highlights the need for enhancements, such as threshold adjustments or 
ensemble combinations, to improve the detection rate of fraud cases. 

 

Table 5: Confusion matrix of prediction using Decision Tree. 

Prediction Not Fraud Fraud 
Not Fraud 165966 106 

Fraud 335 309 

The Decision Tree model achieved (Table 5) a high overall accuracy (99.73%) and near-perfect specificity (99.94%), indicating 
strong reliability in classifying legitimate transactions. Precision (74.5%) was also high, meaning that the majority of flagged fraud 
cases were indeed fraudulent. However, recall was relatively low (48.0%), suggesting that more than half of actual fraudulent cases 
were missed. This trade-off is reflected in the F1 score (0.58), which highlights limited balance between precision and recall. From 
a fraud detection perspective, the model is conservative, producing few false alarms but at the expense of missing a substantial 
number of fraudulent transactions. While this makes it efficient in reducing investigation workload, its sensitivity requires 
improvement for deployment in high-stakes financial environments where detecting fraud is critical. 

 

Table 6: Confusion matrix of prediction using KNN. 

Prediction Not Fraud Fraud 
Not Fraud 165960 112 

Fraud 343 301 

The KNN model achieved a high accuracy (99.73%) and strong specificity (99.93%), showing that it is highly effective at classifying 
legitimate transactions. Precision was satisfactory (72.9%), indicating that most of the fraud predictions corresponded to actual 
fraud cases. However, recall remained limited (46.7%), meaning that more than half of fraudulent transactions were overlooked. 
This imbalance is reflected in the F1 score (0.57), which suggests only moderate performance in balancing false positives and false 
negatives. While KNN offers reliable precision and very low false alarm rates, its relatively low sensitivity limits its effectiveness 
for fraud detection, where missing fraudulent activity can be costly. 
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Table 7: Confusion matrix of prediction using the XGBoost. 

Prediction Not Fraud Fraud 
Not Fraud 165994 78 

Fraud 391 253 

The XGBoost model achieved (Table 7) very high accuracy (99.72%) and excellent specificity (99.95%), demonstrating strong 
reliability in correctly classifying legitimate transactions. Its precision (76.4%) was strong, suggesting that most fraud predictions 
corresponded to true fraud cases. However, recall was notably low (39.3%), meaning that the majority of fraudulent transactions 
were missed. Consequently, the F1 score (0.52) reflects limited balance between precision and recall. While XGBoost minimizes 
false alarms and ensures reliable fraud predictions, its weak sensitivity limits its effectiveness in detecting fraud comprehensively. 
Improvements through threshold adjustment, feature engineering, or hybrid ensemble integration may help enhance recall while 
retaining precision. 

 

Table 8: Confusion matrix of prediction using the Voting Classifier. 

Prediction Not Fraud Fraud 
Not Fraud 165942 130 

Fraud 308 336 

The ensemble Voting Classifier (Table 8) provided the most balanced results, with precision (72.1%) and recall (52.2%) yielding 
an F1 score (0.61) higher than any individual model, and an AUC of 0.91 reflecting strong discriminatory ability. While no single 
model achieved both high precision and high recall simultaneously, the Voting Classifier offered the best compromise between 
reducing false positives and capturing fraudulent transactions. Overall, the findings suggest that ensemble methods may provide 
more robust fraud detection performance compared to single classifiers, though improvements in recall remain essential for 
practical deployment in fraud-sensitive financial systems. 

 

Table 9: Comparing the models’ performances. 

Model Accuracy Precision  Recall  Specificity  F1 Score 
Logistic Regression 95.23 5.95 76.71 95.3 0.1105 
Decision Tree 99.74 74.46 47.98 99.94 0.5836 
Random Forest 99.74 78.44 45.19 99.95 0.5734 
XGBoost 99.72 76.44 39.29 99.95 0.519 
KNN 99.73 72.88 46.74 99.93 0.5695 
Voting Classifier 99.74 72.1 52.17 99.92 0.6054 

(Table 9) Logistic Regression achieved the highest recall (76.71%), meaning it detected most fraud cases, but its precision was very 
low (5.95%), leading to many false alarms. Random Forest and XGBoost delivered strong precision (around 76–78%) and excellent 
AUC scores, but their recall was weak (39–45%), so many fraud cases were missed. KNN offered moderate balance but did not 
outperform the ensembles. The Voting Classifier achieved the best overall trade-off, with good precision (72.1%), improved recall 
(52.17%), and the highest F1 score (0.6054), making it the most effective and reliable model for fraud detection. 

This ROC curve comparison (Figure 12) shows that XGBoost (AUC = 0.986) and Random Forest (AUC = 0.959) achieved the best 
overall performance in distinguishing fraud from non-fraud. The Decision Tree (AUC = 0.914) and Voting Classifier (AUC = 0.913) 
also performed well, while KNN (AUC = 0.847) and especially Logistic Regression (AUC = 0.837) lagged behind. Overall, ensemble 
and tree-based models demonstrated stronger discriminatory power than simpler models. 

 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 2407 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons ADribution License 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

Figure 12. ROC curve comparison of six models. 

 

5. Discussion 

The comparative evaluation of six machine learning models for fraud detection demonstrates that while overall accuracy and 
specificity were consistently high, substantial trade-offs exist between precision and recall. Logistic Regression achieved the 
highest recall (76.71%), capturing the majority of fraudulent transactions, but its precision was extremely low (5.95%), resulting 
in a large number of false positives. This outcome aligns with prior research that identified Logistic Regression as sensitive but 
prone to over-flagging in imbalanced datasets [41]. 

Tree-based models, including Decision Tree, Random Forest, and XGBoost, performed strongly in terms of precision (74–78%) 
and specificity (>99.9%), ensuring that flagged fraud cases were highly reliable. However, recall values for these models (39–48%) 
were substantially lower, meaning many fraudulent cases were missed. Similar findings have been reported in earlier studies, 
where ensemble tree-based methods showed high discriminatory power but struggled with sensitivity due to class imbalance [41], 
[42]. Notably, XGBoost achieved the highest AUC (0.9859), confirming its superior ability to separate fraudulent and legitimate 
classes, consistent with previous work highlighting its robustness in fraud detection and imbalanced classification problems [43]. 

KNN delivered moderately balanced results, with precision of 72.88% and recall of 46.74%, but it did not surpass ensemble 
methods. Prior literature has noted that distance-based models like KNN are less effective when feature distributions between 
fraud and non-fraud overlap significantly [44]. 

The Voting Classifier achieved the most balanced results, with precision of 72.1%, recall of 52.17%, and the highest F1 score 
(0.6054). Its performance underscores the effectiveness of ensemble strategies in leveraging the strengths of multiple base 
classifiers to mitigate the precision–recall trade-off. Previous research has similarly emphasized that hybrid or ensemble 
approaches outperform single classifiers in fraud detection tasks [45]. Furthermore, the ROC and Precision–Recall curve analyses 
reinforce these findings. While XGBoost and Random Forest achieved superior ROC-AUC values, the Voting Classifier 
demonstrated stronger PR-AUC performance, confirming its suitability for highly imbalanced fraud detection scenarios where 
precision–recall trade-offs are more informative [45]. 

From a practical perspective, these results highlight the need to balance false positives and false negatives in fraud detection 
systems. Excessive false positives, as observed with Logistic Regression, increase operational costs and reduce system efficiency, 
while high false negatives, as observed in tree-based models, pose greater financial and reputational risks. The Voting Classifier 
provides the most effective balance, but improvements in recall remain critical for real-world deployment. Future work should 
explore cost-sensitive learning [46], threshold optimization [44], and hybrid ensemble frameworks to further enhance sensitivity 
while maintaining strong precision. 
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6. Conclusion 

This study evaluated six machine learning models—Logistic Regression, Decision Tree, Random Forest, XGBoost, KNN, and a 
Voting Classifier—for fraud detection under conditions of extreme class imbalance. The results demonstrate that while all models 
achieved high accuracy and specificity, significant trade-offs exist between precision and recall. Logistic Regression provided the 
highest recall, consistent with prior studies that highlight its sensitivity on imbalanced datasets [33], but at the expense of 
precision, producing excessive false positives. In contrast, Random Forest and XGBoost achieved excellent precision and the 
strongest ROC-AUC values, in line with earlier findings on the robustness of ensemble tree-based approaches [34], [35], but 
suffered from low recall, leaving many fraud cases undetected. The Voting Classifier emerged as the most balanced model, 
achieving the highest F1 score and competitive PR-AUC, thereby offering the best compromise between detecting fraud and 
minimizing false alarms. This supports previous research emphasizing the advantage of ensemble frameworks in fraud detection 
tasks [42], [43]. From a practical standpoint, the findings underline the need to prioritize recall, as undetected fraud typically 
imposes greater financial and reputational costs than false positives [45]. Future work should focus on enhancing recall through 
cost-sensitive learning [46], threshold optimization, and hybrid ensemble strategies [44], which have been shown to strengthen 
model sensitivity without severely compromising precision. In conclusion, while no single model dominates across all metrics, 
ensemble-based approaches, particularly the Voting Classifier, provide the most reliable balance and hold strong potential for 
real-world deployment in fraud detection systems. 

Future Work  

Future research should focus on improving recall through cost-sensitive learning and threshold tuning, while keeping false 
positives manageable. Hybrid ensemble and deep learning methods can help capture more complex fraud patterns. Incorporating 
temporal modelling and real-time systems will make detection more adaptive, and explainable AI will enhance trust and 
compliance. 
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