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The growing dependence on machine learning and deep learning models that are trained on 

sensitive user data has brought about important privacy issues that require strong solutions to 

prevent the disclosure of personal data. Differential Privacy (DP) has become a crucial technique 

for anonymizing individuals to prevent adversaries from identifying them from datasets.  

However, in distributed learning scenarios such as federated learning, the need for private and 

secure computation is even more critical. However, while DP approaches are rigorous from the 

privacy standpoint, their realization in practical systems is not always straightforward, especially 

for large and complex models such as deep neural networks. Such issues often result in a trade-

off between the accuracy of the model and the computational cost, which limits the usability of 

DP in practical settings. This review aims to survey the usage of DP in deep learning and 

federated learning frameworks for the purpose of protecting personal data by adding noise to 

date models. The study reviews the core of DP, the probability distributions (Gaussian and 

Laplace) and how they are used in practice to bridge the gap between the theoretical and the real 

world. The comparison also brings out the major trends in privacy, accuracy, and robustness and 

reveals some major shortcomings in the ability to maintain model performance while achieving 

a high level of privacy. Furthermore, it discusses the problem of extending the DP concept to 

work with large datasets and how to control the level of noise such that it does not compromise 

the predictive capability of the model. This paper gives a detailed survey of the use of DP in 

improving the privacy of deep learning and the areas that need to be addressed for better 

implementation in challenging learning environments. 

Keywords: Differential Privacy, Deep Learning, Federated Learning, Privacy Protection, Model 

Accuracy. 

 

1. INTRODUCTION 

Machine learning (ML), especially deep learning (DL), often uses large amounts of personal data for purposes like 

finance and healthcare. However, many of these systems need access to sensitive information, raising privacy 

concerns. In traditional ML systems, data is usually stored in central databases, which makes it vulnerable to leaks 

and unauthorized access. Distributed systems like federated learning reduce some privacy risks by allowing data to 

stay with users, but they still combine updates from multiple users, which can expose private information [1]. 

Protecting data privacy is now a key focus for researchers and professionals, both during the training of ML models 

and when making predictions. Differential privacy is an effective solution to these issues. It works by ensuring that 

adding or removing a single person's data from a dataset has little to no impact on the model's results [2]. This 

prevents attackers from figuring out specific details about individuals, even if they have access to the model's outputs 

or internal parameters. 
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DP is becoming a widely used method for privacy protection in both distributed systems like federated learning and 

traditional centralized systems. Its simple yet powerful guarantee makes it an essential tool for privacy-preserving 

machine learning. 

Importance of Differential Privacy 

Differential privacy is a mathematical method designed to ensure privacy by limiting how much an individual’s data 

can influence the outcome of a model. It works by adding carefully calibrated noise to the model's computations, 

making it impossible to identify specific data points in the results. This ensures that attackers cannot extract 

information about individual users or reverse-engineer the data, as no single data point has a significant impact on 

the model's predictions [3]. 

Beyond protecting individual privacy, DP plays a critical role in fields like finance, healthcare and autonomous 

vehicles, where secure data sharing is essential. By protecting privacy, DP encourages data owners to share their 

information, leading to more accurate models and better predictions. Additionally, DP enables models to be trained 

directly on user devices without transferring sensitive data to a central server. This decentralized approach, common 

in federated learning, adds another layer of protection, making it harder for malicious actors to access private data 

[4]. 

As machine learning continues to expand across industries, the demand for privacy-preserving methods like DP has 

grown significantly. Regulations such as the General Data Protection Regulation (GDPR) and the Health Insurance 

Portability and Accountability Act (HIPAA) push organizations to adopt privacy-conscious approaches, helping build 

trust in machine learning systems [5]. DP has been extensively researched and applied in various areas, including 

medical data analysis and recommendation systems, proving its effectiveness in both theory and practice [6]. 

Differential privacy  offers robust privacy guarantees, striking an essential balance between protecting user data and 

ensuring the effectiveness of machine learning models. With ongoing research focused on improving its scalability, 

efficiency, and applicability across various tasks, DP is poised to be a fundamental tool in advancing privacy in 

artificial intelligence and machine learning. The following sections of this article provides a comprehensive 

exploration of DP, examining its key concepts and diverse applications in deep learning. Section 2 offers an overview 

of DP, highlighting its foundational principles and critical role in safeguarding privacy during data analysis. Section 

3 explores DP’s application in deep learning, emphasizing its importance in maintaining privacy during the training 

of complex models. Section 4 shifts focus to DP in federated learning, demonstrating its capacity to secure data 

privacy in decentralized settings. Section 5 examines key probability distributions used in DP, including Gaussian, 

Laplace, and Poisson distributions, which are vital for introducing noise and preserving privacy. In Section 6, we 

compare various DP variants, discussing their strengths, limitations, and optimal use cases. Section 7 delves into the 

theoretical and practical gaps within DP, addressing challenges such as the balance between privacy and utility and 

the need for enhanced methodologies. Lastly, Section 8 provides an outlook on the future of DP research, aiming to 

refine its effectiveness and expand its applications in privacy-preserving machine learning models. 

2. UNDERSTANDING DIFFERENTIAL PRIVACY 

Definition and Mathematical Foundations 

DP is a mathematical framework designed to guarantee that a person’s privacy is protected whenever their data is 

included in a dataset used for statistical analysis or machine learning operations. DP is essentially built on the concept 

that it assures, to a great extent, that the inclusion or deletion of a single data point inside a dataset does not materially 

affect the conclusion of a computation or analysis. We use a parameter called "epsilon" (ε) to measure the degree of 

privacy protection; this value controls the additional noise level to the results. Lowering the value of ε indicates that 

the privacy guarantees are more robust; nevertheless, it usually results in less accurate results [7]. The algorithm 

introduces a small amount of randomness, commonly known as noise, to ensure privacy protection while still 

allowing for effective analysis of the entire dataset. 

It means that when using a random method M, the chance of getting a result in a set S should not change much if we 

use two datasets D and D′ that are almost the same, except for one entry. 
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𝑃𝑟[ 𝑀(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 ⋅ 𝑃𝑟[ 𝑀(𝐷′) ∈ 𝑆] 

where, ε represents the privacy budget, which controls the balance between privacy and utility. Smaller values of ε 

increase the noise, enhancing privacy protection. However, larger values of ε reduce the noise level but also increase 

the risk of exposing certain data points [8]. 

Mechanisms for Achieving DP 

Several distinct techniques have been developed to achieve DP; each of them is ideal for a particular kind of analysis 

or machine learning model. The Laplace mechanism is among the most regularly used ones among them. It is a 

mechanism adding noise from the Laplace distribution to the query results so satisfying the DP criteria. The Laplace 

mechanism performs wonderfully for basic requirements such computation of average or sum. More advanced 

machine learning models demand additional procedures such as the Gaussian or exponential approaches. Each of 

these systems has specific advantages and applications [9]. 

 

Figure 1: Differential Privacy Process in Mobile Edge Computing [10] 

Moreover, Differentially Private Stochastic Gradient Descent (DP-SGD), routinely applied in the training stage of 

machine learning models under DP. DP-SGD is a modification on the respected stochastic gradient descent (SGD) 

technique. It introduces noise to the gradients all along the optimisation process. This ensures that the model does 

not leak important data when it changes. This approach is highly effective in training deep neural networks while 

preserving differential privacy. [11]. 

Noise Mechanisms (Gaussian, Laplace) 

The Laplace Mechanism adds noise taken from the Laplace distribution, defined as: 

𝐿𝑎𝑝(𝜆) =
1

2𝜆
𝑒−|𝑥|/𝜆 

where λ is the scale parameter, determined by the privacy budget and sensitivity Δf of the function: 

λ =  
𝛥𝑓

𝜀
 

This mechanism is particularly effective in scenarios requiring strict -Differential Privacy. The Laplace noise is 

symmetric and centered around zero, making it ideal for applications involving simple counting queries and discrete 

datasets [12], [13]. 

The Gaussian Mechanism adds noise from a Gaussian (normal) distribution: 

𝑁(0, 𝜎2) 

Where σ is the standard deviation, chosen based on the privacy parameter (ε,δ) -DP and function sensitivity Δf: 
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𝜎 =
𝛥𝑓√2 ln(1.25) /𝛿

𝜀
 

Unlike the Laplace Mechanism, the Gaussian Mechanism satisfies (ε, δ) -Differential Privacy, making it suitable for 

applications requiring relaxed privacy constraints with better utility. This approach is widely used in machine 

learning and large-scale data analytics where stricter DP guarantees may reduce accuracy. Table 1 summarizes the 

core differences between the Laplace and Gaussian mechanisms in terms of their privacy guarantees, noise 

distribution, and the best use cases for each. 

Table 1: Differences between the Laplace and Gaussian mechanisms 

Mechanism Privacy 

Guarantee 
Noise Distribution Best Use Cases 

Laplace ε -DP Laplace (heavier tails) 
Counting queries, 

histogram releases  

Gaussian (ε, δ) -DP Normal (lighter tails) 

Machine learning, 

large-scale data 

analysis 

 

Laplace noise is more effective for small-scale discrete queries, whereas Gaussian noise provides better utility for 

complex computations in high-dimensional datasets. 

The choice between the Laplace and Gaussian mechanisms depends on the privacy requirements, query sensitivity, 

and desired balance between privacy and accuracy. The Laplace Mechanism is suitable for strict DP requirements, 

while the Gaussian Mechanism provides flexibility in high-dimensional analyses [12], [13]. 

3. DP IN DEEP LEARNING 

Application of DP in Neural Networks 

DP applied in DL has proved about sensitive data to be a helpful technique for protecting individuals’ privacy during 

the training deep learning process as seen in table 2. Deep learning models such neural networks depend on a lot of 

data to attain strong performance, which creates major privacy concerns. DP approaches these models using largely 

the injection of noise during the training phase. This is done to guarantee that the output of the model is not much 

affected by individual data points, hence restrict dissemination of private data. 

Table 2: Application of DP in Neural Networks 

Application Description 
Key Techniques/ 

Mechanisms 
Challenges 

Impact on 

Model 

Performance 

Training Deep 

Neural 

Networks 

(DNNs)  

Protecting 

individual data 

points while 

training deep 

models, such as 

CNNs, RNNs, 

and MLPs. 

DP-SGD (Stochastic Gradient 

Descent), Gradient Noise 

Addition, Batch Noise Addition 

High 

computational 

cost, loss of model 

accuracy due to 

noise, complex 

hyperparameter 

tuning 

Moderate 

decrease in 

accuracy due to 

noise addition 

Image 

Classification 

with DP  

Ensuring 

privacy in image 

classification 

tasks with deep 

Noise injection into gradients 

during backpropagation (e.g., 

Gaussian noise), clipping 

gradients 

Risk of overfitting 

due to noisy 

gradients, 

Small drop in 

accuracy 

compared to 
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learning models 

like CNNs. 

sensitivity of 

images to noise 

non-privatized 

models 

Privacy-

Preserving 

Transfer 

Learning  

Applying DP to 

transfer 

learning 

models, 

ensuring 

privacy during 

pre-trained 

model fine-

tuning. 

Differentially private fine-

tuning, DP-SGD applied to 

transfer learning stages 

Balancing between 

fine-tuning 

accuracy and 

privacy 

requirements 

Lower accuracy 

in fine-tuning 

stages, but 

maintains 

privacy 

guarantee 

Federated 

Learning with 

DP  

Use of DP to 

protect user 

data in 

federated 

learning 

settings where 

data is 

decentralized 

across devices. 

DP-SGD combined with 

federated learning frameworks, 

noise injection in local gradient 

computation 

Challenges with 

heterogeneous 

data, 

communication 

overhead, ensuring 

privacy across 

multiple devices 

Higher privacy, 

but potentially 

slower 

convergence and 

model 

performance 

Adversarial 

Defense in 

Neural 

Networks  

Using DP to 

mitigate 

adversarial 

attacks while 

training neural 

networks to be 

resistant to such 

threats. 

DP combined with adversarial 

training, adding noise to the 

loss function and gradients to 

obfuscate adversarial input 

Balancing 

robustness to 

adversarial attacks 

and maintaining 

privacy without 

compromising 

efficiency 

Improved 

resistance to 

adversarial 

attacks but at the 

cost of 

performance 

Privacy in 

Medical Data 

Analysis  

Protecting 

sensitive 

medical data 

while training 

neural networks 

on large 

healthcare 

datasets. 

DP-based data augmentation, 

applying noise to model 

parameters during training on 

medical images or health 

records 

Ensuring clinical 

accuracy while 

maintaining strict 

privacy constraints 

Lower accuracy, 

but ensures 

privacy of 

sensitive medical 

information 

Natural 

Language 

Processing 

(NLP)  

Applying DP to 

protect user 

privacy in NLP 

tasks such as 

sentiment 

analysis, 

machine 

translation, etc. 

DP-SGD for word embeddings, 

noise addition during gradient 

descent on text data 

High 

computational 

load, trade-off 

between 

preserving 

linguistic features 

and privacy 

Reduced 

performance on 

NLP tasks with 

significant noise 

filtering 

 

DP-SGD is among the most often utilised approaches for DP application in artificial intelligence. Adding noise into 

the gradient updates at each training iteration is the research of the ways this approach changes the traditional SGD 
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process. the research calibrates the noise considering the gradients of the sensitivity of the model and the intended 

degree of privacy (ε). Moreover, the use of noise guarantees that the gradients will not disclose too much information 

about any the research data point, therefore maintaining the personal privacy of every individual. Apart from being 

rather beneficial for training deep neural networks, DP-SGD has been employed in various deep learning projects 

aiming at user privacy protection, including image classification and natural language processing chores [14]. 

Moreover, DP can be extended to additional parts of deep learning, including convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), by using methods comparable to those utilised in artificial neural networks. 

DP techniques can be applied, for photo categorisation, on CNN convolutional layers under training. This is done to 

make sure that personal privacy protection is not compromised by the gradients produced from particular training 

data. Similarly, DP methods are used into RNN backpropagation mechanism used for sequence prediction or natural 

language problems. This helps the research control privacy while yet allowing the learning from large databases. 

Included into these models, distributed processing (DP) helps the research to maintain privacy without appreciably 

compromising the performance of the model [15]. 

Challenges in Training Deep Models under DP 

Even if differential privacy presents robust privacy protection, its application to deep learning models creates various 

difficulties. Among the most important problems is the tradeoff that has to be done between privacy and model 

performance. Although introducing noise to the gradients over the training process is necessary to protect users' 

privacy, doing so can lead to a lower model accuracy. Deep learning is a particularly challenging issue since often 

major results depend on great accuracy. A low ε value, that is, a low degree of noise, results in a more marked 

performance loss in the model. This is what is needed to guarantee high degree of privacy. the research of the most 

crucial challenges in the DP application process to deep learning models is to find the ideal balance between the 

incorporation of noise and the usability of the model [16]. 

The scalability of deep learning techniques using DP offers even another difficulty to be solved. Sometimes during 

deep neural network training processing large volumes of data and running millions of computations is necessary. 

Expanding these techniques to big datasets or models is more challenging since the insertion of noise into the 

research of these computations increases the memory use and the processing cost. Further difficult is the quest for 

suitable noise distribution and efficient scaling of it for large-scale training of deep learning. For example, depending 

on the size of the model, the size of the dataset, and the privacy budget, the quantity of noise must be continuously 

modified using DP-SGD. This seriously complicates the training process and requires careful customisation [17]. 

Another difficulty to be addressed is the generalisation potential of models learnt using DP. Deep learning models 

are supposed to effectively extend from training data to data not seen before, so the noise generated by DP could 

hamper this capacity to generalise. DP could make it more difficult for the model to grasp complicated data patterns 

via distortion of the gradients with noise. This can thus produce either overfitting or underfitting of the model. 

Regarding jobs needing a high degree of accuracy, such as autonomous driving or medical diagnostics, this is highly 

important since even little changes in model performance might have major consequences. Ensuring that the DP 

approaches have no meaningful effect on the generalising capacity of the model still presents a difficult task [18]. 

Thus, DP generates various difficulties in terms of model validity, scalability, and generality even if it offers a good 

framework for preserving personal privacy in deep learning. More research on optimising DP mechanisms for deep 

models, combining protection of users' privacy with maximising model performance, and developing new approaches 

to scale DP for big, complex networks is critically essential if we are to climb beyond these problems. 

4. DP IN FEDERATED LEARNING 

Federated Learning Overview 

Federated learning is a decentralised paradigm used in machine learning. Under this approach, models are trained 

simultaneously across numerous devices or edge nodes and sensitive data is not centralised. Federated learning lets 

the model be trained locally on the research using the data saved on every device. This is not the case with the 

traditional method raw data is transferred to a central server for processing needs. After local training is finished, 

only the changes to the model, like gradients, are sent to the central server. Here the updates are compiled on the 
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central server into a worldwide model. With this approach, the research can teach machine learning models on a 

large volume of scattered data without breaching any data security or privacy [19]. 

Federated learning has gained significant attention for its ability to handle sensitive data, such as medical records, 

financial information, and personal data on mobile devices, while preserving privacy. Although advanced machine 

learning models are still evolving, federated learning helps address privacy concerns by keeping data localized and 

limiting model updates. However, ensuring privacy when aggregating model updates across multiple devices remains 

a challenge. One of the key techniques for protecting individual privacy in federated learning is differential privacy 

[20]. 

Privacy Mechanisms in Federated Learning 

Privacy concerns arise in federated learning because model updates may unintentionally expose sensitive data. This 

poses risks, as adversaries could analyze aggregated updates to infer individual information. Since the model is 

trained across multiple devices, each holding potentially sensitive data, safeguarding privacy is crucial. To mitigate 

these risks, federated learning systems incorporate differential privacy and other privacy-preserving techniques. 

Strongly related to DP, frequent privacy strategy applied in federated learning is incorporating noise to model 

updates. Every device produces noise to the computed gradients during training before the local model changes are 

sent to the central server. This takes place before the training session. Usually generated from a Gaussian or Laplace 

distribution, this noise guarantees that the aggregated statistical model is not substantially affected by individual 

data points. Moreover, considered in calibration of the degree of noise are the intended level of privacy (ε) and the 

parameter sensitivity of the model. However, federated learning can use secure aggregation to guarantee that, even 

in the instance that any of the model updates are stolen, the privacy of the devices involved in the process is not 

infringed [21]. 

Homomorphic encryption and secure multi-party computation (SMPC) are two powerful techniques that, when 

combined with differential privacy, further enhance the security and privacy of federated learning systems. These 

methods enable a central server to aggregate model updates without directly accessing or reviewing individual data, 

preventing the exposure of sensitive information. By ensuring that raw data remains encrypted or distributed across 

multiple parties, they provide strong privacy safeguards. These techniques are particularly valuable in highly sensitive 

fields, such as medical data analysis and financial transactions, where privacy is critical. While they offer an 

additional layer of security, they often come with increased computational demands, requiring efficient 

implementation to balance privacy with performance [22]. 

How DP Protects Federated Data 

Differential privacy is one of the most powerful techniques for safeguarding user privacy in federated learning. It 

enhances security by adding carefully calibrated noise to local model updates before they are transmitted to the 

central server. Federated learning, a specialized area of machine learning, enables multiple devices to collaboratively 

train a model without sharing their raw data. By integrating DP, even if an adversary gains access to the aggregated 

updates, they will be unable to extract precise or sensitive information about individual users. The level of noise 

introduced is determined by the model’s sensitivity and the privacy budget (ε), ensuring a balance between 

maintaining strong privacy protection and enabling effective model training. 

Under the context of federated learning with DP, the privacy budget is under control over numerous training runs. 

Since every cycle of federated learning comprises numerous devices contributing their model updates, DP ensures 

the total impact of the changes does not exceed the privacy limit. However, the full privacy guarantee is under control 

by the overall noise produced throughout all rounds, which the budget for privacy sets. The device creates noise at 

every round, but this level governs the general privacy protection. When numerous rounds of model updates are 

under review, this cumulative noise approach serves to lower the capacity of an adversary to reverse-engineer crucial 

information [23]. This is true even in cases of multiple rounds of model upgrades. 

Moreover, federated learning can leverage Local Differential Privacy (LDP) variance of DP. This local noise addition 

offers an additional degree of privacy since the central server can only review the noisy copies of the updates, not 
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access the raw updates. Sometimes widely scattered devices might not fully trust the central server, like in mobile 

apps or Internet of Things (IoT) networks [24]. These kinds of situations demand precisely this kind of approach. 

DP in federated learning helps to protect personal data from public access while the central server can continue to 

compile pertinent updates to enhance the overall model. A prominent strategy for privacy-preserving machine 

learning is combining DP with federated learning. This method ensure that personal data is never exposed while still 

enabling the development of robust and accurate models from many sources. 

5. KEY PROBABILITY DISTRIBUTIONS IN DP 

Gaussian Distribution 

Out of the many probability distributions discussed for differential privacy, the Gaussian distribution also known as 

the normal distribution is one of the most popular. It is mainly used in the noise injection process to achieve privacy 

in machine learning models. Differential privacy adds noise to the gradients or parameters of the model during 

training, which means that the contribution of a single data sample is reduced but the overall accuracy of the model 

is maintained. The Gaussian distribution is the most popular distribution due to its simplicity and mathematical 

analyzability and therefore, it is frequently employed for privacy in machine learning. 

Gaussian noise enables the application of the Gaussian mechanism for differential privacy . The mean of this noise is 

zero and the variance is governed by the privacy budget (ε). This variance is a function of the sensitivity of the function 

being protected. To this end, the method ensures privacy by ensuring that no single data point drastically affects the 

model output. The amount of noise that must be added to a function increases with its sensitivity since the amount 

of noise is proportional to sensitivity. The Gaussian mechanism is most appropriate when there is a great need to 

achieve a correct trade-off between the privacy and accuracy of the model because the noise can be made to fit the 

calculation precisely [25]. This adaptability makes the Gaussian mechanism very effective. 

Controlling the total privacy budget regulates the total privacy leakage as the Gaussian distribution is usable in 

differential privacy and is composable across multiple computations. This is one of the main reasons for employing 

the Gaussian distribution. Additionally, it has some other nice properties, for instance, the sub-Gaussian noise 

property. These properties are very important when dealing with continuous data and when the magnitude of privacy 

loss must be accurately determined to achieve a good trade-off between privacy and utility. 

Laplace Distribution 

Another used probability distribution in DP is the Laplace distribution. Techniques requiring more strict privacy 

guarantees find particular utility for this distribution. Usually, the Laplace mechanism is applied in situations when 

the function has rather great sensitivity. This also applies in handling discrete data. On the other hand, since its tails 

are thicker than those of the Gaussian distribution, the Laplace distribution is more sensitive to extreme outliers. The 

Gaussian distribution has noticeably narrower tails. Since it gives an opportunity to attain the target, this 

characteristic could be beneficial when the objective is to provide greater privacy safeguards under conditions when 

outliers in the data may otherwise expose too much about individual data points. 

Noise emanating from a Laplace distribution is added to the Laplace mechanism. The mean of this distribution is 

zero; the desired degree of privacy (ε) and the sensitivity of the function help to determine the scaling coefficient. 

When exact findings are less important than privacy, as in data searches, the Laplace approach is frequently utilised 

[26]. This is so since the Laplace mechanism prioritises privacy above precision. 

Laplace distribution in differential privacy is that it simplifies the mathematical analysis, making it easier to 

implement in real-world applications. The Laplace mechanism is particularly useful in federated learning and 

distributed systems, as it meets local differential privacy requirements. In such systems, noise is added directly to 

individual data points before aggregation, ensuring privacy at the local level while still allowing useful insights to be 

extracted from the data. 

Other Distributions and Use Cases 
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Two most typically used distributions in differential privacy are the Gaussian and Laplace ones. Still, numerous 

different probability distributions can also be applied based on the particular privacy requirements and the 

characteristics of the data under control. These distributions offer flexibility for guarantees of privacy for certain 

applications of machine learning. 

a. Exponential Distribution: The exponential distribution is commonly used in modeling waiting times and 

skewed data because it naturally fits such scenarios. In differential privacy, it is particularly useful for adding 

noise in situations where events occur at a steady rate, such as count data or event-based data. As an 

extension of the Laplace mechanism, the exponential mechanism is designed for non-symmetric data. It 

offers another way to introduce noise while preserving privacy, making it a valuable tool for handling 

sensitive information in various data-driven applications [27]. 

b. Binomial Distribution: The binomial distribution is well-suited for discrete data with binary outcomes, 

such as success or failure. In differential privacy, it can be used in mechanisms designed for tasks like 

classification or binary outcome prediction, ensuring that the overall model remains accurate while 

protecting individual data privacy. For example, in healthcare data analysis, the binomial approach can help 

safeguard patient privacy while still identifying patterns in sensitive data. If the outcomes are binary—such 

as whether a person has an illness or not—this method allows useful insights to be extracted without exposing 

personal information [28]. 

c. Geometric Distribution: The geometric distribution models the number of trials needed before a 

successful outcome occurs in a series of independent Bernoulli experiments. In the context of differential 

privacy, it is particularly useful for failure-time data or count-based statistics. This distribution ensures 

privacy while allowing researchers to focus on counting occurrences until a specific event or outcome is 

reached. It provides a practical approach for releasing noisy data while maintaining privacy, making it ideal 

for situations where the goal is to track events or outcomes over time without exposing sensitive information. 

[29]. 

d. Poisson Distribution: The Poisson distribution is widely used to model the frequency of events occurring 

within a specific time period or area. In fields like traffic monitoring or telecommunications, it is especially 

useful for handling rare events or small volumes of data. In the context of differential privacy, the Poisson 

process can be applied to introduce noise into collected data, particularly in environments where events are 

infrequent and the data may not be evenly distributed. This ensures privacy while allowing for accurate 

analysis in situations where occurrences are sparse or irregular [30]. 

The choice of distribution in differential privacy depends on the specific application, the type of data, and privacy 

requirements. Each distribution has its own characteristics and trade-offs, so the selection of the most appropriate 

one is influenced by these factors. In the context of deep learning, federated learning, and other machine learning 

applications, the right distribution can help maintain valuable utility while also protecting user privacy [31]. By 

carefully selecting the distribution, researchers can achieve a balance that ensures both privacy and effective 

performance. 

6. COMPARING DP VARIANTS 

Differentially Private Stochastic Gradient Descent  

One of the most commonly used optimization techniques for training machine learning models with differential 

privacy is Differentially Private Stochastic Gradient Descent. This method of using gradient descent with perturbed 

gradients to train models is an extension of the standard stochastic gradient descent approach.  DP-SGD works by 

first clipping the gradients of each mini-batch to a predefined norm. Then noise from a Gaussian distribution is added 

to the clipped gradients and the model parameters are updated. This guarantees that no single data point impacts 

the model significantly, thus protecting the privacy of individuals. 

DP-SGD is typically formulated with two key parameters to describe the privacy guarantee of the algorithm: ε, the 

privacy budget, which indicates the level of privacy; and δ (delta), which is the probability of a privacy breach. DP-

SGD is a strong privacy preserving training method and can be used to train deep learning models on sensitive data 
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including healthcare, financial, and personal data. However, the noise added to the gradients increases the cost, and 

thus there is a trade-off between privacy and accuracy. With complex datasets or high dimensional models, these 

trade-offs may become more apparent, leading to a decline in the accuracy of the model [32]. 

DP-SGD has two major advantages: It has a very sound theoretical basis and it is easy to implement. It can be used 

on a wide range of models and datasets, and is suitable for a variety of machine learning tasks. However, there is 

some issue with the need for much hyperparameter tuning to find the right balance between privacy and utility. 

Moreover, the noise addition and gradient clipping steps are computationally expensive and often lead to longer 

training times. 

DP-Adam and Other Optimizers 

DP-Adam is an extension of the popular Adam optimizer, which has been further improved to fulfill the DP 

requirements during the optimization process. The original Adam optimizer adapts the learning rate for each 

parameter of the model based on the first and second moments of the gradients, the mean and variance, respectively. 

Like DP-SGD, DP-Adam also adds noise to the updates and clips the gradients to a certain norm. However, the 

contribution of DP-Adam is especially significant in the learning phase since it incorporates Adam’s adaptive learning 

rate policy that assists in finding a good trade-off between privacy and optimization.   

DP-Adam is most effective when training deep neural networks, and while Adam’s flexible step-sizes can help 

converge, it also makes the network sensitive to hyperparameter adjustments and noisy gradients.  This is a major 

advantage of DP-Adam over DP-SGD, in that it is able to converge faster and perform better, especially for large 

models where the noise injected by DP-SGD can hinder training [33]. This is especially the case with large models 

that have many parameters. Furthermore, DP-Adam can better control the gradient updates with respect to changing 

gradient norms during the training process compared to a fixed learning rate.  Although there are these benefits of 

DP-Adam, it is still similar to DP-SGD in many aspects such as the privacy-accuracy trade off. The noise introduced 

in DP-Adam can still lead to severe accuracy degradation, particularly in critical applications where the noise level 

needed for privacy is relatively high.  

However, DP-Adam is more complicated than DP-SGD and has some hyperparameters that are not easy to set, which 

will increase the difficulty of training and applying models.  In addition, other optimisers including DP-SAM Grad 

and DP-LARS are variants that are proposed to address specific issues in deep learning. Some of the other challenges 

include managing large datasets and improving convergence. On the other hand, because of the complexity of the 

algorithms and the absence of studies on their performance in the privacy environment, these optimisers are not as 

popular as DP-SGD and DP-Adam [34]. 

7. THEORETICAL AND PRACTICAL GAPS IN DP 

Theory vs. Real-World Applications 

DP offers rigid theoretical assurances for individual privacy in datasets or machine learning algorithms. This method 

ensures that the result of a query or model cannot be much changed by adding or removing the research data point. 

Although DP provides guarantees theoretically, the actual efficiency of the DP systems applied in the real world still 

lags far behind. From a theoretical standpoint, it is possible to construct DP systems such that they provide a strong 

privacy protection by use of noise in a way that hides significant personal data about individuals. Still, given the 

inherent complexity of the data and models used in the real world, these systems sometimes fail to live up to 

expectations when applied in pragmatic environments. 

Datasets can be exceedingly noisy, unstructured, or high-dimensional, hence DP can be difficult to employ practically. 

This causes the system problems. Real-world applications can demand for the management of complex and 

heterogeneous data (such as images, text, and sensor data); the process of adapting domain-specific programming to 

such data formats is not always simple. Further challenging the preservation of one’s privacy and the planned model 

performance is the interaction of privacy limitations with pragmatic objectives including the necessity for quick 

processing and great accuracy [35]. 
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Further, it is crucial to emphasise that although DP provides mathematical definitions of privacy budgets (ε) and 

failure probability (δ), these values are not always easily interpretable in respect to the real-world privacy challenges 

addressed. DP’s conceptual roots are based on the assumption that everyone has privacy concerns. Meanwhile, this 

presumption could not always coincide with the privacy issues of the actual world. the research of the most crucial 

issues arising from trying to implement DP in real-world systems is the difference between theoretical models and 

actual needs. 

Accuracy vs. Privacy Trade-offs 

Managing privacy against accuracy is the research of the most important challenges DP presents. Differential privacy 

is preserved by including noise into the data or gradients during training of the model. Calculated by the parameters 

of ε and δ, the accuracy of the model directly relies on the noise level needed to obtain a specific degree of privacy. 

Higher degrees of privacy (lower ε) require more noise, so the model performs poorer even if this is essential. Deep 

learning models clearly show this trade-off since their great dimensionality and great parameter space improve their 

sensitivity to noise. 

Regarding applications used in the real world, this trade-off becomes rather important since data owners usually 

want to obtain high utility, that is, accurate forecasts or insights, while nevertheless maintaining their privacy. Privacy 

guarantees are extremely important in sensitive industries like finance and healthcare, where the data used is 

frequently rather sensitive and routinely contains personal information. Conversely, excessive noise could lead to a 

declining accuracy of the model to an unwelcome level, therefore reducing its value in real-world decision-making 

[36]. 

Adaptive noise addition and hybrid approaches combining DP with other techniques, such federated learning, two 

instances of the systems researchers have devised to compromise accuracy and privacy obligations. Conversely, the 

achievement of an ideal balance is still a subject of discussion and more study is needed to design better systems that 

give major privacy assurances while preserving accuracy to the best degree possible. 

Robustness in DP Mechanisms 

The robustness of the DP mechanisms begs another significant problem of interest. Resilient DP mechanisms are 

those which can preserve their privacy assurances against numerous challenges like noisy data, model complexity, 

and adversarial attacks. On the other hand, most of the present DP approaches find it difficult to stay robust in such 

kinds of situations. Working with large-scale datasets or advanced deep learning models could produce the extra 

noise rising unrealistically high. This makes the method useless or ineffective in terms of maintaining a fair degree 

of privacy and yet obtaining good model performance. 

The way gradient clipping and noise addition act in the presence of high-dimensional data or sparse gradients, both 

of which are prevalent in deep learning, is among the most crucial issues that has to be solved if we are to ensure 

resilience. These events can lead the DP approaches to fail in providing both privacy and accuracy in practical 

deployed applications. To aggravate the situation, theoretical guarantees on the longevity of DP techniques in 

environments with adversarial threats are lacking. Nowadays, machine learning models rely more and more on being 

sheltered from adversarial attacks, which involve the attacker skilfully changing the data or model. Sometimes the 

DP techniques could not be sufficient to provide enough defence against such attacks. 

Moreover, occurrences in the actual world may provide dynamic obstacles that make it difficult to simultaneously 

guarantee durability and privacy. Regarding federated learning or remote settings, for instance, it could be difficult 

to maintain the DP process resilience over a wide spectrum of devices or data sources. This is so since many nodes 

could have different degrees of network connectivity, processing capacity, and data quality [37]. 

Therefore, the issue of establishing that DP is robust in practice under a broad spectrum of real-world conditions 

remains persistent even if DP has shown great theoretical growth in terms of providing privacy assurances. Novel 

solutions are required to overcome these constraints and guarantee that DP methods may effectively safeguard 

privacy while maintaining robust performance across a spectrum of environments. 
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Differential privacy provides strong theoretical privacy assurances in principle; yet, bridging the gap between theory 

and practice in the real world remains a great difficulty. More study in the subject of confirming the durability of DP 

approaches in surroundings hostile, complicated, and loud is needed since the trade-off between accuracy and privacy 

still causes tremendous worry. Theoretical improvements are very essential to bridge these gaps and make DP a more 

effective and successful instrument for machine learning that respects individuals privacy [38]. 

8. CONCLUSION AND FUTURE DIRECTIONS 

Summary of Findings 

This review article has offered a comprehensive overview of differential privacy, commonly called as differentiated 

privacy, inside the paradigm of deep learning and federated learning. DP has developed as a sensible model for 

preserving machine learning privacy and data analysis integrity. Recently it has become very popular and provides 

strong theoretical guarantees that sensitive information about individual data points is secured. DP enables the 

research to obtain valuable insights from data without infringing the privacy of people by use of methods such the 

injection of controlled noise to datasets or model parameters. Although DP has rather fundamental theoretical roots, 

its implementation in actual applications presents several pragmatic difficulties. 

In the field of deep learning, the application of DP presents major challenges for the training of intricate models. 

Particularly for large-scale models with high-precision data, the injection of noise required to preserve privacy could 

have a significant impact on the simulation accuracy. Moreover, applying DP in federated learning systems presents 

a special method for privacy preservation. This method lets sensitive information be secured concurrently with 

models maybe trained remotely. On the other hand, the dynamic character of data and the heterogeneity of data 

among far-off devices typically compromise the privacy protections DP offers in such environments. 

Moreover, the trade-off between privacy and model correctness remains a prominent topic of interest even although 

DP has developed various techniques including the incorporation of Gaussian and Laplace noise. Particularly with 

regard to the guarantee of robustness against the challenges of the real world, such as adversarial attacks and noisy 

data, the DP methods obviously demand considerable improvement. Further, theoretical concepts of DP often cannot 

satisfy the requirements of real, high-dimensional datasets and privacy concerns important for specific applications. 

This implies that if we wish to have better degree of change, DP methods have to be more flexible and adaptive. 

Research Opportunities and Challenges in DP 

The application of DP to deep and federated learning opens up some significant research opportunities and problems.  

The improvement of better DP tools that can address the trade-off between privacy and model accuracy is the research 

of the most crucial directions that research should follow. Current noise addition techniques have a tendency to 

obviously reduce model performance. This can particularly be challenging in fields including healthcare, banking, 

and autonomous systems, where great precision is quite relevant. Research on adaptive noise techniques or hybrid 

privacy preserving systems that combine DP with other techniques such as homomorphic encryption or safe 

multiparty computation could be useful in reducing the effects of these concerns. Another interesting subject of the 

future research is the enhancement of the DP methods' robustness. This is because of the need to deal with noisy, 

high dimensional datasets and adversarial attacks.  Strong DP methods will be essential to guarantee that privacy 

protections are maintained even when there are very powerful attackers or in a very complex data environment. 

Furthermore, given the increasing adoption of federated learning in decentralized systems, the improvement of the 

privacy protections offered by DP in federated learning settings is a key focus of research. Solutions that enable DP 

methods to extend their coverage to multiple distributed nodes without jeopardizing performance or privacy are 

required.  Moreover, a big question still exists on the gap between theory and practice. While DP offers strong 

mathematical guarantees, these theoretical models often do not capture the richness and diversity of the data seen in 

the real world. This gap can be closed by developing DP models that are more context aware and adaptable. These 

models should be unpredictable to meet the different privacy needs of various applications.  Furthermore, more 

attention should be paid to how practically the research interprets privacy budgets (ε and δ). This is important in 

sensitive areas like healthcare and banking where the problem is rather frequent.  An area that remains relatively 

unexplored is the integration of DP with emerging machine learning paradigms.  Some of these paradigms include 
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reinforcement learning and few shot learning, which pose specific privacy risks due to limited data or continuous 

learning operations. 
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