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These new services that require enhanced capabilities like a high speed Internet like 

ultra-high-def video streaming, online gaming and cloud-based services have 

necessitated the exponential growth in the Internet demand of high-speed access to 

the Internet, which has made Fiber-to-the-Home (FTTH) networks a crucial 

infrastructure to any modern communication system. Dynamic Bandwidth 

Allocation (DBA) has been crucial in dynamic optimal utilization of resources, but 

the classical DBA techniques tend to fail on real time fluctuations of traffic and 

various Quality of service (QoS) needs. The paper introduces a distributed 

bandwidth allocation scheme that uses AI techniques and machine learning 

methods to adjust the bandwidth of FTTH-based networks to achieve the maximum 

bandwidth, lower delay, less loss of packets and more fairness in the network. The 

given strategy is to utilize the predictive analytics and machine-based decision-

making to achieve better performance in the periods of low and high network loads. 

Results of the experiment show that the AI-based DBA is much better than both 

traditional DBA and Fixed Bandwidth Allocation (FBA) algorithms in several 

important measures. In emulated situations, the AI-based model realized maximum 

throughput of 25 percent, less mean latency of 35 percent, packet loss less than 50 

percent, and fairness index values that were nearer to the ideal mark. These results 

provide a vivid image of the potential of artificial intelligence when it comes to 

changing FTTH resource administration, as well as an opportunity to create more 

versatile, successful, and user-friendly optical access networks. Not only the study 

demonstrates the validity of the application of AI to optimization bandwidth but 

also it presents a scalable solution to the future changes and developments of a 

network, such as 5G and beyond. 

Keywords: AI, Bandwidth, Fiber-to-the-Home Networks, Dynamic 

Bandwidth Allocation (DBA), and Optical Networks. 

1. Introduction   

Fiber-to-the-Home (FTTH) [1] based on Passive Optical Networks (PONs) [2] has become vital 

technology supporting multi-gigabit access, starting with GPON/EPON, and has progressed to 10G-

class systems and beyond. This evolution is driven by surging residential and fronthaul/backhaul 

demands, which in turn tighten the requirements on upstream scheduling and latency. Tutorials and 

overviews from year 2018–2020 research articles [3] show the transition toward 50G-PON 

standardization and enumerate the control/management challenges that accompany higher rates and 

denser splits.  

At the heart of PON performance [4] is dynamic bandwidth allocation (DBA), the OLT-side logic that 

assigns upstream transmission windows to ONUs under bursty, heterogeneous traffic. A survey [5] of 

GPON/EPON DBA algorithms traces classic size/priority-aware grant rules, cycle-time control, and 

fairness mechanisms, and highlights persistent trade-offs among throughput, delay, and SLA 

enforcement—foundational context for any modernization.   
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In parallel, artificial intelligence (AI) [6] and machine learning (ML) emerged across optical networking 

to handle complexity that exceeds rule-based control. [7] Surveys show AI aiding performance 

monitoring, QoT estimation, resource orchestration, and failure management—capabilities that map 

naturally onto traffic prediction and grant sizing in DBA.  

Where classical DBA reacts to instantaneous reports [8], AI opens the door to predictive and intent-

aware allocation—learning temporal patterns, recognizing multi-service priorities, and optimizing long-

horizon objectives (e.g., latency percentiles). Early cross-layer studies from this period argue that ML 

can replace conservative margins with data-driven policies, improving utilization without violating QoS 

[9].   

Concurrently, works on ML-enabled resource management for network slicing [10] suggest 

methodologies—state design, reward shaping, and safe exploration—that are directly reusable for FTTH 

DBA when multiple traffic classes and slices coexist on shared fiber [11]. These insights motivate the 

present focus on an AI-driven DBA stack for FTTH. 

2. Literature Review   

Learning-based DBA specifically for PONs gained traction after year 2021. A reinforcement learning 

(RL) DBA for XGS-PON [12] formulates upstream grants as sequential decisions with queueing/latency 

feedback, demonstrating reduced delay under variable loads versus heuristic baselines—evidence that 

model-free control can adapt to burstiness without explicit traffic models.   

Beyond pure RL, [13] research work explores supervised and hybrid predictors to anticipate demand. 

An ANN-based predictive allocator (2023) uses historical request traces to forecast near-term load and 

pre-position grants, improving delay and buffer occupancy; complementary deep-learning DBA for XG-

PON targets mobile fronthaul latency guarantees, integrating an end-to-end latency model into the 

learning loop. 

System-level surveys underline that ML in optical/short-reach systems is maturing: comprehensive 

reviews [14], [15] catalog use cases from QoT classification to traffic-driven provisioning and 

automation (MLaaS), arguing for modular, service-oriented ML blocks that can be embedded in OLT 

control planes. This supports a “pluggable AI” view of DBA with standardized telemetry and model 

serving.   

Resource slicing atop PONs is another active strand. Learning-based DBA for PON slicing [16] 

introduces slice-aware demand and isolation constraints, while 2024 work on “dynamic bandwidth 

slicing” for FL/6G-grade TDM-PON highlights multi-tenant fairness and the need for policies that 

balance mean throughput with percentile latency across slices—an ideal fit for multi-objective RL.   

Conventional DBA continues to evolve in parallel, especially for 100-Gb/s NG-EPON/coherent PONs, 

with the paper [17] studies proposing service-class-aware wavelength/bandwidth schemes. These 

papers provide competitive baselines and emphasize the scaling issues—more ONUs, tighter delays—

against which AI-driven DBA must be benchmarked.   

Survey on optical network automation [18] stress deployment considerations: data quality, transfer 

learning across domains, and power/compute constraints at the edge. They advocate closed-loop 

control with explainability and safety guards—directly relevant for production DBA where mis-

allocation can ripple into SLA breaches.   
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Security/privacy in learning-based allocation [19] also surfaced. Recent studies consider RL-DBA 

variants that incorporate security signals and privacy-preserving learning (e.g., split/federated 

training), indicating that DBA policies can be co-optimized for QoS and trust when telemetry includes 

anomaly or threat indicators.   

Finally, the paper  [20] surveys of ML in short-reach/optical access distill time-series method 

taxonomies and lightweight model design, pointing to practical recipes—temporal CNNs/RNNs, 

attention models, and compression/distillation—that enable fast, energy-aware inference in OLTs, a 

prerequisite for real-time DBA at microsecond grant cadences.   

3. Methodology  

3.1 Network Model 

The proposed system is evaluated in a simulated Gigabit Passive Optical Network (GPON)-based 

FTTH environment, consisting of one Optical Line Terminal (OLT) located at the service provider's 

central office and 32 Optical Network Units (ONUs) distributed at subscriber premises. The 

network follows the ITU-T G.984 standard, providing an upstream transmission rate of 2.5 Gbps and 

a downstream rate of 1.25 Gbps. The OLT and ONUs are connected via a passive optical splitter with 

a 1:32 ratio, ensuring that the upstream bandwidth is shared among all connected ONUs. Each ONU 

serves multiple customer devices, with varying bandwidth and latency demands, making the system 

inherently heterogeneous. 

Traffic modeling in the simulation incorporates four primary classes: 

1. Video streaming (high bandwidth, low latency) 

2. VoIP traffic (low bandwidth, ultra-low latency) 

3. IoT telemetry (low bandwidth, moderate latency) 

4. Bulk downloads (high bandwidth, high tolerance to latency). 

Each traffic class is modeled using Poisson arrival processes for packet generation, and exponential or 

Pareto-distributed packet sizes depending on the application. This mix of traffic types ensures a 

realistic representation of network load fluctuations throughout the simulated day. 

  

Figure 1. Network Model 

The upstream scheduling challenge arises from the multiplexing nature of the PON. Since all ONUs 

share the same upstream fiber, they must be allocated non-overlapping Transmission Windows 

(TWs). The OLT coordinates this through the DBA mechanism, polling ONUs for buffer occupancy 

reports, and granting bandwidth accordingly. However, in real-world deployments, traffic demand is 

not constant, leading to under-utilization or congestion if allocation is not adaptive. 
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The network simulation is implemented using the NS-3 GPON module, configured for a 24-hour 

cycle with traffic variations reflecting peak hours and off-peak periods. Peak hours are modeled with 

an 80% load factor, while off-peak drops to 30%. These variations are crucial in testing whether the AI-

driven DBA can outperform traditional algorithms in both heavy-load and light-load scenarios. 

3.2 AI-Driven DBA Approach 

3.2.1. Overview of the AI-Driven DBA Framework 

The block diagram illustrates the operational workflow of the AI-driven Dynamic Bandwidth Allocation 

(DBA) system within an FTTH network. The design couples real-time traffic analysis, feature extraction, 

predictive modeling and reward based learning to provide optimal bandwidth distribution upstream. 

Traffic demands as observed by Optical Network Units (ONUs) initiate the process and AI-guided 

forecasts and the performance are fed back at the end of assigning bandwidth on an intelligent adaptive 

basis. 

3.2.2. Traffic Demand as the Primary Input 

The design couples real-time traffic analysis, feature extraction, predictive modeling and reward based 

learning to provide optimal bandwidth distribution upstream. Traffic demands as observed by Optical 

Network Units (ONUs) initiate the process and AI-guided forecasts and the performance are fed back 

at the end of assigning bandwidth on an intelligent adaptive basis. 

3.2.3. Feature Extraction for Model Input 

The Feature Extraction block also deals with transforming raw data (traffic demand data) into 

structured, but meaningful features suitable to be fed to the AI model. Such metrics may be the average 

packet arrival rates in the past n cycles, Demand variance, the ratio of high-priority to low-priority 

traffic and time-of-day indicators. The given preprocessing procedure will convert noisy and 

heterogeneous traffic data to a form acceptable by the predictive model, contributing to the increased 

efficiency and accuracy of the learning process by the AI model. 

3.2.4. AI Model as the Decision Engine 

The framework is built around the AI Model, herein running as Deep Q-Network (DQN). The model 

will come into play to best decide on bandwidth allocation strategies using the features extracted. It 

runs in an agent-environment loop, where the agent (AI model) decides on the allocation action At at 

the given state St, with the goal of maximizing the long term performance measures including 

utilization, fairness, and latency amelioration. 

3.2.5. Bandwidth Allocation Output 

It is that the Bandwidth Allocation block is the action of the AI model that determines the quantity of 

upstream bandwidth each ONU will be assigned at the next DBA cycle. As opposed to traditional DBA 

techniques which are based only on recent ONU requests, the AI-based allocation uses past trends and 

forecasting abilities to beat the congestion. Such pro-active allocation makes sure that latency sensitive-

services (e.g., VoIP, video conferencing) are served prioritized but retain a sense of fairness to each of 

the ONUs. 

 



Journal of Information Systems Engineering and Management 

2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 

 219 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 

is properly cited. 

 

3.2.6. Prediction Flow and Proactive Allocation 

The arrow Psych Prediction between Feature Extraction and Bandwidth Allocation means that it is not 

a straight reactive approach to the present demand, but the AI model predicts future traffic load of each 

ONU. This predictive characteristic enables the system to make allocations in advance of peak usage 

periods in effect, evening out traffic bursts and dropping packets. The important aspect is prediction 

accuracy as inaccurate prediction may result in the under-utilisation or queuing. 

3.2.7. Reward Feedback Loop for Learning 

AI-driven DBA framework utilizes Deep Q-Network (DQN) reinforcement learning mechanism, which 

works within the OLT, in the dynamic distribution of bandwidth in upstream. Markov Decision Process 

(MDP) describes environmental modeling to model DBA cycle to cycle decision epochs. The state space 

St t is a set of ONU queue lengths Qi(t), of recent bandwidth allocations Ai(t-1), of QoS prioritizations 

weights Pi and time-of-day indicators in order to quantify diurnal patterns. The set of feasible allocation 

vectors of all ONUs under consideration in the next cycle is called the At action space. 

 

Figure 2. AI-Driven DBA Approach 

The DQN learns a policy π∗(s) that maximizes the long-term reward function: 

 
(1) 

where Ut is the bandwidth utilization ratio, Ft is Jain’s fairness index, and Lt is the latency penalty. The 

coefficients α, β, γ are tuned to balance efficiency, fairness, and latency objectives. Jain’s fairness index 

is calculated as: 

 

 

(2) 

where xi is the bandwidth allocated to ONU i and NN is the total number of ONUs. 

The training process involves multiple simulation runs where the agent interacts with the network, 

receiving feedback after each allocation cycle. The DQN uses an experience replay buffer to store 

transitions (St,At,Rt,St+1), allowing it to learn from past experiences and avoid overfitting to short-term 



Journal of Information Systems Engineering and Management 

2025, 10(58s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 

 220 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 

is properly cited. 

 

fluctuations. They apply an epsilon-greedy strategy to maintain a balance between exploration (putting 

new allocations to the test) and exploitation (relying on known good allocations). 

The DQN employs a target network, which is updated every so often and eliminates the oscillations in 

the Q-value estimates to achieve stability in training. The AI model is trained until convergence is 

reached, i.e., when the mean reward reaches its steady value in the course of several episodes, and then 

compared to other conventional DBA approaches within the same simulated environment. 

3.2.8. Continuous Optimization in Deployment 

Such a feedback loop will allow the AI-driven DBA to learn and adapt its policy over time to changes in 

traffic, seasonal demand situations, or even to changes in service-level agreements. This autotuning 

feature means the system will be efficient and fair in a variety of situations without requiring manual 

fixing, which is why the system is very well suited to use in large-scale FTTH deployments where the 

traffic pattern is complex and dynamic. 

3.3 Baseline 

Two comparison baseline algorithms have been identified that are IPACT (Interleaved Polling with 

Adaptive Cycle Time) and Weighted Fair queuing (WFQ). IPACT is de facto popular in EPON systems 

and GPON systems because of its simplicity and its straightforward overhead. Each ONU in IPACT 

notifies the OLT on the size of its occupied buffer and the OLT allocates a time slot based on this report 

with a maximum grant size. Deployed successfully with predictable traffic the IPACT has been found to 

have its performance reduced under bursty and mixed traffic patterns. 

Weighted Fair Queuing (WFQ), conversely, is a scheduling algorithm according to which bandwidth is 

divided proportionally in accordance with pre-determined weights. The traffic flows are allocated a 

segment of the link capacity proportional to their respective weight thus being fair depending on the set 

QoS priorities. WFQ is not predictive in nature, however, and does not respond well to unexpected peaks 

in demand unless the weights are continually realigned, which is operationally challenging. 

In assessment, IPACT is a form of reactive allocation (answer to existing demands) and WFQ is 

weighted fixed. Both approaches can be used as standard references of performance that can be used to 

compare the advantages of predictive, AI-driven DBA that pre- intelligently assigns bandwidth prior to 

overload. 

The comparison criteria between AI-driven DBA and these baselines include: 

• Average utilization (measuring efficiency of link use) 

• Average latency (measuring real-time performance) 

• Fairness index (measuring equity in allocation) 

• Packet drop rate (measuring QoS under congestion). 

This multi-metric evaluation ensures that the AI approach is not only efficient but also fair and robust 

under varying network conditions. 

4. Simulation Environment 

The simulations are conducted using NS-3 version 3.36 with an integrated GPON module. The 

simulation duration is set to 86,400 seconds (24 hours), divided into DBA cycles of 2 milliseconds 

each, aligning with GPON's frame structure. The upstream channel capacity is fixed at 2.5 Gbps, and 
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the downstream at 1.25 Gbps to reflect real-world GPON specifications. The optical splitter introduces 

a 1:32 split ratio with a power loss of 15–17 dB, though physical impairments are kept constant across 

experiments to isolate DBA performance effects. Table 1 shows the simulation environment 

configuration. 

Table 1: Simulation Environment Configuration 

Parameter Value / Description 

Simulation Platform NS-3 (Version 3.36) with integrated GPON module 

Simulation Duration 86,400 seconds (24 hours) 

DBA Cycle Duration 2 milliseconds 

Upstream Capacity 2.5 Gbps (GPON standard) 

Downstream Capacity 1.25 Gbps (GPON standard) 

Network Topology 1 OLT, 32 ONUs, 1:32 optical splitter 

Splitter Loss 15–17 dB 

Traffic Classes Video Streaming, VoIP, IoT Telemetry, Bulk Downloads 

Traffic Arrival Models Poisson (VoIP, IoT), Self-similar with heavy-tail (Video, Bulk) 

Traffic Profile Off-peak (00:00–08:00, 30% load), Normal (08:00–18:00, 60% 

load), Peak (18:00–23:00, 80% load) 

Performance Metrics Average utilization, Average latency, Fairness index (Jain’s), 

Packet drop rate 

Number of Runs 10 runs with different random seeds 

Result Confidence Level 95% confidence interval 

Output Analysis Tools Python (Pandas, NumPy, Matplotlib) 

Traffic generation follows a time-of-day traffic profile inspired by real ISP usage statistics, with 

three distinct periods: off-peak (00:00–08:00), normal (08:00–18:00), and peak (18:00–23:00). 

Poisson arrival processes are used for VoIP and IoT flows, while self-similar traffic models with heavy-

tailed distributions are used for video streaming and bulk downloads, replicating long-range 

dependence in internet traffic. 

Performance metrics are recorded in each DBA cycle. Average utilization is computed as: 

 

 

(3) 

 

where Bt is the allocated bandwidth at cycle t, C is the channel capacity, and T is the number of cycles. 

Average latency is measured as the mean packet waiting time in ONU buffers before transmission. 

Packet drop rate is calculated based on buffer overflows during congestion events. 

To validate results, each experiment is run 10 times with different random seeds, and the average 

values are reported along with 95% confidence intervals. This ensures statistical significance and 

eliminates bias from outlier traffic patterns. The simulation output is processed in Python using 

Pandas and Matplotlib for performance visualization. 
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4.1. Evaluation Metrics for AI-Driven DBA in FTTH 

i). Mean Squared Error (MSE) 

MSE calculates the mean of the squared errors of the bandwidth assignments that are predicted and the 

actual ones. It can give an indication of the accuracy of the AI model to predict needed bandwidth. 

 

 

(4) 

Where: 

• yi = Actual bandwidth allocation for the i-th instance (in Mbps) 

• 𝑦𝑖̂ = Predicted bandwidth allocation for the i-th instance (in Mbps) 

• n = Total number of predictions 

ii). Bandwidth Utilization Efficiency (BUE) 

BUE measures the amount of bandwidth utilisation by the end-users without overs submission or 

under-utilisation that has been allocated. 

 

 

(5) 

Where: 

• Ui = Actual bandwidth used by user i 

• Ai = Allocated bandwidth for user i 

• n = Number of users 

iii). Latency (L) 

Latency: The delay in the time period taken between the user requesting data and the time when it is 

transmitted in action. With FTTH DBA systems, service response is faster with low latency. 

 
(6) 

Where: 

• trequest = Time of bandwidth request 

• tresponse = Time when bandwidth allocation starts 

iv). Throughput (T) 

Throughput is a measurement of the total number of data that have been successfully sent in a unit 

time. It is one of the important KPIs of bandwidth distribution in FTTH. 

T=Total Data Transferred/Total Time                                                        (7) 
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Where: 

• Total Data Transferred is measured in bits or bytes 

• Total Time is measured in seconds 

v). Packet Loss Ratio (PLR) 

The percentage of data packets that are lost in the process of transmission by identification of the 

reasons that may be due to congestion or misallocation of bandwidth is measured by PLR. 

 

 

(8) 

Where: 

• Plost = Number of lost packets 

• Psent = Total packets sent 

5. Results Analysis 

The effectiveness of the suggested AI-powered Dynamic Bandwidth Allocation (DBA) solution was 

tested using simulation in FTTH network having several Optical Network Units (ONUs) attached to an 

Optical Line Terminal (OLT). The data set was generated to mimic traffic fluctuations during a 24-hour 

period which were tagged as peak and off-peak usage. Trained on a system of the hybrid Long Short-

Term Memory (LSTM) and reinforcement learning (RL), the model predicts the amount of bandwidth 

required shortly and adapts real-time distributions. Compared to the conventional Fixed Bandwidth 

Allocation (FBA) and traditional Dynamic Bandwidth Allocation algorithms, the comparative results 

were accomplished against throughput, latency, and packet loss, fairness index. 

The finding indicated that the AI-based DBA was proven continuously to optimize average throughput 

with all ONUs and particularly within the peak demand times as shown in table 2. Conventional 

bandwidth allocation was carried out in a fixed or reactive basis but with the application of AI model, 

bandwidth was assigned in anticipation of the demand thereby minimizing congestion. Improvements 

in throughput averaged about 1815% (as compared to FBA) and 1014% (as compared to traditional DBA 

methods) during the peak-traffic hours (e.g. 7 PM to 10 PM). The latter was explained by the predictive 

feature of the AI model that reduced bandwidth wastage and guaranteed the enhanced Quality of 

Service (QoS). 

Table 2: Throughput Comparison 

Method Average 

Throughput 

(Mbps) 

Peak 

Throughput 

(Mbps) 

Improvement 

over FBA (%) 

Fixed Bandwidth Allocation (FBA) 820 900 – 

Traditional DBA 880 950 7.3 

AI-Driven DBA 1020 1150 24.4 

The figure 3 compares the average and peak throughput of FBA, Traditional DBA, and AI-Driven DBA. 

The AI-Driven DBA significantly outperforms the other two methods, achieving an average throughput 

of 1020 Mbps and a peak throughput of 1150 Mbps, which indicates more efficient bandwidth allocation 
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and utilization. Traditional DBA performs moderately well, while FBA shows the lowest throughput, 

suggesting limited adaptability in handling varying traffic demands. The findings are explicit as to the 

developers integrating AI that results in significant improvement in the throughput of FTTH networks.  

 

Figure 3. Throughput comparison of various methods 

Compared to the latency, AI-driven methodological direction proved to be reduced substantially as 

shown in table 3. Predictive allocation minimized the queue build-up at ONUs leading to a decrease in 

the average packet delay. The average simulated latency was about 2.8 ms using the AI-based approach 

as opposed to 4.2 ms using the DBA approach and 6.5 ms using FBA. In addition, the latency variance 

was also reduced, which means the performance was steady at times of varying traffic loads. This is very 

critical on latency-sensitive traffic within the FTTH network such as VoIP and video conferencing. 

Table 3: Latency Comparison 

Method Average Latency (ms) Peak Latency (ms) Reduction over FBA (%) 

FBA 6.5 9.1 – 

Traditional DBA 4.2 6.0 35.3 

AI-Driven DBA 2.8 4.1 56.9 

Figure 4 shows the considerable difference in the latency comparison is evidenced by the fact that AI-

Driven DBA provides the lowest average latency of 2.8 ms and high latency or maximum latency of 4.1 

ms times, which means that the data is transmitted quicker without a delay in the network response. 

Latency values of traditional DBA are slightly higher, and the latency of FBA is the highest, on average 

and at peak. This proves that the considered AI-based use is efficient in improving bandwidth allocation 

to make the flow of information more comfortable and relieve congestion in delay-sensitive services, 

such as voice and video streaming.  
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Figure 4. Latency comparison of various methods 

The rates of packet loss also confirmed the usefulness of the AI-driven DBA. The proposed approach 

maintained the level of packet loss to be less than 0.7G which was even less than 1.5G in a traditional 

DBA and more than 3G in FBA at the same condition as shown in table 4. This helps achieve 

performance advantage that can have a direct positive effect on user experience in streaming and 

gaming scenarios where packet loss has a noticeable effect on quality. 

Table 4: Packet Loss Rate 

Method Packet Loss (%) Reduction over FBA (%) 

FBA 3.2 – 

Traditional DBA 1.5 53.1 

AI-Driven DBA 0.7 78.1 

Figure 5 shows the packet loss rates have been shown, where AI-Driven DBA has the lowest packet loss 

rate which is only 0.7%, which means that there will be highly reliable data delivery. The Rate of packet 

loss on a Traditional DBA is moderate at 1.5 percent whereas FBA experiences the highest packet loss 

at 3.2 percent this may affect the network beyond repair. The low packet loss in AI-Driven DBA indicates 

its capacity to predict and distribution of bandwidth without the occurrence of network congestion and 

data integrity of the data being transmitted. 

 

Figure 5. Packet loss comparison of various methods 
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The fairness index, indicated that the AI-driven method maintained a fairness score above 0.96 across 

all test scenarios as shown in table 5. This suggests that while optimizing performance, the algorithm 

also avoided resource monopolization by high-demand ONUs. 

Table 5: Fairness Index 

Method Fairness Index Improvement over FBA (%) 

FBA 0.89 – 

Traditional DBA 0.93 4.5 

AI-Driven DBA 0.96 7.9 

Figure 5 shows the fairness index, it quantifies the equality of users in receiving bandwidth and in this 

case, 1 is perfect fairness. AI-Driven DBA offers the best measurement of fairness with index 0.96 that 

is closest to ideal. Traditional DBA is on the heels at 0.93 and FBA at 0.89 indicating unfair distribution 

of resources. This increase in fairness indicates that the AI-based model not only can improve the 

performance metrics but also provides proportional and fair bandwidth such that a distribution of 

bandwidth will not harm the low-priority users in terms of reduced service quality delivery.  

 

Figure 6. Fairness Index comparison of various methods 

Finally, scalability tests were conducted by increasing the number of ONUs from 16 to 64 in the 

simulation. The AI model maintained its superior performance trends even with higher ONU counts, 

though the computational overhead increased slightly. However, given the training phase is primarily 

offline, the real-time allocation process remained computationally efficient, requiring less than 10 ms 

for decision-making per allocation cycle. 

6. Conclusion 

This paper has presented a Dynamic Bandwidth Allocation (DBA) in an Fiber-to-the-Home (FTTH) 

network that employs an AI-based algorithm based on DBA method that was found to provide 

optimality in situations such as the increasing demand of the users of high-speed and reliable internet 

services. The proposed system uses a machine learning-based predictive model, and dynamic 

bandwidth allocation between the links is possible with the use of current traffic distribution and user 

quality of service (QoS) demands. The findings affirm that the AI-based DBA can perform better than 

the baseline in terms of throughput, latency, packet loss, and fairness measures and also compared to 

the conventional DBA and static allocation procedures. 
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The results show a promising outlook of AI-driven technology leading to an upheaval in bandwidth 

management of the optical access networks by providing adaptive, intelligent, and fair bandwidth 

management. The strategy is scalable into future integrations with next-generation network 

architectures and it supports 5G backhaul, IoT heavy ecosystems, and low latency applications. Future 

studies can take the form of looking at hybrid AI systems that use both reinforcement learning and deep 

neural networks to improve upon predictive accuracy and decision making efficiency, and on 

deployment studies to run systems under real conditions to test system stability and robustness under 

varied workloads. 
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