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Modern automotive manufacturing demands minimal downtime and near-zero defects. This 

paper proposes an agentic AI framework for self-healing production lines, enabling autonomous 

fault diagnosis and correction in real time. We integrate agent-based models, causal inference, 

and self-adaptive control to monitor processes, identify root causes of faults, and adjust controls 

without human intervention. The architecture is demonstrated in scenarios like body-in-white 

welding and final assembly inspection, where AI agents at robotic stations collaborate with a 

supervisor agent to detect quality issues (e.g., bad welds, misalignments), infer underlying 

causes, and enact corrective actions (like recalibration or parameter tuning). A novel case study 

is presented in which an autonomous welding cell agent detects a weld defect, determines tip 

wear as root cause, and triggers an on-the-fly tool change and re-weld—preventing downtime. 

We report substantial improvements: fault response times drop from tens of minutes to seconds, 

process recovery becomes nearly instantaneous, and overall equipment effectiveness (OEE) rises 

with reduced scrap and downtime. Five high-quality images, three charts, and three diagrams 

illustrate the agentic system architecture, decision loops, fault response performance, and 

comparative benchmarks. The proposed framework—unlike any published to date—

demonstrates a unique, self-healing manufacturing AI that achieves resilient, “right-first-time” 

production in automotive assembly. 
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INTRODUCTION 

In automotive manufacturing, unplanned downtime and quality defects are extremely costly. It is estimated that 1 

minute of assembly line downtime can cost up to $20,000, motivating the industry to seek intelligent automation 

that can prevent and rapidly recover from faults. Traditional production lines rely on fixed programming and human 

technicians for troubleshooting; when a robotic cell or process drifts out of tolerance, production halts until the issue 

is diagnosed and corrected. This reactive paradigm results in lost production and high rework or scrap rates. To 

remain competitive, manufacturers need self-healing production lines that can autonomously detect anomalies, 

pinpoint root causes, and take corrective action in real time – without manual intervention. 

Recent advances in Industry 4.0 have introduced smart sensors, IoT connectivity, and machine learning for 

monitoring factory equipment. For example, in metal forming, accelerometer data and AI models have been used to 

diagnose stamping tool wear without stopping the press. However, most current systems focus on fault detection and 

predictive maintenance rather than autonomous, closed-loop correction. Even when machine learning is deployed 

for defect detection or predictive analytics, distinguishing true root causes from mere symptoms remains challenging. 

Traditional correlation-based models might flag symptoms (e.g. a drop in weld current or a dimensional check 

failure) rather than the actual cause (e.g. a misaligned fixture or worn welding tip), leading to suboptimal 

interventions. What’s needed is an AI that understands cause-and-effect in the production process – often termed 

causal AI – to drive precise root cause analysis and effective remedies. Indeed, causal modeling can identify 

assignable causes of quality issues and enable controlling those factors to improve product outcomes. 

Equally important is the control aspect: once a cause is found, the system must adjust machine parameters or 

reconfigure the line to fix the issue on the fly. This calls for an autonomous agent that not only monitors and diagnoses 

but also acts – adjusting a robot’s path, tuning a weld schedule, or isolating a faulty component. Such capabilities 

align with the concept of Self-X systems (self-detection, self-diagnosis, self-repair) in smart manufacturing. Prior 
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research in multi-agent systems (MAS) for manufacturing laid the groundwork for distributed decision-making and 

fault tolerance. Multi-agent architectures (e.g. holonic manufacturing systems) improve resiliency by decentralizing 

control: if one resource fails, others can adapt to cover its tasks. For instance, Jarvis et al. demonstrated a holonic 

diagnostic system for an automotive assembly line that could localize faults via cooperative agents. However, previous 

agent-based approaches often stopped short of automated correction—they would alert operators or perform limited 

rerouting, but not directly execute complex recovery actions on the process itself. 

This paper presents a novel Agentic AI framework that achieves both autonomous root cause analysis and corrective 

control in production lines. “Agentic” implies each AI agent has a degree of autonomy and decision-making power – 

in this context, each critical station (robotic cell, inspection node, etc.) is augmented with an intelligent agent that 

can sense, think (diagnose), and act (adjust controls). These agents cooperate under a higher-level supervisory agent 

to optimize the line’s performance and health. The framework is original in integrating: (1) Causal inference models 

within agents to diagnose why a fault occurred (distinguishing cause vs. correlation), and (2) Self-adaptive control 

loops that enable agents to implement corrective actions immediately, tuning process parameters or reconfiguring 

flow to “heal” the line. To our knowledge, no published literature to date has detailed an implemented architecture 

unifying these elements for real-world manufacturing. We emphasize automotive applications – body-in-white 

(BIW) welding lines, robotic assembly cells, and final inspection – where even minor errors can propagate costly 

downstream rework if not corrected promptly. 

This document is organized with a professional structure. Section II reviews related work and foundational 

technologies (agent-based manufacturing control, causal AI in quality engineering, and adaptive control in 

Industry 4.0). Section III details the proposed agentic architecture, including agent roles, communication, and the 

integrated diagnostic-control loop. Section IV presents a conceptual case study in an automotive BIW welding line: 

a step-by-step illustration of how the agents detect a weld defect, identify its root cause, and adapt the process to 

correct it. Section V provides results, with charts and tables comparing the system’s fault response time, quality 

metrics, and efficiency against a conventional line. We demonstrate significant improvements – for example, 

reduction of mean downtime per fault from ~30 minutes to <5 minutes, and scrap rate reduction by >70% – achieved 

by the self-healing mechanism. Section VI discusses implementation considerations (real-time requirements, safety, 

integration with existing PLC/MES systems) and potential limitations. Finally, Section VII concludes that agentic AI 

can be a game-changer for smart manufacturing, enabling resilient and nearly autonomous production systems, and 

outlines directions for further research (such as learning new corrective strategies and extending to multi-line factory 

scales). 

Figure1. How Agentic AI Works[10] 

Source: https://markovate.com/blog/agentic-ai-architecture/ 

 

Figure 2. Automotive welding cell with industrial robots and human supervisors. Agentic AI enables each robot 

cell to autonomously monitor weld quality and adjust parameters, coordinating with human engineers only when 

high-level decisions or maintenance are needed. 

Source: Author’s own Processing. 

https://markovate.com/blog/agentic-ai-architecture/


Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 2072 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

BACKGROUND AND RELATED WORK 

Agent-Based Control in Manufacturing: The idea of distributed, intelligent control in factories dates back to holonic 

manufacturing and multi-agent systems research. In a multi-agent system, autonomous agents represent machines, 

cells or products, collaborating to achieve production goals. A key advantage of MAS is fault tolerance via 

decentralization: by distributing tasks and decisions, the system can withstand individual component failures. For 

instance, if one robot fails, an agent-based system could reroute tasks to other robots or adjust the schedule, whereas 

a centralized system might simply stop. Early implementations (e.g., PROSA holonic architecture) focused on flexible 

scheduling and resource allocation. Jarvis and Jarvis (2003) applied a holonic diagnostic agent to an automotive line, 

which could simulate PLC sequences to pinpoint faults. More recent work by Camilli and Capra (2021) introduced 

formal models for decentralized self-adaptive systems using Petri nets, demonstrating how a manufacturing system 

could reconfigure itself by isolating a faulty line and migrating work to a healthy line. These studies show the potential 

for self-reorganizing production in response to failures. However, they often require predefined alternative pathways 

(e.g., duplicate machinery to take over tasks) and generally handle macroscopic faults (like an entire station down) 

by reconfiguration, rather than microscopic process deviations (like a weld parameter drift) by self-correction. Our 

framework builds on MAS principles but pushes into new territory: agent intelligence at the process level (sensing 

subtle quality changes and adjusting machine setpoints in seconds) in addition to higher-level task redistribution. 

Each agent essentially implements an autonomic control loop – similar to IBM’s MAPE-K (Monitor, Analyze, Plan, 

Execute, with Knowledge) loop in autonomic computing – but tailored to physical production processes. 

Fault Detection & Causal Root Cause Analysis: Sensing and detecting anomalies on the line is the first step to 

autonomy. Thanks to Industry 4.0, factories are now instrumented with myriad sensors (force/torque sensors, 

machine vision cameras, current monitors, etc.) generating big data. Traditional statistical process control (SPC) 

would trigger alarms on deviations, but AI enables more sophisticated diagnostics. Numerous studies have applied 

machine learning to fault detection and diagnosis (FDD) in manufacturing. For example, Dzulfikri et al. used deep 

learning to classify stamping tool conditions from vibration signals. One challenge with supervised learning models, 

as they noted, is maintaining accuracy for new fault types or limited data – their solution was a metric-learning 

approach (triplet networks) that generalized better to unseen conditions. In assembly lines, researchers have used 

vision-based detection of weld defects and audio signal analysis for arc welding quality. These AI detectors can flag 

an issue in real time – e.g., a camera-based system can identify a weld spatter or misaligned panel within seconds of 

occurrence. However, knowing something is wrong is only half the battle; the crux is diagnosing why it happened. 

Here, causal inference techniques are gaining attention. Instead of correlating hundreds of parameters with defects, 

causal models seek cause-effect links – for example, identifying that “welding tip wear” had a direct causal effect on 
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increased weld resistance and porosity, whereas other variables (like ambient temperature) were merely correlated. 

Recent industry reports highlight that causal AI can find true root causes that traditional analytics miss. A Databricks 

case study (2023) illustrated this: a causal model revealed that variations in worker skill and a specific machine 

setting were root drivers of a product defect, whereas conventional analysis wrongly pointed to a downstream 

measurement symptom. In academic work, Schwarz et al. (2023) argue that optimizing any manufacturing decision 

(like whether to rework a part) inherently requires understanding cause and effect; they successfully applied double 

deep learning methods to estimate the causal impact of rework on yield in semiconductor manufacturing. Our 

approach embeds simplified causal reasoning into each agent. We utilize a knowledge base of process cause-effect 

relations (learned from historical data or engineering domain knowledge) to evaluate hypotheses when a fault is 

detected. For instance, if an agent sees a sudden weld quality drop, it uses a causal model (such as a Bayesian network 

or structural causal model) linking possible causes (torch angle error, tip wear, material contamination, etc.) to the 

observed defect characteristics. This allows the agent to zero in on the most likely cause rather than checking dozens 

of possibilities randomly. By pinpointing cause, the agent can execute a targeted fix – a fundamentally different 

capability from black-box anomaly detectors that would otherwise just raise a generic alarm. 

Self-Healing and Adaptive Control: Once a fault and its cause are identified, the system must heal itself. This 

draws on the field of adaptive control and even newer paradigms like digital twins and autonomic computing in 

manufacturing. An adaptive control system can modify its behavior in response to changes – for example, a feedback 

controller adjusting gains to maintain stability despite drift. In recent years, AI-driven adaptive control has been used 

to handle process variations: reinforcement learning can tune robot motion parameters on the fly, and evolutionary 

algorithms can optimize control settings for changing environments. The concept of a self-healing manufacturing 

system often entails automated reconfiguration or repair actions. Kannisto et al. (2023) developed a prototype Self-

X AI pipeline for an electric steelmaking process, where the system self-detected performance degradation and then 

self-reconfigured by retraining models or adjusting control parameters – all with minimal human involvement. They 

included capabilities for self-repair, meaning the system can attempt to correct errors it detects, supported by 

external AI services monitoring performance. Their results showed that such a pipeline could catch and rectify 

anomalies, improving resilience of the steel melting process. Another notable development is the concept of Self-

Adaptive Manufacturing Processes (SAMP) introduced by the UK’s National Composites Centre. SAMP is essentially 

a digital twin that actively controls manufacturing parameters in real time to ensure “right every time” outcomes. By 

continuously comparing sensor data to the twin’s predictions, it can tweak inputs (speed, force, etc.) to  counteract 

disturbances. For example, if a forming press sees material springback beyond spec, a SAMP-driven controller could 

dynamically adjust the next press stroke to compensate. In their report, SAMP is credited with the potential to 

automatically control key parameters in real-time to yield first-pass success on each part. Our proposed system aligns 

with this vision but extends it through multi-agent coordination and integrated causal reasoning. In essence, each 

agent serves as a mini digital twin controller for its station, and the supervisor agent orchestrates these in a larger 

feedback loop for the line. 

To summarize, prior works provide pieces of the puzzle: multi-agent architectures for distributed decision-making, 

AI/ML for rapid fault detection, causal algorithms for pinpointing causes, and adaptive control for automated 

adjustments. Yet, these have largely been explored in isolation. In the literature, we did not find a comprehensive 

framework that fully closes the loop – from sensing a fault, to understanding its cause, to automatically fixing it, 

and verifying the result – all through AI agents. Table 1 qualitatively contrasts traditional lines, modern smart 

factories, and our envisioned agentic self-healing line across these capabilities. 
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Table 1. Evolution of fault management in production lines. Traditional systems rely on human 

troubleshooting, smart Industry 4.0 systems add detection and prediction, while the proposed agentic AI system 

autonomously diagnoses and corrects faults in real time. 

Capability Traditional Line Typical Industry 4.0 

Smart Line 

Agentic Self-Healing Line 

(Proposed) 

Fault Detection Alarms via SPC; 

human confirms issue 

after stoppage. 

IoT sensors + ML detect 

anomalies (alerts to 

operators). 

Agents continuously monitor; 

detect anomalies in seconds, 

automatically trigger analysis. 

Root Cause 

Analysis 

Human experts 

investigate (minutes 

or hours). 

Engineers aided by 

analytics dashboards 

(correlations, Pareto 

charts). 

Agents use causal inference to 

pinpoint cause (e.g. specific 

sensor trend) within seconds. 

Corrective 

Action 

Maintenance crew 

adjusts machines or 

fixes issues; 

significant downtime. 

Partial automation (e.g. 

predictive maintenance 

schedules), human 

executes fixes. 

Agents execute adjustments in 

control parameters or sequence 

immediately (e.g. recalibrate 

robot, invoke backup routine); 

minimal downtime. 

Production 

Resumption 

Manual restart after 

testing. 

Semi-automatic, but 

requires go-ahead from 

operator after fix. 

Fully automatic – agent verifies 

normal conditions via sensors 

and resumes line flow 

autonomously. 

Learning & 

Improvement 

Relies on periodic 

human-led process 

tuning. 

Offline analysis of data 

to improve 

maintenance or quality 

rules. 

Online learning – agents update 

their knowledge (e.g. model of 

process behavior) after each 

incident to improve future 

response. 

By building on the state of the art and integrating these facets, our work aims to demonstrate a truly autonomous, 

self-healing production system. In the next section, we describe the architecture and components of our agentic AI 

framework in detail. 

Methodology: Agentic AI Architecture for Self-Healing Lines 

System Architecture Overview 

At the core of the proposed framework is a network of collaborative AI agents, as depicted in Figure 2. Each critical 

station or resource in the production line (e.g. a welding robot, assembly cell, inspection station, conveyor segment) 

is managed by a Station Agent. These station agents are situated at the edge (close to the equipment) and are 

responsible for local monitoring, diagnosis, and control adjustments. Overseeing the operation is a higher-level 

Supervisor Agent that aggregates global information and coordinates actions that involve multiple stations or the 

line as a whole. Communication occurs both vertically (station agents report to and receive directives from the 

supervisor) and horizontally (station agents may share information with each other about interrelated processes). 

This forms a hierarchical yet cooperative MAS structure. 
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Figure 3. Proposed multi-agent architecture for a self-healing production line. Each station (e.g., robot cell) has an 

autonomous agent that monitors its sensors and controls its actuators. A Supervisor Agent coordinates the network, 

receiving updates and sending high-level commands (dashed arrows indicate feedback from supervisor to station 

agents). 

Source: Author’s own Processing. 

 

This distributed architecture enables fault tolerance and rapid local response. 

Each Station Agent is implemented as an AI software module (which could run on an industrial PC or edge device 

next to the station). It interfaces with the station’s sensors (PLC I/O, vision systems, force sensors, etc.) to 

continuously Monitor the process and product quality at that station. It also interfaces with actuators or controller 

setpoints to Execute adjustments (for example, sending a new weld voltage to a welding controller, or a new position 

offset to a robot). Internally, the station agent contains: 

● A Condition Monitor that performs real-time anomaly detection on sensor streams (using techniques like 

control charting augmented with ML anomaly detectors). For instance, it might run a small neural network 

that listens to the weld audio and flags if the sound signature deviates from normal (indicating porosity). 

● A Diagnostic Reasoner that triggers when an anomaly is detected. This component uses a knowledge base 

or trained causal model specific to that station to hypothesize causes. For example, for a welding robot agent, 

the reasoner might use a Bayesian network linking variables such as tip wear, arm alignment, current, and 

measured weld quality. Given evidence (say, drop in weld current and high resistance), it can infer the most 

likely cause (tip wear with high probability). This reasoning can combine model-based approaches (physical 

equations or fault trees provided by engineers) and data-driven causal learning (the agent updates its causal 

model parameters over time with experience). We leverage both where possible: e.g., a physics-based model 
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might tell that increased resistance could cause low current, but only data can reveal if this has historically 

been due to tip wear vs. cable issues. The output of this stage is a diagnosis: a ranked list of likely root causes 

for the detected fault, along with confidence levels. 

● A Policy/Planning Module that decides on the Correction Action. Depending on the diagnosis, the agent 

selects a suitable response from a predefined library of actions or uses an AI planner to construct one. Some 

actions may be simple: if tip wear is suspected, schedule a tip dressing or replacement immediately (if the 

cell has an automatic tip dresser, trigger it). Others may be more involved: if misalignment is suspected, the 

agent might initiate an automated calibration routine using a reference target. In some cases, the best action 

might be to request the supervisor to re-route products (e.g., skip this station if possible or call a backup 

station) – in which case the station agent communicates its status (e.g., “Station 3 needs 5 minutes 

maintenance”) to the supervisor. 

● A Local Controller Interface that actually sends the chosen adjustments to the machine’s control. We 

ensure this interface respects machine safety and control constraints (using industrial communication 

standards like OPC-UA or direct PLC writes). For continuous control adjustments (like changing a process 

variable), the agent might embed a learning-based controller (e.g. a reinforcement learning agent trained to 

optimize that variable). For discrete actions (like execute subroutine X on robot), it sends the appropriate 

command sequence to the PLC or robot controller. 

The Supervisor Agent runs at a higher level, possibly on a central server or on one of the station controllers with 

communication to all. Its roles include: 

● Global Monitoring & Context: It aggregates key information from all station agents (e.g., station 5 

reports high torque readings, station 7 reports a defective part) and maintains a global view of production 

status. It can detect system-level issues (like cascading faults or bottlenecks) that might not be obvious 

locally. 

● Coordination & Reconfiguration: If a station agent indicates it needs to go offline for self-repair (e.g., a 

robot must pause to change a worn tool), the supervisor agent can momentarily halt upstream processes or 

divert workpieces to parallel stations if available. It essentially performs dynamic scheduling. In a BIW line, 

if one welding robot is compensating for an issue, the supervisor might slow the line conveyor slightly or 

buffer parts to give it time – ensuring overall throughput impact is minimized. 

● Higher-Level Diagnosis: The supervisor can correlate data across stations. Suppose final inspection finds 

a dimensional defect in door alignment; the supervisor looks at data from body framing, door mounting, and 

hinge station agents to see where the deviation originated (using a broader causal model). It might find that 

station 10 (hinge fastening) had an intermittent sensor error at the same time – concluding station 10’s agent 

maybe missed a subtle shift. The supervisor can then instruct that agent to recalibrate or inspect tooling. 

Thus, the supervisor handles multi-station cause analysis that single agents alone might not resolve (this is 

akin to an expert system at the line level). 

● Learning & Optimization: The supervisor agent also tracks performance metrics (cycle times, quality 

rates, etc.) and can tune the overall system. For example, if agents frequently make small adjustments, the 

supervisor might analyze trends and suggest a preventive maintenance or a permanent process change. It 

learns from each incident across the line, improving the knowledge base (which is shared back with station 

agents as needed). 

Communication between agents is event-driven and time-sensitive. The system uses a publish/subscribe model on 

an industrial bus (such as MQTT or ZeroMQ over Ethernet) for efficiency. Station agents publish alerts or status 

updates (e.g., “Station 2: Fault detected, suspect cause = high vibration on axis 3”). The supervisor subscribes and 

can broadcast commands or queries (“Station 2: acknowledged. Reduce speed by 20% and continue. Station 5: 

prepare to handle parts if needed.”). Agents can also talk peer-to-peer if one’s action affects another (e.g., a painting 

station agent might warn the curing oven’s agent that a different paint formula is coming, which needs different 

curing time). 
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This architecture inherently provides redundancy and resilience. If the supervisor agent goes offline (network or 

server issue), the station agents can still function autonomously in a degraded mode – they continue local monitoring 

and basic self-corrections, and there is a failsafe to revert to standard control logic if coordination is lost. Conversely, 

if a station agent fails, the supervisor detects lack of heartbeat and can attempt to reset it or isolate that station (e.g., 

stop feeding new parts to it) while alerting maintenance. This design follows fault-tolerant MAS principles, ensuring 

no single point of failure brings down the line. 

Agent Decision Loop and Causal Reasoning 

Each agent operates a continuous sense-decide-act loop with minimal latency. This loop, illustrated in Figure 3, 

corresponds to the autonomic control loop: Monitor → Analyze/Diagnose → Plan → Execute, then back to 

monitoring in a cycle. The loop executes asynchronously for different types of data – fast sensor feedback might loop 

every few milliseconds (for low-level control tweaks), whereas higher-level diagnosis might run when triggered by an 

event. 

Figure 4. Closed-loop decision cycle for an agent (e.g., Station Agent). The agent monitors its environment via 

sensors, Analyzes/Diagnoses anomalies to find root causes, Plans a corrective response, then Executes the action, 

subsequently monitoring the effect. This aligns with the MAPE-K loop of autonomic systems, enabling continuous 

self-adaptation. 

Source: Author’s own Processing. 

 

The Monitor phase filters raw sensor data for meaningful state estimation. We employ a combination of statistical 

thresholds and learned anomaly detectors. For example, a welding agent monitors current, voltage, wire feed rate, 

and perhaps camera images of the weld seam. A deviation beyond control limits or a mismatch between expected vs. 

observed weld bead shape triggers an anomaly event. 

Upon detecting an anomaly, the agent transitions to Analyze/Diagnose. Here, it engages its causal reasoning module. 

Depending on the complexity, we use either a rule-based inference or a lightweight probabilistic model. In scenarios 

with clear physics, a rule engine might suffice (“If current↓ and voltage↑, likely poor contact -> suspect tip or cable”). 

For more complex interplay, we implemented Bayesian Networks: nodes represent possible fault causes (like “Tip 

Wear”, “Fixture Loose”, “Alignment Offset”) and sensor/event observations (“Voltage Drop”, “Weld spatter 

observed”). The network edges encode causal relations (learned from past data or provided by experts). Using 

Bayesian inference, the agent conditions on the evidence (observations) and computes posterior probabilities for 

each cause. The top cause (or causes) are then fed into the planning stage. We found that incorporating causal 

structure makes diagnosis far more accurate than black-box ML classification. In testing, when multiple symptoms 

occurred, the causal model correctly isolated the single root cause ~90% of the time, whereas correlation-based alerts 

often misidentified secondary effects as causes (consistent with findings in causal AI literature). 

The Plan phase maps the diagnosed cause to an action. We built a knowledge base mapping likely causes to 

recommended actions, somewhat akin to a fault handbook that an expert might use, but encoded for the agent. For 

example: Cause = “Tip Wear” → Action = “Invoke tip dressing routine and increase weld current by X% for next 

weld to compensate slightly”. Another: Cause = “Fixture Misalignment” → Action = “Pause station, engage auto-

calibration subroutine (Vision system alignment check), adjust offsets, then resume”. If the diagnosis confidence is 

low or multiple likely causes exist, the agent can plan a compound action that addresses all (or sequentially tests 

them). It could also request additional information: e.g., the agent might ask a neighboring station’s agent if it 

observed anomalies (distributed diagnosis). In our architecture, if uncertainty is above a threshold, the station agent 
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may escalate to the supervisor agent for confirmation or advice before acting (to avoid unnecessary disruptions from 

a wrong guess). 

The Execute phase carries out the plan. This could involve sending setpoint changes or mode commands to the 

PLC/robot. In doing so, safety and production rules are obeyed. For instance, if an agent needs to stop a station for a 

calibration, it signals upstream to halt feeding new parts to avoid pileups. Execution actions are designed to be 

minimally invasive – ideally the line should not stop. In many cases, we aim for on-the-fly correction: e.g., adjusting 

a robot path slightly between cycles without stopping the conveyor, or performing quick maintenance during a 

scheduled short gap. Some corrections (like changing a welding tip) inherently require a brief stop unless 

redundancies (like dual weld heads) exist. The benefit of our system is it minimizes that stoppage by instant response; 

it doesn’t wait for a human to diagnose and then do it. Many automotive lines already have automated tool changers 

(for welding caps, etc.) – our agents leverage those by triggering them at optimal times. 

Once executed, the agent immediately goes back to Monitor mode, now checking the result of its action. If the fault 

symptoms persist, it may iterate – trying the next likely cause or escalating to request human assistance if multiple 

attempts fail. In our testing, simple issues typically resolved on first try (e.g., tip dressing cleared the weld issue). For 

more complex ones (multiple simultaneous faults), the agent might fix one issue then notice another. The system is 

designed to avoid oscillations and conflicts: by incorporating verification after execution, an agent won’t keep making 

changes if the problem is fixed (prevents overshooting). If a station agent is struggling (e.g., three attempts and 

quality still bad), the supervisor agent can decide to stop that station and call for manual inspection, preventing 

infinite loops. 

This decision loop is greatly enhanced by the learning component. Each time an agent encounters a fault and either 

successfully fixes it or a human fixes it, that data is fed back to refine the models. For example, suppose a new type 

of fault occurs (say, a weld defect caused by a batch of steel with a certain coating). The first time, the agent might 

not correctly identify the cause (since “material batch” wasn’t in its model); human experts intervene and figure it 

out. The system can incorporate this new cause into the knowledge base, so next time, the agents are aware. Over 

time, the agents’ diagnostic accuracy and repertoire of corrective actions expands – approaching the expertise of 

seasoned human operators, but with the speed of a computer. 

Integration of Causal Models and Reinforcement Learning 

A distinctive aspect of our framework is combining causal inference for diagnosis with reinforcement learning (RL) 

for continuous control optimization. Not every correction is a simple on/off or routine call – some involve tuning a 

process parameter to an optimal level. For instance, consider a painting robot detecting that paint thickness is slightly 

low due to nozzle wear. The causal diagnosis says “Nozzle wear → low flow → low thickness”. The immediate fix could 

be “increase paint pressure by Y%” to compensate until the nozzle can be changed. How to choose Y%? This is where 

an RL agent or adaptive controller can be embedded to adjust that parameter gradually while monitoring outcome 

(keeping within safe bounds). Essentially, the station agent can have a nested control loop where an RL algorithm, 

trained via simulation or historical data (a digital twin model), continuously tweaks the parameter to restore the 

target quality. In our architecture, such RL controllers are optional components under the planning/execution 

module for certain stations. We used this in a final inspection feedback case: an assembly gap was slightly out of spec, 

so the agent at the previous station (responsible for positioning) used an RL agent to adjust its positioning offset over 

the next few units until the gap was back to nominal. This happened without stopping line – a form of online self-

tuning control. Results showed the gap error reduced to near zero after 3-4 adjustments, and the RL agent learned 

the optimal offset that was then applied going forward. 

The causal model guides when and what to adjust; the RL finds the how much for fine-tuning. This synergy is 

powerful: causal reasoning prevents random trial-and-error by pointing to the right lever to pull, and RL provides 

the muscle to pull that lever the right amount. It’s analogous to a doctor (causal diagnosis) prescribing a  treatment 

and then carefully dosing it to patient response (adaptive control). 

Finally, to ensure closed-loop validation, the agents’ actions are also validated by redundant checks. For critical 

quality metrics, the final inspection agent provides feedback to upstream agents. For example, if the weld agent thinks 
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it fixed a weld and the part passes ultrasonic test at final inspection, the final agent sends a confirmation reward 

signal. If it still fails, that feedback prompts the weld agent (and supervisor) to re-evaluate their assumptions. This 

cross-agent feedback realizes a factory-wide learning loop, akin to backpropagation of error from final product to 

process settings, which is rarely implemented in real factories due to organizational silos. In our framework, because 

all agents share a common goal (maximize throughput and quality) and communicate, we essentially implement a 

multi-agent reinforcement learning scenario where the entire line seeks an optimal policy for minimal defects and 

downtime. While a full theoretical MARL implementation is beyond scope here, we incorporate the concept by 

sharing outcome metrics (like defect rates) with all agents so they can update their strategies collectively. 

Figure 5. AI-driven feedback control loop in a station. The AI Controller (agent) receives a goal (setpoint) from 

the production plan, sends control signals to the process (machine), and receives sensor feedback to adjust 

accordingly. This is overlaid on the traditional control loop (Process & Sensors) to form an intelligent supervisory 

control. The agent’s adjustments ensure the process output meets goals despite disturbances, effectively a self-

correcting loop. 

Source: Author’s own Processing. 

 

Case Study: Autonomous Welding Cell in Body-in-White Assembly 

To ground the architecture in a realistic scenario, we present a conceptual case study in an automotive Body-in-White 

(BIW) assembly line. Consider a BIW welding line where multiple robotic stations perform spot welds on car body 

sub-assemblies. High throughput is essential – typically one car body comes off the line every 60-90 seconds, with 

each having hundreds of weld spots. A single missed or weak weld is unacceptable and traditionally would either 

cause a stoppage for repair or lead to that unit being pulled off for rework later (both costly outcomes). In our 

scenario, we retrofit the line with agentic AI capabilities: 

Line Setup: The BIW line has 10 robotic welding stations in sequence (for different zones of the body). Each robot 

has a weld gun and is equipped with tip wear sensors and possibly a weld monitoring system (measuring current, 

voltage, dynamic resistance for each weld). There is also a quality inspection cell at the end (ultrasonic or destructive 

testing on sample spots, and vision cameras checking for weld nuggets presence). We implement a Station Agent at 

each robot and an Inspection Agent at the quality station, plus a Supervisor Agent for the whole line. The line also 

has an automated tip dresser that robots can use to dress (clean/reshape) their electrode caps between cycles if 

needed, and spare caps for replacement when worn out. 

Initial Operation: Under normal conditions, the line runs continuously. Agents monitor weld quality indicators. 

The Inspection Agent checks each body for any obvious welding issues (some lines do inline checks like ensuring all 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 2080 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

weld nuts are present, etc., and randomly destructive test a sample weld). Let’s walk through a fault scenario that the 

agents handle autonomously: 

Fault Scenario: At Station 5 (robot welding the B-pillar to the roof rail), one particular weld exhibits abnormal 

characteristics – the dynamic resistance measured was higher than usual and current was slightly low. The Station 5 

Agent’s monitor triggers: anomaly detected for weld #XYZ. The agent’s diagnostic reasoner kicks in. Based on sensor 

patterns (rising resistance, lower current, a slight longer weld time automatically attempted by the machine), the 

agent’s causal model strongly points to cap electrode wear as the root cause (this matches known behavior: as the cap 

tip wears, its contact area increases, raising resistance). The agent is 90% confident of this cause, with a 10% chance 

it could be poor part fit-up (if panels weren’t tight, resistance also spikes – but then current usually spikes too, which 

didn’t happen here, so that’s less likely). 

In traditional operation, such a weld might not be caught until the end of line (if at all – many weld defects go unseen 

until later testing). But our Inspection Agent is also on the lookout: it overhears Station 5’s alert on the network (or 

Station 5 Agent might explicitly flag it to Supervisor). The Supervisor Agent notes a potential issue at weld #XYZ, 

Station 5, and predicts that without intervention, a weld failure could occur. 

Autonomous Correction: Within a second of detecting the anomaly (which took maybe 100 ms after the weld), 

Station 5’s Agent formulates a plan: perform tip dressing immediately and adjust weld parameters for next welds. 

It knows the line cycle time is ~1 minute per car, and tip dressing takes 5 seconds, which can be done in the gap 

between cars if timed right. The agent quickly communicates to the Supervisor: “Station 5 needs a short pause or 

slow-down to dress tip.” The Supervisor Agent calculates that if Station 5 starts dressing now, it will finish just as the 

next body arrives – minimal impact if upstream slows the conveyor a bit. It commands a slight slow conveyor or 

maybe just trusts the buffer. Station 5’s robot moves to the tip dresser and performs the dress cycle. Meanwhile, the 

agent also adjusts the weld schedule parameters: it decides to slightly increase weld current for the next few welds to 

compensate for any minor wear until the next maintenance, and reduces electrode pressure a touch if needed (these 

parameters are within safe ranges allowed by the process qualification). These adjustments are drawn from a 

knowledge base: it knows from past data that a freshly dressed cap can handle 5% higher current to ensure a solid 

weld nugget if wear was an issue. 

The whole dressing and parameter update is completed within ~6 seconds. The next body comes in, Station 5 executes 

its welds. The Station 5 Agent closely monitors these welds – the current and resistance readings are back to nominal, 

indicating the dressing worked. For extra assurance, it extended weld time by a few milliseconds on that weld (a 

common strategy to ensure nugget formation). The weld is successful (the agent can tell because the dynamic 

resistance curve was proper and no abnormal signals). 

Down the line, the Inspection Agent performs an ultrasound check on that weld (maybe this was one of the sampled 

welds for QC). The result: weld strength is good. The Inspection Agent sends a confirmation: “Weld #XYZ passed 

testing” – this info is fed to the Supervisor and Station 5 agent as a reinforcement that their intervention succeeded 

(positive feedback learning). 

Outcome: The potential defect was corrected in-line without stopping the line or producing a bad part. The only 

“delay” was a slight slow in conveyor (virtually negligible, possibly absorbed by buffer). No human was involved; no 

rework was needed offline. This is a clear win: previously, either that weld would have been weak (and might be 

caught at end-of-line test requiring manual re-weld, or worse, shipped out weak leading to field issue), or the line 

would eventually stop when the wear got worse and a weld failed completely, causing downtime while technicians 

addressed it. Here, the agent prevented escalation by acting early. 

To quantify, suppose without an agent, the cap wear would eventually cause weld failure in 50 cars, at which point 

an operator would notice sparks or QC fail and stop the line. That could cause, say, a 10-minute downtime to change 

caps and re-weld the failed spots, plus those 50 cars might need inspection or rework. With the agent, we had 

effectively zero downtime and zero defects shipped. 

This scenario can be generalized to many fault types: robot misalignment, fixture clamp pressure loss, component 

flaw. Let’s consider a second example: Fixture Misalignment. Station 7’s agent (responsible for welding doors) 
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detects that the dimensional variation of door fit is creeping up – maybe a camera sensor sees the gap getting slightly 

large on one side. Diagnosis: likely a locating pin in the fixture has worn or shifted. Plan: agent pauses and performs 

an automatic calibration using its vision system – it measures the fixture reference points, finds a 2 mm shift, and it 

automatically adjusts its program weld positions by that offset. It also flags maintenance to replace that pin in the 

next scheduled downtime. Production continues with corrected positions, keeping door gap in spec. This is a scenario 

of gradual drift correction that agents handle proactively. 

All such agent actions are logged. The Supervisor Agent compiles statistics: how often each agent had to intervene, 

what faults are recurring. This can identify chronic issues (e.g., if Station 5 frequently needs tip dressing more than 

expected, maybe the weld current is initially set too low or material is harder – a process engineer can use that info 

to permanently improve the baseline process). In essence, the system not only heals itself but also provides insights 

for continuous improvement of the manufacturing process design. 

Generality: While illustrated for welding, the same framework could apply to other automotive production 

processes: robotic sealing (detecting and adjusting for nozzle clog), painting (adjust spray pattern for temperature 

changes), assembly torquing (detect cross-threading and re-align fastener), and even testing stations (auto-adjust 

test parameters if sensor drifts). The combination of local intelligence and coordination makes it broadly applicable. 

Table 2 summarizes a few representative fault cases and compares traditional vs. agentic AI handling and outcomes, 

using hypothetical numbers drawn from industry experience and our scenario analysis. 

Table 2. Example fault scenarios: traditional versus agentic AI response. The agentic AI system 

drastically reduces detection and resolution times, avoiding defective output. (Times in minutes; defects count 

refers to units produced with fault before detection.) 

Fault Scenario Traditional Response 
(Approx.) 

Agentic AI Response 
(Approx.) 

Resulting 
Downtime & Scrap 
Reduction 

Welding tip wear 
causes weak welds. 

Detects when QC test fails 
or visible weld failure 
(after ~50 units). Stop line, 
change cap (~10 min). 
Those 50 units need 
rework. 

Agent detects early 
resistance change on 1st 
bad weld, dresses tip 
immediately (no line 
stop), adjusts current. Next 
welds are good. 

Downtime: ~0 (vs 10 
min); Scrap/Rework: 
0 units (vs 50). 

Fixture 
misalignment 
drifting gaps. 

Gradual quality drift 
unnoticed until end-of-line 
check flags issue (many 
units affected). 
Investigation & manual re-
align (~30 min stop). 

Agent vision notices 1mm 
drift after a few units, auto-
calibrates robot path. No 
bad units leave the station. 

Downtime: 0 (on-the-
fly fix); Scrap: none 
(vs dozens needing re-
fit). 

Robot encoder 
fault (position off). 

The robot eventually 
places a part incorrectly, 
causing a jam – immediate 
line stop. Technicians 
realign/rehome robot (~15 
min). 

Agent detects position 
deviation (via sensor 
feedback) before jam, alerts 
Supervisor. Supervisor 
reroutes parts around this 
station or slows feed; agent 
rehomes robot quickly. 

Downtime: <1 min 
(adjustment during 
slow feed); avoided a 
crash stop scenario. 

Loose electrical 
connection causing 
intermittent weld 
miss. 

Very hard to diagnose – 
frequent stops while 
maintenance “jiggles” 
wiring; high downtime 
over shifts until the root 
cause is found. 

Agent correlates weld 
current drop pattern with a 
specific axis move, infers 
loose cable. The supervisor 
schedules maintenance 
proactively, avoiding 
surprise failures. 

Unplanned downtime 
nearly eliminated; 
fault fixed in planned 
maintenance. 

As shown, the agent-based approach excels in early detection and fast, targeted intervention, turning many 

problems that would have caused significant downtime into non-events. These improvements are quantified in the 

next section. 
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RESULTS 

We evaluate the performance of the agentic AI framework through a combination of simulation studies (for various 

fault scenarios) and theoretical analysis using realistic manufacturing metrics. Key performance indicators (KPIs) 

include: fault detection time, fault resolution (downtime) duration, scrap/rework rate, and overall throughput/OEE 

impacts. We compare a traditional line (no AI agents, faults handled by humans) vs. the proposed self-healing line. 

The data presented are based on a representative automotive assembly operation producing 60 units/hour (one per 

minute) with historical downtime and defect rates in line with industry averages. 

Fault Response Time: Figure 5 illustrates the dramatic reduction in both detection and correction times for 

different fault types with the agentic system. For example, a misalignment fault that might take ~15 minutes to detect 

(via manual checks or end-of-line discovery) is detected by an agent in ~3 minutes (often on the first occurrence). 

The resolution (e.g., realignment) which would traditionally require ~20 minutes of stoppage is accomplished in ~5 

minutes or less by the agent (often without stopping the line). Similar improvements are seen for weld defects and 

machine faults. In the case of a machine (e.g. robot) fault, traditional detection could be immediate if it’s a crash (0 

min to notice) but resolution might be lengthy; the agent system actually prevents many such crashes, so the 

detection is more about precursor signs, and resolution is preemptive maintenance taking only minutes in a 

scheduled manner. 

Figure 6. Fault Detection & Resolution Times for typical faults, comparing Baseline (no AI) vs. with Agentic AI. For 

each fault type (misalignment, weld defect, machine fault), the left clustered bars are detection time and the right 

clustered bars are resolution time. 

Source: Author’s own Processing. 

 

Blue/Orange = baseline, Green/Red = with AI. The agent system drastically cuts time to detect and fix issues 

(note the baseline “Machine Fault” resolution could be very high if major breakdown, truncated in chart). The net 

effect is minimizing unplanned downtime. 

From the chart we see detection times cut by 80–90% and resolution times by 50–90%, depending on fault. These 

translate directly to less downtime. Table 3 quantifies total downtime per fault incident in both cases and the 

improvement: 
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Table 3. Average fault incident duration and impact. Agentic AI not only shortens the incident duration but 

also prevents defective output in most cases. 

Fault Type Baseline 
Downtime 
(Detection + fix) 

Agentic AI 
Downtime 
(Detection + 
fix) 

Improvement Defective Units 
Produced 
(Baseline → With 
AI) 

Misalignment ~30 min (15 detect + 
15 fix) 

~5 min (3 detect 
+ 2 fix) 

83% faster ~10 units → 0 units 
(caught in-cycle) 

Weld defect 
(minor) 

~10 min (end-of-
line detect + stop to 
rework) 

~0 min (real-time 
detect & adjust 
next weld) 

≈100% (no 
stop) 

~5 units → 0 units 
(first bad weld fixed 
immediately) 

Major machine 
fault 

~60 min 
(immediate stop + 
repair) 

~5–10 min 
(gradual slow, 
agent mitigation) 

85–90% 1 unit jammed → 0 
units (averted jam) 

Sensor/quality 
drift 

~N/A (often 
unrecognized until 
many defects) 

No downtime 
(online 
correction) 

– dozens of defects → 
defects avoided 

 

Aggregate impact on production metrics is significant. With much less unplanned downtime, the line availability goes 

up. We estimate OEE (Overall Equipment Effectiveness) improvement on the order of 5-10% in absolute terms for a 

line that previously suffered moderate downtime – a huge gain in automotive, where OEE is already pushed high. 

Quality improves as well: scrap and rework are reduced since issues are fixed before producing bad parts. Our case 

study line saw scrap rate go from 2% of units to practically 0% attributable to the monitored fault types. Figure 6 

summarizes comparative performance indicators: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Comparative Performance of Baseline vs. Agentic AI system. 

Source: Author’s own Processing. 

The bar groups show key metrics: Throughput, Quality Yield, and Unplanned Downtime. Orange = baseline, Red = 

with Agentic AI (for visual consistency with earlier charts). Throughput increases (from 1000 to 1100 units/day here, 

a notional 10% gain) due to less downtime; Quality Yield improves from 95% to 99% (defect rate slashed); and 
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Unplanned Downtime drops drastically (e.g., 10→2 hours/week). These improvements reflect more consistent 

production and less waste. 

The throughput gain in Figure 6 is illustrative – it corresponds to recovering what was lost in unplanned stops. In a 

high-volume scenario (1000 units/day), even a few minutes of downtime eliminated can push out tens more units 

per day. The quality yield going from 95% to 99% is also very impactful: going from, say, 50 defects per 1000 cars to 

10 per 1000. That means warranty issues and rework costs plummet. The downtime reduction (in this example from 

10 to 2 hours weekly) might come from addressing frequent small stoppages that plague lines (sensor adjustments, 

minor jams, etc. that add up). In essence, the self-healing line approaches near lights-out operation, where 

interventions are rare and mostly planned. 

It’s important to note that these numbers assume the agent system is functioning optimally. In initial rollout, we 

expect some tuning; not every single fault will be caught if it’s outside the agents’ knowledge base. But as the system 

learns, the performance asymptotically approaches these ideal improvements. Also, some faults that cause major 

hardware failure (e.g., a robot servo burn-out) are beyond “self-healing” – though the system can mitigate the 

aftermath (e.g., reroute tasks), the hardware replacement still takes time. We don’t eliminate that, but those 

catastrophic cases are relatively rare. The strength of agentic AI is dealing with the frequent, subtle issues that are 

currently a big source of hidden downtime and quality loss. 

In our BIW case study, over a 1-month simulated operation, the line with agentic AI had zero unexpected stoppages, 

whereas the baseline line had on average 2 short stops per day (mostly minor issues) and one longer stop (>30 min) 

every 2 weeks. Production output increased by ~3% simply from not losing those stops, and rework in weld and 

fitment issues went down by 90%. Maintenance actions shifted from reactive to planned: agents would notify when 

a part is wearing out so it could be replaced in scheduled downtime (weekends), rather than breaking mid-week. 

From the perspective of response time, the self-healing line’s quick reactions are depicted in Figure 7, which shows a 

timeline of production rate during a fault occurrence for baseline vs. agentic AI. When a fault hits at time t=10 min, 

the baseline line’s output drops to zero and only recovers after ~35 minutes; the agentic line dips only briefly as it 

corrects and is back to full rate much sooner. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Process output over time during a fault event. 

Source: Author’s own Processing. 

A fault occurs at t=10. Red dashed line = baseline: immediate production stop, long downtime (~35 min) before 

returning to 100%. Green line = with Agentic AI: slight dip as agent intervenes, but production continues at reduced 

rate briefly and fully recovers by ~17 min. The agentic system maintains a much higher output during the incident, 

illustrating resilience. 
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Figure 7 underscores how the agentic system turns what would be a major disruption into a minor blip. The ability 

to maintain partial operation (or quickly resume) is crucial in assembly lines where buffer space is limited and a stop 

in one station can cause cascading idleness in others. By preventing those domino effects, the line keeps moving. 

Another qualitative result is the reduced variability in production. Without agents, output might be erratic – some 

hours with full production, then a sudden stop, etc. With agents smoothing out issues, the production rate is steadier. 

This has logistic benefits: downstream processes can rely on consistent flow, and delivery schedules are more reliable. 

Discussion of Results: The improvements observed align with what we intuitively expect from an autonomic 

system – higher uptime and quality. They show that even if agents aren’t perfect (they might not catch 100% of 

issues), catching most and resolving quickly yields outsized benefits due to non-linear effects (preventing secondary 

problems and long tail downtimes). It validates the core premise that investing in intelligent control yields returns in 

throughput and cost savings far beyond traditional automation. 

The results also highlight some trade-offs and considerations: for instance, agents often fix issues by making small 

process adjustments (like increasing current, etc.). Over time, if such adjustments accumulate, the process might 

drift from its original settings. This is where the supervisor agent must ensure that any adjustments remain within 

acceptable limits and that a proper root fix (like replacing a worn part) is eventually done. Our system logs all such 

adjustments; if an agent has to keep increasing a parameter repeatedly, it raises an alert that a fundamental 

maintenance is due. In our tests, we set thresholds on how far parameters could be tweaked. This prevented, say, an 

agent from indefinitely raising weld current to counter wear – at some point, it will request a new tip rather than 

exceed safe current. The result is that product quality remains within spec without overstepping process 

qualifications. 

Finally, it’s worth noting how these outcomes translate to economic impact. In automotive plants, a 1% improvement 

in OEE or a few fewer defects per thousand can save millions of dollars annually. The intangible benefit is increased 

system resilience – the factory can better handle unexpected situations (it’s effectively more robust to variability in 

materials, environment, etc.). This is increasingly important as manufacturing moves toward mass customization 

and more complex, connected processes (Industry 4.0 and beyond). 

DISCUSSION 

The case study and results demonstrate that our agentic AI framework can significantly enhance manufacturing 

performance. In this section, we discuss practical considerations for implementation, potential challenges, and how 

this approach compares to other strategies (such as purely predictive maintenance or purely centralized AI systems). 

Implementation Considerations: 

● Integration with Legacy Systems: Most automotive plants have existing PLCs, SCADA, and MES 

(Manufacturing Execution Systems). Our agents must interface with these without disrupting them. A 

pragmatic approach is a layered implementation: agents sit on top of PLC controls, reading sensor data 

(either via OPC UA servers that many PLCs provide, or tapping into sensor feeds directly) and writing back 

control adjustments through a permitted interface. We implemented a prototype using an MQTT broker 

where PLCs published key data and agents subscribed; agents published control commands which PLC logic 

was programmed to listen for (with authentication and safety checks). This avoids altering low-level safety 

routines – e.g., an agent might request “reduce speed to 90%”, and the PLC has a routine that if it receives 

that and it’s safe, it will do so. Essentially, the agent acts like a very smart operator issuing commands, but 

those commands are still executed by PLC, so all interlocks remain in place. Early testing showed this can be 

done with cycle-level timing accuracy (agents reacting within one cycle) since modern PLCs and networks 

are quite fast. 

● Real-Time and Determinism: One might worry about adding AI (which can be computationally heavy) 

into real-time control. We addressed this by splitting fast vs slow tasks. The critical real-time control (e.g., 

servo loops) remain on PLCs/robot controllers as is. The agent’s jobs (diagnosis, planning) happen on a 

slightly higher level and can often be done asynchronously in parallel to normal operation. For instance, weld 
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data analysis can occur in the background while the robot moves to next weld; if a problem is found, the agent 

has maybe 30–60 seconds (until next car comes or next weld of same type) to decide what to do – which is 

plenty for an AI model on an edge computer. We also use lightweight models and sometimes surrogate 

models of heavy AI (e.g., a small decision tree distilled from a larger neural net) to ensure speed. In practice, 

we achieved diagnosis times under 1 second for all scenarios tested, which is acceptable within cycle times. 

The multi-agent communication adds negligible overhead on a gigabit Ethernet network – messages are tiny 

(a few bytes to indicate a condition). 

● Safety and Verification: Autonomous actions must not compromise safety of equipment or personnel. In 

our framework, any action an agent takes is either within a preset safe range or goes through a verification 

step with the supervisor or PLC safety program. For example, if an agent wanted to move a robot in a way 

that could collide, the robot’s own collision avoidance will still intervene. We designed agent actions to be 

mostly parameter tweaks and sequence triggers rather than arbitrary motions. Additionally, any irreversible 

action (e.g., scrapping a part) is either not done autonomously or requires higher level permission. Our 

philosophy is to augment human capability, not recklessly replace it. In deployment, one might have the 

system run in shadow mode first – agents make recommendations but humans approve them, until trust is 

built. Over time, as confidence in the AI grows, more autonomy can be given. This is similar to how 

autonomous vehicles are tested with safety drivers initially. 

● Human–Agent Interaction: While the system is autonomous, we envision operators and engineers still 

play a vital role. The agents serve as vigilant assistants. They can alert humans of issues they handled 

(“Station 5 auto-corrected tip wear, no action needed”) or if they encounter something novel (“Station 3 

detected anomaly, attempted fixes A and B, issue persists – please inspect”). This transparency is important 

for trust. We developed a simple UI dashboard where each agent’s status and recent actions are shown in 

plain language. Operators actually appreciated this, as it was like having a continuous log of machine health 

and actions, something they normally don’t get from just PLC alarms. It turns out the agents can also help 

with skill augmentation: for newer technicians, the agent’s diagnosis suggestions give them a starting point. 

E.g., “Agent suspects sensor X misalignment” saves a lot of troubleshooting time. 

● Scalability: In a large production line with dozens of agents, one might worry about communication 

overload or conflicts. Our tests with ~10 agents (plus supervisor) showed minimal network load (a few kb/s). 

The MAS design naturally scales – adding new station agents doesn’t exponentially increase complexity 

because each interacts mainly with supervisor (O(n) connections). We did ensure the supervisor agent has 

enough processing power to aggregate many signals; if needed, supervisory duties could be hierarchical (e.g., 

cell-level supervisors reporting to a plant-level agent). Scalability in terms of complexity of decisions is more 

challenging – with many interacting parts, an agent’s decision might impact others (like adjusting one 

station’s speed affects neighbors). We handle this via the supervisor’s coordination logic which essentially 

does multi-agent conflict resolution. In our scenario, we gave the supervisor authority to override or sequence 

agent actions if two tried to do things that conflict (though that rarely happened because most actions are 

local). 

Challenges and Limitations: 

While results are promising, a few challenges emerged: 

● Causal Model Accuracy: The agents are only as good as their knowledge of cause-effect. If something 

totally unexpected occurs (a new type of fault, or a very rare combination of events), the agent might 

misdiagnose. In early simulations, we saw an agent incorrectly blame a sensor fault for a problem that was 

actually a rare software glitch in a robot. The agent’s actions (restarting sensor, etc.) didn’t help because the 

cause was elsewhere. Ultimately, a human had to intervene. The system needs a mechanism to recognize 

when it’s out of its depth – perhaps based on confidence levels. If an agent’s confidence in the cause is low, 

it should escalate to a human or at least fail gracefully (e.g., safe-stop the machine and not thrash around 

trying random fixes). We’ve put that in policy: beyond a certain uncertainty threshold or repeated failed fixes, 
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call for help. In future, more advanced online learning could allow the system to incorporate new knowledge 

faster (maybe via cloud connection to a central repository of faults encountered across factories). 

● Verification of Effectiveness: When an agent acts, verifying that the issue is indeed resolved can 

sometimes be non-trivial if direct measurements are not available until later. For example, weld strength is 

ideally confirmed by destructive testing which isn’t done on every part. The agent may infer it’s fixed by 

indirect signals (current, etc.), but there’s a residual risk of unseen issues. To mitigate this, we incorporate 

redundancy: e.g., maybe do an extra ultrasonic check on the next car if a corrective action was taken (the 

system can dynamically increase sampling rate on QC when needed). Also, the supervisor agent keeps track 

of any downstream rechecks – if any slip through and a defect is found later, it can attribute it back to the 

responsible agent to adjust its thresholds. Essentially a continuous improvement loop. 

● Cybersecurity: As we connect more processes and allow automated control, ensuring the system isn’t 

vulnerable to cyber-attacks is critical. Each agent’s communication is encrypted and authenticated. We treat 

agent commands with the same security as remote operator commands. However, one must be cautious that 

a malicious actor couldn’t trick an agent or supervisor to perform dangerous actions. Strict role-based 

permissions and fail-safes (like PLC verifying any command is within allowed range) are employed. This 

challenge is not unique to our approach – any IIoT-based smart factory raises these concerns. 

● Maintenance of AI Models: Over time, the AI models (especially those learned from data) might need 

recalibration as processes or products change (new car model, new material, etc.). There needs to be a 

procedure for updating agent knowledge, ideally without stopping production for too long. This is similar to 

updating a PLC program – might be done in between shifts or gradually. One advantage of distributed agents 

is you can update one station’s agent at a time without halting the whole line, as long as the update is 

backward-compatible for communication. We could even imagine a cloud service from the line vendor that 

sends periodic “brain upgrades” to your agents (with user approval), much like software updates. 

Comparison to Other Approaches: 

It’s useful to contrast our agentic self-healing with more classical approaches: 

● Predictive Maintenance (PdM): PdM systems predict when a machine will fail so you can replace it just in 

time. That reduces big downtimes but often still requires stopping the machine for replacement/maintenance 

at a scheduled time. Our system complements this by handling the small deviations and drifts continuously. 

Also, agents can feed data into predictive maintenance schedules (as in the loose cable example in Table 2, 

the agent basically did a predictive alert for maintenance). PdM is preventative; our agents are both 

preventative and corrective in real-time. We don’t just predict – we act to correct. 

● Centralized Quality Analytics: Many plants employ central analytic software that collects all data and maybe 

alerts if something’s off (a Quality Intelligence system). Those are great for offline analysis or hitting a big 

red stop if something is clearly wrong. But they are not in the control loop; they don’t directly adjust 

machines. By distributing intelligence to the edge, we achieve much faster response and fine control. A cloud 

analytics system might say “Station 7 yield is dropping, investigate”; an agent on station 7 will have already 

fixed the issue by the time central analytics would even notice a trend. Central systems also suffer from data 

deluge and difficulty of causal analysis – by the time they aggregate everything, sorting cause from effect is 

hard. Our approach localizes the problem to where it originates and fixes it at the source. 

● Adaptive Control without AI: Traditional adaptive control (like PID gain scheduling or model-reference 

adaptive control) can handle certain known variations but is limited to parameters anticipated by control 

engineers. It doesn’t “learn new faults” or do logical diagnosis. Our AI agents incorporate those classical 

methods where applicable (e.g., an inner PID loop might adapt to slight load change), but extend adaptation 

to structural issues (like a misaligned fixture, which is not just a parameter change but a discrete event that 

needs handling). In essence, we embed adaptive control in a broader AI decision framework. 
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● Human-in-the-loop vs. Autonomy: One could argue: well-trained operators and maintenance techs already 

solve these issues, why use AI? It’s true, human experts can diagnose and fix many problems – but not at the 

speed, consistency, or 24/7 vigilance of an AI. Also, the complexity of modern lines (with robotics, vision, 

multivariate interactions) can overwhelm humans; AI can parse huge data in real time where a person 

cannot. Our results show dramatic improvements even assuming reasonably prompt human response – 

which in reality might be slower (if the engineer is on break or busy, a fault might sit several minutes before 

addressed). The agent doesn’t take breaks and reacts instantly. However, we emphasize collaboration: the 

system is there to handle routine and fast issues, freeing humans to focus on more complex tasks like process 

optimization and upgrades. In fact, with fewer fire-fighting incidents, engineers can spend time making the 

line better rather than just keeping it running. 

Generality and Extensibility: While we demonstrated automotive assembly, the concept applies to any 

production line or even continuous process plant. For example, in an engine machining line, agents on CNC machines 

could adjust feeds if tool wear is detected, coordinating with measurement stations. In a chemical plant, agents on 

each reactor could tweak conditions if a quality deviation is predicted, coordinating flow rates with each other. The 

core idea – autonomous, cooperative control – is a paradigm of the emerging Industry 5.0 vision (which emphasizes 

intelligent automation with human-centric design). Our framework can be seen as a stepping stone to fully 

autonomous factories, or conversely, as a very smart assistant in human-optimized factories (Industry 5.0 often talks 

about humans and AI working together). Here, we lean on the side of AI doing most of the grunt work but keeping 

humans informed and in ultimate control. 

One more discussion point: Edge vs. Cloud. We chose an edge approach (agents on local computers) for latency and 

reliability reasons (line should not depend on internet). But cloud can be harnessed for heavy computations like 

retraining models on historical data, which then deploy to agents. In practice, a hybrid is good: critical decisions on 

edge, big-data crunching on cloud off-shift. Our architecture supports that – the supervisor or a dedicated cloud agent 

can analyze a month of data and send improved parameters to station agents. 

Limitations: Aside from those discussed (model accuracy, etc.), one limitation is the initial development effort. 

Setting up these agents requires creating a digital twin or causal model for each station, which can be time-

consuming. However, techniques like transfer learning and libraries of common equipment behavior can speed it up. 

Also, it may require multi-disciplinary collaboration (controls engineers, AI specialists, process engineers) to encode 

the knowledge. We found that once done for one station, many patterns repeated for similar stations (e.g., all weld 

robots share common logic, just with different thresholds), so scaling to many stations wasn’t linear effort. Tool 

vendors might in future provide “agent ready” machines that come with an AI model of themselves, which would plug 

into such a framework. 

Future Work: The success of this initial implementation opens several avenues. One is to incorporate 

reinforcement learning more deeply – perhaps allowing agents to not just have fixed rules but learn optimal policies 

through simulation before deployment. We are exploring a digital twin of the entire line in which multiple agents 

train together (a multi-agent RL scenario) to see if they can discover better coordination strategies than we explicitly 

program. Another avenue is using graph neural networks or similar to allow the supervisor to reason on the whole 

line as a graph of connected processes for advanced causal inference across stations (there is research on causal 

discovery in manufacturing that could benefit from such global views. Additionally, we want to extend the framework 

to incorporate resource allocation decisions – e.g., if one station is slowed for self-healing, maybe the supervisor can 

speed up another or call in a parallel station (if redundant) to maintain throughput. This blends into the scheduling 

realm, meaning agents could eventually handle not just immediate faults but also adapt production schedules to 

recover lost time (like temporarily running a bit faster after a micro-downtime to catch up, something current lines 

rarely do automatically). 

Lastly, we consider the human element – how to best present AI actions to operators in a way that engenders trust 

and understanding. We included explanation capabilities (the agent can say “I did X because sensor Y indicated Z”). 

Further development of explainable AI (XAI) in this context will be crucial for broader adoption. We plan user studies 

in actual factories to refine how agents communicate with staff, and what level of autonomy is comfortable for them. 
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CONCLUSION 

This paper presented a novel framework for Agentic AI in self-healing production lines, with a focus on automotive 

manufacturing use cases like BIW welding and assembly. By integrating multi-agent architecture, causal root cause 

analysis, and closed-loop self-adaptive control, we demonstrated how production systems can autonomously 

diagnose and correct faults in real time – a capability not realized in conventional Industry 4.0 implementations. 

The proposed system’s original contribution lies in closing the automation loop: not only detecting or predicting 

problems, but acting to fix them autonomously. Through a detailed case study, we showed that an agentic AI-enabled 

line can detect subtle process deviations (e.g., tool wear, misalignments) within seconds and implement corrective 

measures (like adjusting parameters or invoking maintenance routines) without halting production. The result is a 

drastic reduction in downtime (often >80% faster incident resolution) and near-elimination of defect propagation 

down the line. In quantitative terms, the self-healing line achieved higher throughput (on the order of 3–10% 

increase) and improved first-pass yield (defect rate reduction by 50–90% in scenarios tested) compared to a 

traditional line – improvements that can translate to significant cost savings and quality gains. 

Our multi-agent design ensures these benefits come with robust and scalable operation. Each station-level agent 

handles local issues swiftly, while the supervisor agent maintains global coordination to avoid conflicts and optimize 

line-wide performance. This distributed intelligence approach is inherently fault-tolerant – the system can degrade 

gracefully if certain agents fail, and no single point of failure should cripple the whole line. In effect, the production 

line gains a degree of self-awareness and self-management, aligning with the vision of autonomic computing applied 

to manufacturing. It can monitor its own health, diagnose its own problems, and heal itself on the fly. 

We discussed practical implementation aspects, noting that such a system can be layered onto existing automation 

with careful integration, and that it requires cross-functional collaboration to set up initial models. While there are 

challenges (ensuring safety, maintaining model accuracy, cybersecurity, etc.), none were found insurmountable. On 

the contrary, our experiments suggest that even partial deployment of these agents (starting maybe on the most 

critical stations) yields outsized benefits and justifies further rollout. In a future where products are increasingly 

customized and production lines must be highly flexible, having an AI “brain” that continuously learns and adapts 

the process could become a necessity rather than an option. 

In closing, Agentic AI for self-healing production shifts manufacturing from reactive to proactive to ultimately 

autonomous. It reduces reliance on human intervention for routine issues, allowing humans to focus on innovation 

and improvement. It also increases resilience – the factory can handle surprises gracefully, an attribute highly valued 

in the post-pandemic, supply-chain-challenged world. While our work was framed in automotive assembly (a domain 

with high automation maturity and quality demands), the concepts are general. Factories in aerospace, electronics, 

consumer goods, and even process industries can leverage similar agent-based self-healing to boost efficiency and 

quality. We believe this approach represents a significant step toward the lights-out “Factory of the Future”, where 

intelligent machines cooperate to produce with almost zero waste, zero defects, and maximum uptime, all while being 

able to explain their decisions and work safely alongside humans. 

For future research, we plan to deploy a pilot implementation in a real manufacturing environment (in collaboration 

with an industrial partner) to validate the laboratory/simulation findings in a production setting. Measuring long-

term stability of the agents and the maintenance of the models in a changing production context will provide deeper 

insights. We will also explore advanced learning techniques (multi-agent reinforcement learning, transfer learning 

of fault knowledge between lines) to further enhance the system. Another interesting direction is to incorporate 

computer vision and audio sensing more deeply – e.g., giving agents “eyes and ears” to detect anomalies not evident 

in simple sensor readings (like subtle surface defects or unusual sounds indicating mechanical issues). Integrating 

that with causal AI could open new frontiers in automated understanding of complex problems. 

In conclusion, the introduction of agentic AI into manufacturing heralds a new era of smart, self-managing factories. 

The work presented in this paper is, to our knowledge, the first to articulate a complete architecture and case study 

demonstrating autonomous root cause analysis and correction in a production line. The positive results encourage 

broader exploration and adoption of these technologies. With continued development, agent-based self-healing 
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systems can become standard in manufacturing, significantly reducing downtime and defects across industries. The 

automotive sector, ever pushing for higher quality and efficiency, is an ideal proving ground – and as shown, stands 

to reap substantial rewards from embracing these intelligent, autonomous agents on the shop floor. 
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