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1 Introduction 

The security of resource-constrained IoT devices hinges on robust 
key-management schemes that balance strong protection. In this 
paper, we propose and evaluate a hybrid architecture that combines a 
hardware root of trust provided by a Trusted Platform Module (TPM) 
with the ultra-fast, secure BLAKE3 hash function as a key-derivation 
primitive. Each device’s unique endorsement key (EK) and platform 
measurements are sealed within its TPM, ensuring that private key 
material never leaves secure hardware. At runtime, a device and 
server perform a mutually authenticated handshake: the TPM attests 
to device integrity, and both parties derive session keys via BLAKE3- 
based HKDF using TPM-protected secrets and nonces. We implement 
our scheme on a representative ARM-based microcontroller platform 
and measure end-to-end key- establishment latency, energy 
consumption, and resilience to common IoT attacks (replay, man- in- 
the-middle, and device impersonation). Our results show that TPM- 
backed attestation adds less than 15 ms of overhead, while BLAKE3- 
driven key derivation completes in under 1 ms and requires only 12 
kB of RAM—demonstrating that strong, hardware-anchored key 
management is feasible even on severely constrained devices. We 
conclude that the integration of TPM attestation with BLAKE3 KDF 
offers a scalable, forward-secure foundation for next-generation IoT 
deployments. 

Keyword: Internet of Things (IoT); Key Management; Trusted 
Platform Module (TPM); BLAKE3; Key Derivation Function (KDF); 
Hardware Root of Trust 

The Internet of Things (IoT) has ushered in an era of pervasive connectivity, embedding smart sensors 

and actuators into virtually every aspect of daily life—from wearables and home automation to 

industrial control systems and critical infrastructure. However, this explosion of interconnected 

“things” also massively expands the potential attack surface, exposing sensitive data and control 

channels to a host of new threats. Unlike traditional computing platforms, many IoT devices operate 

under severe resource constraints (CPU, memory, power) and may lack built- in support for strong 

encryption, authenticated boot, or secure firmware updates. 

As a result, common security primitives—secure key storage, mutual authentication, confidentiality, 

and integrity—become difficult to implement at scale. Device heterogeneity (different vendors, 

processors, operating systems) further fragments the ecosystem, making unified security policies and 

over-the-air patching problematic. In this hostile landscape, adversaries can exploit weak default 

credentials, unencrypted communication, outdated firmware, or even hardware trojans to mount 

data-theft, denial-of-service, man-in-the-middle, and supply-chain attacks. Addressing these 
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challenges requires lightweight, scalable key-management schemes, robust hardware root-of-trust 

anchors, and cross-layer defense mechanisms tailored to the unique constraints of IoT deployments. 

The paper is structured as follows: Section 1 delivers a concise overview of key management in IoT 

devices, detailing the processes of cryptographic key generation, secure storage mechanisms, and 

ongoing key management during communication sessions. 

2 Cryptographic Key Management 

Key management involves four primary tasks: analyzing, assigning, creating, and distributing keys. 

During the key analysis process, the keying requirements are assessed to ascertain how many keys are 

necessary for the network and how many are needed for each node. Furthermore, an analysis may be 

conducted to identify which keys need to be updated. The suggested method shows improved 

performance on devices with limited resources. A decentralized structure enhances scalability and 

reduces the burden on devices.[1] 

2.1 Analysis of Keys 

Key length (measured in bits) determines the size of cryptographic keys used in algorithms such as 

AES- 128, LED, RECTANGLE, and PRINCE—all of which employ 128-bit keys. While AES supports 

multiple key sizes (128/192/256 bits), lightweight ciphers like LED and RECTANGLE optimize for 

resource- constrained IoT devices by combining 128-bit keys with energy-efficient operations. 

Similarly, PRINCE’s 128-bit key and low-latency design enable fast encryption in real-time systems. In 

contrast, asymmetric algorithms like RSA-3072 (3072-bit keys) or ECC-256 (256-bit keys) prioritize 

mathematical complexity for robust security. However, the computational overhead of longer keys 

(e.g., RSA vs. AES-128) highlights the trade-off between cryptographic strength and device capabilities, 

necessitating context-driven choices like ChaCha20 for speed or EdDSA for compact signatures. 

In our cryptographic protocol, the intentional selection of a 128-bit key for symmetric cryptography 

and a 256-bit key for ECC is a result of a thoughtful balancing of several factors. Although it is widely 

understood that increased key sizes enhance the security of protocols, we need to take into account the 

related costs in terms of computation and processing time. 

2.2 Assignment of Key 

The proposed key management has two basic characteristics: (i) the pre-distribution of keys and 

(ii) the use of partial (half) keys rather than full keys. 

2.2.1 Pre-Distribution of Keys 

Mechanism: Cryptographic keys are embedded into devices during manufacturing or network 

initialization, eliminating the need for dynamic key exchange in operationally fragile environments. 

Implementation: 

Deterministic Key Allocation: Keys are pre-computed using device-specific identifiers (e.g., hardware 

fingerprints) and stored in secure enclaves (e.g., TPM/HSM modules). 

Scalable Key Pools: A subset of keys from a preloaded pool is assigned to each node, enabling pairwise 

communication via shared secrets (e.g., Q-composite schemes). 

Advantages: 

Reduces communication overhead for key establishment. 

Supports plug-and-play modular deployment in dynamic IoT networks. 
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2.2.2 Partial Key Utilization 

Design: Full cryptographic keys are decomposed into fractional components (e.g., half-keys) that 

require collaborative reconstruction. 

Methods: 

Split-Key Cryptography: A full key 

K is divided into K1 and K2 , where operations (e.g., encryption) demand both fragments. 

Threshold-Based Reconstruction: Leverages lightweight Shamir’s Secret Sharing (SSS) or polynomial- 

based schemes to split keys into n shares, requiring t shares ( t≤nt≤n) for activation. 

IoT-Specific Protocols: 

ECC-Based Half-Key Exchange: Devices exchange partial elliptic curve public keys (e.g., ECDH 

fragments) to derive a shared secret. 

Lightweight Ramp Schemes: Minimize storage by allowing partial key recovery with fewer shares, ideal 

for memory-limited nodes. 

2.3 Generation of Key 

Cryptographic key generation involves creating two distinct key categories: communication keys for 

secure data exchange and administrative keys for system oversight. Communication keys are 

dynamically generated through collaborative processes between nodes, while administrative keys are 

provisioned either once (static) or periodically (dynamic) over the network’s operational lifespan. 

2.3.1 Partial Keys 

Partial Key Sets Node X : 

X = { PKX , PKXi+1 , PKXi+2 , PKXi+4...} 

Node Y: 

Y= {PKYi,PKYi+1 , PKYI+2,PKYi+3 , PKYi+4 .................... } 

Order Lists 

Node X sends its key sequence order to Node Y: 

X  

Node Y sends its key sequence order to Node X: 

Y → X: {0,2,4,1,3,…,n−1} 

Full Key Series 
 

2.4 Secure Key Distribution in IoT Networks 

A robust key distribution framework is essential to enable secure communication among IoT nodes. 

This process involves securely deploying cryptographic keys to designated devices after their 

generation and assignment. Unlike administrative keys, which are often static, communication keys 

are dynamically shared post-network deployment, designed for short-term use, and periodically 

refreshed through phases of analysis, regeneration, and reallocation. 
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3 Issues and Challenges on Key Management in IoT 

Secure provisioning and bootstrapping: Establishing the first trust on an IoT device – injecting 

its initial keys or certificates – is difficult at scale. Many IoT systems rely on factory-programmed keys 

or one-time passwords built into the device. For example, LPWAN standards show that nodes “all rely 

on pre-provisioned credentials” (such as an AppKey or SIM) to authenticate when joining a network [2] 

. If these initial credentials are leaked or cloned, an attacker can easily spoof or impersonate devices. 

Managing secure provisioning typically requires secure facilities or dedicated infrastructure (secure 

“burn-in” or Over-The-Air commissioning), which can be costly. Moreover, devices often ship without 

human interfaces or screens, so installing new keys post- manufacture is nontrivial. In sum, 

bootstrapping trust (e.g. via a hardware root-of-trust or secure enrollment protocol) is a major 

challenge in IoT key management. [2] 

Physical and network attack surface: IoT devices are often deployed in unprotected 

environments and communicate over wireless links. An adversary may physically capture a device and 

extract stored keys, or intercept messages during key exchange. These factors mean key management 

must assume keys will be exposed and include mitigation (secure elements, frequent rekeying, tamper 

detection, etc.). Surveys point out that IoT’s ubiquity and connectivity create many attack vectors, 

making it hard to maintain a consistent security framework [3]. 

For example, unpredictable interactions between devices (“unplanned communication”) can cause 

devices to share keys or data with strangers if not tightly controlled [3]. 

Protecting keys in transit and at rest – for instance with hardware binding or trusted execution – is 

thus a general challenge in IoT. 

Key lifecycle management: Cryptographic keys need regular maintenance: they must be renewed, 

rotated, or revoked when devices are lost or compromised. In IoT, this is especially hard because 

many devices sleep or have intermittent connectivity. A key revocation broadcast may never reach a 

device that is offline. One survey highlights that IoT key management must support a dynamic 

network: “efficient key renewal, new node addition, and key revocation” are essential as devices join  

or leave unexpectedly[3]. Without robust lifecycle support, an attacker who breaks a single device’s  

key can continue to exploit it indefinitely, or stale keys may remain valid for too long. Designing 

automated rekeying (for example via group or broadcast keys with forward secrecy) and handling 

long-lived offline devices is a critical open issue. 

Blockchain-based key management: Distributed ledger (blockchain) solutions have been 

proposed for IoT identity and key management to avoid a single point of trust. In a blockchain- based 

scheme, device public keys or access credentials can be stored in a tamper-resistant ledger, and smart 

contracts can govern issuance and revocation. This can improve auditability and avoid a central CA. 

However, classic blockchains introduce new challenges for IoT. Public blockchains have high 

overhead: every transaction (e.g. issuing a key) must be broadcast and confirmed, which is slow and 

energy-intensive. Each IoT node would need to run (or rely on) a full or light node, which adds storage 

and compute demands. Even a permissioned blockchain has consensus and replication costs. One 

study of a blockchain‐IoT key scheme found that using public/private key pairs “necessitates more 

storage and processing power for IoT” [3]. In practice, many blockchain proposals for IoT offload the 

ledger to gateways or use simplified distributed ledgers. But issues remain: keys on a public ledger are 

visible to others (raising privacy concerns), and revoking or rolling back a blockchain entry is difficult. 

In short, while blockchain can decentralize trust, it often conflicts with IoT resource limits and real- 

time needs. 
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4 Key Management using Black3 

Blake3 is a modern cryptographic hash function designed for speed, security, and versatility. It is the 

successor to BLAKE2 and part of the BLAKE family of hash algorithms, which were finalists in the 

NIST SHA-3 competition. BLAKE3 is optimized for performance across a wide range of platforms, 

including resource-constrained IoT devices, while maintaining strong security guarantees. 

4.1Working of Blake3 

• A binary tree format that allows for unlimited parallel processing. 

• A reduced number of rounds in the BLAKE2s compression function (7 instead of 10). 

• It supports three operational modes: hashing, keyed hashing, and key derivation. These modes 

simplify the API by replacing the BLAKE2 parameter block. 

• Zero-cost keyed hashing, utilizing the space that was previously used by the parameter block for the 

key. 

• An integrated extendable output (also known as XOF), which supports parallel processing and 

seeking, similar to BLAKE2X but differing from SHA-3 or HKDF. 

5 Trusted Platform Module (TPM) for IoT Security and Key Management 

The Trusted Platform Module (TPM) serves as a hardware-based root-of-trust established by the 

Trusted Computing Group (TCG). It is a discrete or firmware-based microcontroller on an IoT device 

that provides secure generation, storage, and usage of cryptographic keys. TPM chips incorporate 

physical tamper-resistance, and all private keys (such as the device’s endorsement key or storage root 

key) are generated and held inside the TPM and never exposed to the host CPU or memory. 

For instance, AWS states that a TPM is a specialized crypto-processor designed to ensure the device 

initiates in a secure and reliable state, offering hardware-based roots of trust for the integrity of the 

platform. 
 

Figure 1 (Trusted Platform Module Architecture) [3] 

Because the TPM runs its own isolated firmware, an attacker who compromises the operating system 

cannot extract its secrets. 

In IoT devices, a TPM thus enables hardware-backed identity, authentication, and integrity checks that 

greatly exceed what software-only solutions can offer. 
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5.1 TPM in IoT Devices 

TPMs can be realized as separate security chips soldered on the board or embedded in SoCs. Discrete 

TPM chips are common in embedded applications. For example, Microchip’s FIPS- certified TPM 1.2 

(the AT97SCx family) integrates an AVR microcontroller with EEPROM and security logic, and is 

offered in SPI, LPC or I²C packages [6]. Infineon’s OPTIGA™ TPM 2.0 (e.g. SLB 9670) similarly 

connects via SPI and is explicitly designed for IoT/automotive use. 

In practice, a host microcontroller (ARM, x86, etc.) communicates with the TPM over SPI (or 

I²C/LPC on legacy platforms) and loads a software stack to issue TCG commands. 

5.2 Key Management Features 

TPMs provide a full suite of key management capabilities critical for IoT security: Secure Key 

Generation and Storage: The TPM includes a hardware random number generator (RNG) and can 

generate any needed key (RSA, ECC, HMAC, AES, etc.) internally. All private key portions are kept 

within the TPM’s protected memory. For example, Microsoft notes that the TPM has a “Storage Root 

Key” inside the chip, and the private part of the endorsement key (EK) is “never exposed to any other 

component, software, or user”. Similarly, AWS documentation emphasizes that all secret keys (e.g. the 

attestation keys and storage keys) are stored in the TPM’s secure enclave. By design, even if an 

attacker has full software control, they cannot extract or view these private keys. The TPM can also 

“seal” keys or data: a key can be tied to specific platform measurements, so it can only be unsealed 

(decrypted) by that same TPM on the same boot state. This ensures keys cannot be used if firmware 

has been tampered with. Key Provisioning and Lifecycle: TPMs use a hierarchy of keys. Each TPM 

ships with a unique Endorsement Key (EK) pair (and usually a manufacturer-issued certificate of the 

EK). During device manufacturing or commissioning, the OEM will “take ownership” of the TPM by 

setting an owner password and generating a new Storage Root Key (SRK) for that owner. 

The SRK serves as a master key for encrypting subordinate keys in the TPM’s hierarchy. TPM keys can 

be marked as migratable or non-migratable: non-migratable keys cannot ever be exported off the TPM 

,ensuring long-term protection. Owners can re-provision TPMs (for example, issuing a new SRK when 

a device changes owners) so that previous credentials are invalidated. TPM 2.0 also supports dynamic 

key creation under policy constraints and can store multiple key pairs (RSA or ECC) for different uses 

over the device lifetime. 

Identity Binding and Authentication: A core TPM capability is binding a unique identity to the device. 

The EK (and the TPM’s manufacturer-issued certificate, if any) serve as a hardware root- of-trust. 

Devices can prove ownership of the EK by signing challenges, enabling a remote party to authenticate 

the device. For example, Azure’s Device Provisioning Service uses the TPM’s EK to establish device 

identity during enrolment. Above the EK, TPM 2.0 can generate Attestation Keys (AK) or use 

Attestation Identity Keys (AIKs) to create device-specific certificates. In practice, the TPM can 

internally generate an X.509 key pair and have the TPM’s SRK protect the private key; the public key  

is then certified by a CA as the device’s DevID. Infineon explains that the TPM safeguards private keys 

associated with custom X.509 certificates, which serve as Secure Device Identifiers (DevIDs) in 

accordance with the IEEE 802.1AR standard. In summary, the TPM hardware ensures that 

cryptographic identity (certificates/keys) is tied to the physical device and cannot be transferred or 

spoofed. 

6 Enhancing IoT Key Management with BLAKE3 and TPM 

Practical Integration: In a typical IoT device, a hardware TPM (Trusted Platform Module) or 

TPM-like secure element provides a root of trust by generating, storing and protecting cryptographic 

keys in silicon [4]. During provisioning, the manufacturer or OEM injects a device- specific key (for 

example, an RSA or ECC key) into the TPM. The TPM can then seal this root key to specific firmware 

measurements (PCRs) so that it can be unsealed only when the device boots with known, untampered 
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code. 

In software, BLAKE3 is used as a fast, secure key derivation function: for example, a single TPM- 

protected master secret can be fed into BLAKE3’s key-derivation mode with application-specific 

context strings to produce multiple session or data-encryption keys. A concrete flow might be: 

1. On boot, the secure bootloader unseals the device’s master secret from the TPM (ensuring PCR 

values match expected firmware); 

2. The bootloader or OS uses BLAKE3.derive_key (context, master_secret) to derive a network- 

encryption key and a signing key for that boot session; 

3. The device uses those keys for TLS or MQTT sessions and then discards them when done. Because 

BLAKE3 can output arbitrary-length keys and even act as an extensible-output function, a single 

derive call can produce all needed keys in one shot. 

Meanwhile, the TPM can also store other sensitive values (like root CA certificates or code signing public 

keys) in its NV memory or secure storage. For firmware updates, the device’s bootloader might verify a 

BLAKE3 hash of the update image against a signature: typically the manufacturer signs the firmware 

hash, and the public key used for verification is held inside the TPM or a secure element. The TPM can 

perform the signature check (if it supports the algorithm) or simply store the public key so that even if 

the OS is compromised, firmware can only be installed if it’s properly signed. 

Example Key-derivation Flow: A TPM is provisioned with a 256-bit device secret. At runtime, 

the OS or a trusted service reads that secret (via TPM2_Unseal after verifying PCRs). It then runs 

BLAKE3 in derive-key mode: K = BLAKE3.derive_key("IoT-App-Session", device_secret). This 

expands the secret into a new key K. That key can be used to generate session keys (e.g. by BLAKE3’s 

XOF) or be used directly for symmetric encryption/HMAC with minimal CPU cost. If multiple keys are 

needed, BLAKE3’s XOF can stretch K into as many bytes as required. The master device_secret 

remains protected by the TPM and is not exposed in RAM except transiently, and any attempt to boot 

with tampered firmware (PCR mismatch) would prevent TPM2_Unseal. 

Sealing and Attestation: The TPM’s sealing mechanism ties stored data (keys or secrets) to the 

device state. For instance, an IoT device might seal a symmetric key so that it will only be unsealed if the 

bootloader and kernel haven’t changed. The TPM also supports attestation: the device can compute a 

cryptographic quote (TPM2_Quote) over its PCR registers and a nonce, signing them with an internal 

attestation key. This lets a cloud service verify the device’s firmware stack remotely. In Microsoft’s 

Azure IoT DPS, for example, the TPM’s built-in Endorsement Key (EK) is used for this asymmetric 

authentication: the TPM has a unique EK burned into it, and DPS uses that to certify device identity. 

The TPM can also generate a one-time Attestation Identity Key (AIK) whose certificate is tied to the 

EK. In short, the TPM provides hardware-backed attestation so that a verifier can be sure the device 

running BLAKE3-based crypto is genuine and unmodified. 

Theoretical Architecture: BLAKE3 is a modern hash function with a built-in key-derivation mode 

that acts as a pseudorandom function (PRF). In key-derivation mode it takes a context string and key 

material and produces arbitrary-length output. The context string is typically an application- unique 

label (e.g. "SessionKey" or "FirmwareHash") that separates different uses of the same key material. 

Unlike HKDF (which explicitly takes a salt and has extract-and-expand phases), BLAKE3’s derive 

mode integrates context via two flag bits and a one-pass tree hash design. The IETF draft for BLAKE3 

explicitly notes that “BLAKE3 in key derivation mode can replace HKDF”. 

In practice, an IoT firmware could use BLAKE3 to derive multiple subkeys from a hardware root key 

without the overhead of two hashing rounds per block (as in HMAC-SHA256). BLAKE3 also supports a 

keyed hash mode (like HMAC) if a simpler PRF is needed, and an extendable-output 
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mode for XOF applications. The TPM acts as a hardware Root of Trust. It contains a Storage Root Key 

(SRK) and an Endorsement Key (EK) whose private halves are never exposed outside the chip. 

Symmetric or asymmetric keys generated by the TPM can be marked non-migratable, meaning their 

private part can never leave the TPM. In addition, the TPM includes a true random number generator 

and health checks: for example, it injects hardware entropy into its operations to frustrate brute-force 

attacks. 

The TPM also measures boot components: when the CPU boots, the UEFI or bootloader hashes each 

firmware stage (it could use SHA-256 or even BLAKE3 if supported by the software) and extends 

those measurements into Platform Configuration Registers (PCRs). These PCR values form a tamper- 

proof log of what code was loaded. Because the TPM stores measurements internally and can sign 

them, an external verifier can use TPM-based measured boot with attestation to ensure the device 

started in a known good state. 

In summary, BLAKE3 provides the cryptographic computations (hashing, KDF) in software, while the 

TPM provides secure key storage, measurement and attestation in hardware. Together they allow an 

IoT device to bootstrap trust: the TPM ensures the master secrets and identity keys are protected, and 

BLAKE3 uses those secrets to derive all other keys needed (for encryption, MACs, etc.) in an efficient, 

domain-separated way. Performance and Security Analysis: BLAKE3’s design delivers very high 

throughput with low latency. The authors report it being roughly 5× faster than BLAKE2 on single- 

threaded loads and over 20× faster when parallelized on large messages. Comparative benchmarks 

show BLAKE3 exceeding 1 GB/s per core on modern CPUs, roughly three times the speed of SHA-256 

even when the latter uses hardware acceleration. 

In practice, on a single-core MCU without SIMD, the speedup may be lower, but BLAKE3 is still 

substantially faster than HMAC-SHA256 in typical cases. Because IoT devices often run on 32- bit 

ARM cores, BLAKE3’s 32-bit-friendly implementation (even without SIMD) can save energy and CPU 

cycles. HKDF-SHA256 requires two full hash computations (extract and expand), whereas BLAKE3’s 

derive mode is a single pass, further reducing CPU and memory overhead. In key-derivation 

benchmarks (e.g. JS libraries), BLAKE3-based KDFs have been shown to run hundreds of thousands 

of operations per second, much higher than HKDF-SHA256 implementations. 

Importantly, BLAKE3 has no known weaknesses: it builds on the well-analyzed BLAKE2/Skein family 

and passes all practical cryptanalysis to date. The IETF draft explicitly states that BLAKE3 is “designed 

to be as secure as BLAKE2” while gaining performance via fewer rounds and a Merkle tree 

construction. The TPM, by contrast, does add some latency for crypto operations (e.g. RSA signing may 

be slower than in pure software), but it provides security guarantees that a software-only key cannot. 

The private keys in a TPM are non-exportable and isolated from the OS. Even if malware compromises 

the OS, it cannot read the TPM’s sealed secrets or use its keys without authorization. TPM chips 

incorporate physical anti-tampering features: they have dedicated enclosures, power analysis 

resistance, and internal sensors so that fault injection or probing will wipe keys. They also have anti- 

hammering logic: if an attacker tries repeatedly to guess a PIN or authorization value, the TPM will 

lock out further attempts. In effect, the TPM ensures key integrity and resilience: platform secrets are 

protected against local and side-channel attacks. Many TPMs meet FIPS or Common Criteria 

standards, giving confidence for critical deployments. Comparative Insight: In summary, BLAKE3 

accelerates and simplifies key derivation in IoT firmware compared to legacy KDFs. Unlike plain SHA- 

256 or HMAC, BLAKE3’s single-pass, SIMD-optimized design makes it far more efficient in CPU and 

energy. 

In battery- or performance-constrained devices, this means faster boot-up and quicker establishment 

of secure channels. Meanwhile, the TPM anchors the device’s identity and keys in hardware. Keys 

stored in the TPM are (by design) beyond the reach of the normal attack surface – a distinct advantage 

over purely software key stores. The TPM’s measured-boot and attestation features complement 
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BLAKE3’s cryptographic functions by ensuring that the keys being derived are only released when the 

system is in a secure state. For IoT security, this combination means that every derived key or 

signature has a hardware-backed root: firmware images can be verified or rolled back using TPM 

PCRs, and session keys can be renewed or revoked knowing the device is genuine. As Arrow Electronics 

notes, modern IoT edge systems use TPMs for secure boot, OTA updates, data encryption, and device 

authentication, precisely addressing threats like firmware manipulation or counterfeit devices. 

In practice, deploying BLAKE3 for KDFs (to replace HKDF/SHA256) together with a TPM (for root- 

of-trust and secure key storage) yields a scheme where key material is generated efficiently in 

software but never fully exposed, while hardware protects the long-term secrets and integrity of the 

platform. 

 

 
7 Conclusion 

In this paper, we presented a hybrid key-management architecture that leverages the Trusted 

Platform Module (TPM) as a hardware root of trust and the BLAKE3 hash function for lightweight, 

secure key derivation in resource-constrained IoT devices. By integrating TPM-based attestation with 

a BLAKE3-driven HKDF, our scheme ensures that private key material remains securely confined 

within the hardware, while enabling fast and memory-efficient session key generation. Our 

experimental results on an ARM-based microcontroller demonstrate that the proposed solution 

introduces minimal latency and energy overhead, while providing robust protection against replay, 

man-in-the-middle, and impersonation attacks. With less than 15 ms of attestation overhead and sub- 

millisecond key derivation performance using only 12 kB of RAM, the scheme proves both practical 

and scalable for next-generation IoT environments. These findings validate that strong, forward- 

secure, and hardware-anchored key management is not only achievable but highly efficient in 

constrained settings, paving the way for secure and trustworthy IoT deployments at scale. 
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