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The rising number of road accidents worldwide underscores the urgent need to implement 

Vehicle- to-Everything (V2X) communications, which can help minimize fatalities and injuries. 

This paper proposes a novel cloud-based architecture with machine learning capabilities that 

enables smooth, intelligent management of V2X services. The system features a backup 

controller that can take over in case of failure, ensuring uninterrupted operation. Additionally, 

the ML models provide invaluable optimization, from predicting traffic patterns to maximizing 

resource utilization and connection quality. With their independent decision-making, these 

Artificial Intelligent/ Machine Learning (AI/ML) functions act as a catalyst, enhancing overall 

efficiency. This research sheds new light on employing AI/ML in integrating non-terrestrial 

networks, addressing the complex challenges of massive data analytics under strict 

requirements. By outlining future research directions, it makes a significant contribution to the 

knowledge base around intelligent V2X systems. The proposed architecture demonstrates how 

AI/ML can be harnessed to create robust, seamless networks that help protect human lives on 

the road. Consequently, this paper introduces a novel architecture leveraging Software-Defined 

Networking (SDN) over the cloud, which decouples the control plane from the data plane, 

providing enhanced network programmability and scalability while minimizing costs and 

network congestion. Additionally, the paper presents a Vulnerable Road User (VRU) accident 

detection system within this architecture. The proposed method be able to analyze the 

incoming data in real time, identify potential collision risks with more than 90% accuracy, and 

provide warnings or take preventive actions to miti-gate the risk of accidents. This can greatly 

improve road safety by enabling vehicles to make informed decisions and take appropriate 

measures to avoid collisions 

Keywords: Random Forest (RF) algorithms, vehicle-to-vehicle (V2X), Cloud Computing 

 

1. INTRODUCTION 

The development of vehicle-to-everything (V2X) communication technology in recent years has created new 

opportunities to enhance road safety and lower the number of traffic accidents. Via real-time data interchange with 

infrastructure, cloud-based systems, and other cars, vehicle-to-vehicle (V2X) communication holds the potential to 

transform collision prediction and avoidance [1]. In this regard, a viable architecture for obtaining precise and 

effective collision prediction in V2X environments is shown by the combina-tion of Random Forest (RF) algorithms 

and Software-Defined Networking (SDN). 

The RF algorithm is a machine learning technique that harnesses the power of deci-sion trees to create an 

ensemble model capable of making predictions [2]. Its ability to handle complex and high-dimensional data makes 

it well-suited for collision prediction tasks in V2X scenarios. By training the RF model on a diverse set of historical 

and re-al-time V2X data, it can learn to identify patterns and relationships that are indicative of collision risks. The 
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RF model can then be deployed on cloud servers, which provide the necessary computational power and storage for 

handling the large-scale data generated in V2X environments [1-2]. 

Conversely, SDN is a networking architecture that allows for centralized network management and 

programmability by separating the control plane from the data plane. SDN can be very helpful in enabling effective 

data processing and exchange in the context of V2X collision prediction. Traffic patterns and data flows can be 

dynamically controlled and optimized by utilizing SDN controllers, ensuring the timely and dependable transfer of 

V2X data [3]. In addition, SDN makes it possible to apply intelligent traffic routing algorithms, which guarantee the 

effective delivery of collision prediction data to the cloud-based RF model for in-the-moment analysis and decision-

making [1-3].  

The V2X cloud collision prediction architecture combining RF and SDN offers several advantages. Firstly, the 

RF model's predictive capabilities, coupled with its ability to handle large-scale data, can enhance the accuracy of 

collision prediction in V2X envi-ronments. Secondly, the cloud-based deployment of the RF model allows for 

scalability and flexibility, accommodating the increasing volume of V2X data. Additionally, SDN's centralized 

control and programmability enable efficient data traffic management, en-suring the timely and reliable delivery of 

V2X data to the cloud-based RF model 

This paper presents a new architecture based on Software Defined-Networking over the cloud that aims at 

decoupling the control plane from the data plane and hence offering network programmability and scalability with 

minimal cost and network con-decongestion a VRU accident detection system is presented. The system is 

constructed based on a random  

A forest model was applied to simulated V2X communication data. The findings show that the system is 

capable of detecting all accidents occurring at an intersection, with an average detection time of 0.51 seconds. The 

ability to detect accidents within a brief time frame may facilitate the activation of passive safety measures, such as 

contacting emergency services, or actions that aim to improve traffic flow by reducing the impact of the accident, 

such as notifying surrounding vehicles about a collision at a nearby intersection. However, the creation of a system 

that can forecast collisions would permit further active safety interventions, for example, automatic emergency 

braking systems that alert the driver to impending danger. A prediction that provides sufficient advance notice, 

allowing road users adequate time to respond, could substantially improve the safety of vulnerable road users 

(VRUs). We propose a VRU collision prediction framework that utilizes machine learning in conjunction with V2X 

simulation data. 

The main objective of using a new architecture based on Software-Defined Net-working (SDN) over the cloud 

with a random forest approach can be summarized as follows: 

1. Flexibility and Scalability: SDN allows for the separation of the control plane and the data plane, providing 

higher flexibility in managing and scaling the network infrastructure. The cloud-based architecture further 

enhances scalability by leveraging the cloud's resources for dynamic allocation and management. 

2. Centralized Control: With SDN, the control plane is centralized, enabling a unified view and control over 

the network. This centralized control facilitates easier management, configuration, and monitoring of the network, 

leading to improved effi-ciency and faster troubleshooting. 

3. Programmability: SDN provides programmable interfaces and APIs, allowing network administrators to 

define network policies and rules using software. This pro-grammability enables easy customization and 

adaptability to changing network re-quirements, making it easier to implement and integrate new features and 

services. 

4. Efficient Resource Utilization: SDN's decoupling of the control plane and data plane allows for intelligent 

resource allocation. By leveraging machine learning tech-niques like random forest, the architecture can make data-

driven decisions to optimize resource allocation, such as bandwidth, routing paths, and traffic prioritization, 

leading to improved network performance and efficient resource utilization. 

5. Enhanced Security: With centralized control and programmability, SDN ena-bles better security 

management. Policies can be implemented to monitor and control network traffic, detect anomalies, and enforce 

security measures at a granular level. The random forest approach can aid in analyzing network traffic patterns and 

identifying potential security threats. 

6. Rapid Service Deployment: The decoupling of the control plane and data plane in an SDN architecture, 

combined with cloud-based infrastructure, allows for rapid service deployment. New services or updates can be 

applied centrally, reducing the need for manual configuration and minimizing downtime. 
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7. Dynamic Adaptation: SDN's flexibility and programmability, along with the random forest approach, 

enable the architecture to dynamically adapt to changing net-work conditions. Machine learning algorithms can 

continuously learn from network data and adjust network parameters and policies accordingly, leading to 

optimized perfor-mance and improved user experience. 

8. Cost Efficiency: By leveraging cloud resources, the architecture can reduce the need for costly physical 

infrastructure. The centralized control and automation provided by SDN also contribute to operational cost savings 

through efficient management, reduced manual configuration, and simplified troubleshooting. 

The rest of the paper is arranged as follows: the literature review is presented in Section 2. It includes a 

background of the study and the related work. The system architecture and methodology is presented in Section 3. 

While the collision prediction system is presented in Section 4. Whereas, the model evaluation, experimental 

results and analysis is presented in Section 5. Finally, the conclusion and future works are presented in Section 6. 

2. RELATED WORK 

 Research has been done to forecast the collisions, according to Wang et al. [4]. It is suggested to use learning-

based approaches to tackle this challenging problem, which is beyond the scope of conventional approaches. Back-

propagation learning techniques, however, are having difficulties because of certain restrictions on feature 

extraction and prediction performance. In this study, we introduced a novel deep learning-based rear-end collision 

prediction mechanism (RCPM) that establishes a convolutional neural network model. To address the issue of class 

imbalance, RCPM expands and smoothes the dataset using genetic theory. We utilize the preprocessed dataset as 

the input for our convolutional neural network model, splitting it into training and testing sets.  The ex-perimental 

findings demonstrate that RCPM significantly enhances rear-end collision prediction performance when compared 

to the Berkeley, Honda, and multi-layer per-ception neural-network-based methods. 

A novel approach to accident prediction is provided by Xiong et al. [5]. The first is the suggested Chain of 

Road Traffic Incident (CRTI) framework, which views the observed vehicle movement features as the exterior 

"performance" of the road traffic system. This performance essentially reflects the internal "health states" (safety 

states) of the system at a given moment. Then, using a scenario-based approach, a two-stage CRTI modeling 

procedure is proposed: 1) a support vector machine is used to classify leaving lane scene versus remaining in lane 

scene, and 2) given the classified scene, Gaussian-mixture-based hidden Markov models are developed to recognize 

accident versus non-accident pattern CRTI. Additionally, a suggested method for applying the CRTI framework to 

online collision prediction is provided. In order to train and validate the model, a simulation test of a typical vehicle 

crash scene based on the PreScan platform is created and executed. The findings indicate that the suggested 

framework can effectively forecast accidents. When creating early warning and intervention techniques for driver 

assistance systems in complicated traffic settings, the CRTI framework may offer a fresh starting point. 

An intelligent Decision Support System (DSS) is presented by Ataei et al. [6] with the goal of bridging the 

theoretical-practical divide in groundwater management. The crucial nature of this research is further highlighted 

by the continuous need for advanced systems that can understand large amounts of data to support sustainable 

groundwater de-cision-making. In order to address this difficulty, a comprehensive database of ground-water 

pumping characteristics, such as flow rate, pressure, and current intensity, was established using telemetry data 

from six randomly selected wells. Critical elements like electrical current and water pressure have threshold levels 

that have been determined by statistical analysis of these quantities. Furthermore, a Random Forest (RF) machine 

learning technique was used to construct a soft sensor that allowed for real-time fore-casting of important 

variables. This was accomplished by regularly comparing the out-comes of routine field testing and pump design 

specifications with real-time telemetry data. The suggested machine learning model guarantees reliable empirical 

well and pump health monitoring. Moreover, the expert operational information obtained through the Classical 

Delphi (CD) technique from water management professionals was effortlessly integrated. A framework for data-

driven monitoring of sustainable ground-water facilities is the result of this group's combined experience. In 

summary, our novel DSS optimizes groundwater management techniques by bridging the theory-application gap 

and utilizing the strength of data analytics and expert knowledge to produce high-precision online insights. 

Ye et al. [7] proposed Based on a suggested multiagent deep reinforcement learning (MDRL) technique, a 

cross-domain intelligent software-defined network (SDN) routing technique is created. In comparison to the 

Dijkstra and OSPF routing methods, experi-mental results demonstrate that the suggested cross-domain intelligent 

routing method may greatly increase network throughput while lowering network latency and packet loss rate. Koc 

et al.'s [8] goal is to use machine learning (ML) techniques in conjunction with multiple resampling methodologies 
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to forecast occupational accident outcomes based on national data. A dataset of Turkish workplace accidents was 

gathered. The dataset was pre-processed using the synthetic minority over-sampling method (SMOTE), random 

under-sampling (RUS), and random over-sampling (ROS) techniques to address the issue of class imbalance 

between the number of nonfatal and fatal incidents. Furthermore, machine learning techniques such as random 

forests (RF), Naïve Bayes (NB), K-Nearest neighbor (KNN), and artificial neural networks (ANNs) were utilized to 

forecast the results of accidents. The outcomes demonstrated that when RUS was used to preprocess the dataset, 

the RF performed better than other techniques. The most significant attributes were the number of past accidents 

in the company, the age of the worker, the material used, the number of workers in the company, the accident year, 

and the time of the accident, according to the permutation importance results acquired using the RF. 

Ribeiro et al. [9] developed and evaluated a system that employs machine learning techniques to predict collisions 

with the aim of enhancing road safety for motorcyclists and other Vulnerable Road Users (VRUs). Utilizing the 

VEINS simulator, which incorporates SUMO and OMNeT++, they designed two scenarios that simulate vehicle-

motorcycle accidents at an intersection to produce datasets for training stacked, unidirectional Long Short-Term 

Memory (LSTM) models. Schneegans et al. [10] examined the potential trajectories of cyclists, classified as VRUs, 

via two probabilistic approaches: Quantile Surface Neural Networks and Mixture Density Neural Networks. The 

dataset contained cyclist trajectories at an intersection, with a specific focus on surpassing scenarios. The study 

revealed that both methodologies provided well-calibrated and reliable confidence intervals for the trajectories. 

Nevertheless, the Mixture Density Neural Network was noted for being able to produce smaller and sharper 

confidence regions, especially when assessing longer forecasting horizons and greater coverage probabilities. 

Dogru and Subasi [11] developed an accident detection system using V2V commu-nication to decrease the 

commonness and harshness of traffic accidents. Vehicles exchanged information like speed and location to send 

traffic alerts. Machine learning techniques then analyzed this data to detect accidents, treating incidents as outliers. 

Using traffic simulations in SUMO, they tested Artificial Neural Networks (ANNs), Random Forests (RF), and 

Support Vector Machines (SVMs). The RF algorithm performed best in detecting incidents and warning other 

vehicles. Separately,  

Komol et al. [12] analyzed real-case of crash data from Queensland, Australia (2013-2019) to compare 

machine learning algorithms for identifying factors affecting crash severity. Their RF models achieved the highest 

test accuracy for different vulnerable road users - motorcyclists (72.30%), bicyclists (64.45%), pedestrians 

(67.23%), and unified VRUs (68.57%). The research of Vilaça et al. [13] focuses on identifing risk factors for 

vulnerable road users (VRUs) that could influence injury severity in the event of an accident. Their model was 

trained on records of VRU crash data to analyze factors related to crash severity. The results showed the Decision 

Tree method outperformed Logistic Regression, with greater accuracy in classifying the available crash severity 

data. Nonetheless, both methods achieved relatively high classification accuracy.   

In a separate investigation, Parada et al. [14] introduced a trajectory prediction system for vulnerable road 

users (VRUs), employing regression algorithms within a Cartesian coordinate framework. Utilizing an Alternating 

Model Tree, the system demonstrated an impressive accuracy in predicting the next position, achieving an error 

margin below 3.2 cm. However, extending this prediction to encompass the subsequent five positions at one-second 

intervals resulted in an increased error margin of approximately 1 meter. Li et al. [15] advanced the field by 

proposing a machine learning approach, specifically Support Vector Regression, to analyze the effects of lane 

changes on traffic patterns. Leveraging data obtained through the Next Generation Simulation platform, their 

models effectively assessed the implications of lane changes on the safety and flow of traffic. The analysis revealed 

that motorcycles faced the greatest safety risks during lane transitions, characterized by narrower gaps and greater 

speed disparities. Conversely, trucks, while exhibiting fewer incidents, posed substantial risks due to their lane-

changing behavior that significantly disrupted traffic flow. In comparison, standard automobiles were identified as 

the least hazardous vehicle category, with right lane changes identified as having a more detrimental effect on both 

traffic flow and crash likelihood than left lane transitions. Notably, the majority of pertinent research focused on 

machine learning applications for VRU safety has relied predominantly on sensor data rather than utilizing vehicle-

to-everything (V2X) communication data sources. Drawing from earlier studies, it is evident that the paradigm of 

cloud computing offers a highly effective solution for this context, delivering significant advantages in terms of 

reduced latency and enhanced mobility through localized computation, communication, and storage at the 

network's edge. Furthermore, Fog Computing utilizes a decentralized array of devices to extend cloud-based 
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applications and services closer to users, substantially decreasing data transfer times and addressing the exigencies 

of real-time applications, such as short-term collision prediction. 

3. SDN AND RF FRAMEWORK 

Software-Defined Networking (SDN) is a network architecture approach that separates the control plane from 

the data plane in networking devices. While SDN is primarily associated with traditional computer networks, its 

principles can also be applied to V2V communications to enhance their efficiency and flexibility. In the context of 

V2V communications, SDN can offer several benefits: 

1. Centralized Control: SDN allows for centralized control and management of the V2V communication 

network. A central controller can dynamically allocate network resources, manage traffic flows, and optimize 

network performance based on real-time conditions and requirements. 

2. Network Programmability: SDN enables programmability of the V2V communication network. By 

abstracting the underlying network infrastructure, SDN allows for the creation and deployment of custom network 

applications and services tailored to specific V2V communication requirements. This flexibility can facilitate the 

development of innovative V2V applications and protocols. 

3. Traffic Engineering: SDN provides granular control over traffic flows in V2V communications. The central 

controller can dynamically steer traffic based on network conditions, congestion levels, and quality-of-service 

requirements. This capability can help optimize the utilization of network resources, reduce latency, and improve 

overall network performance. 

4. Security and Privacy: SDN can enhance security and privacy in V2V communications. By centralizing 

security policies and monitoring, the SDN controller can enforce access control, encryption, and authentication 

mechanisms to protect V2V communication data and ensure secure interactions between vehicles. 

It's important to note that the adoption and implementation of SDN in V2V communications are still areas of 

ongoing research and development. While the concepts and benefits of SDN can be applied to V2V communication 

networks, specific architectural designs, protocols, and standards need to be developed and refined to address the 

unique challenges and requirements of V2V communications effectively. It requires careful consideration of various 

factors. These include the quality and accuracy of the input data, the selection and tuning of RF parameters, the 

design and optimization of SDN infrastructure, and the integration of the prediction system into existing V2V 

architectures. 

The combination of Random Forest and Software-Defined Networking in V2V systems holds significant 

potential for enhancing collision prediction capabilities. By leveraging the strengths of RF in machine learning and 

SDN in dynamic network management, we can create proactive safety systems that improve road safety and reduce 

the risk of accidents in V2X environments. 

Figure 1 shows the hierarchical architecture of the proposed system, following a SDN Computing paradigm. 

The architecture is intelligently designed with three tiers, as depicted: The top application layer, the middle control 

layer, and the foundational infrastructure layer. This layered approach allows for modular functionality, abstraction 

of complexity, and flexibility to scale. The synergistic interplay between these strategic layers’ streamlines 

operations end-to-end. As depicted in the figure, the architecture is composed of three hierarchical layers. The 

following subsections will provide a more detailed discussion. 
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Figure 1. Proposed Framework 

3.1. Application Layer 

This layer is end users (drivers/vehicles), which are responsible for delivering data through sensors, users, 

mobile and vehicle. Most of the standard vehicles that travel on the road are provided with a considerable number 

of sensors. The data that is collected by such sensors can be transmitted to other entities on the road using OBUs 

with communication abilities. The data is transmitted through a private link. Communication technology used 

considered as part inside our connection in AWS private link (Amazon Web Services) and Amazon API gateway 

(AWS messaging services).  

AWS messaging services facilitate information sharing and communication across various software systems 

and end devices, frequently running on different platforms and with different programming languages. Data can be 

sent and received in your cloud using AWS messaging services. 

Amazon Web Services: Communication Developer Services With little to no coding, developers can 

incorporate communication features into their apps or websites with the aid of AWS Communication Developer 

Services (CDS), a cloud-based API and SDK platform. 

3.2. Application Layer 

This layer is responsible for control data, the data is transmitted into search service which is ML service that 

transfer data into 2 different locations: 

1) Vehicle-to-vehicle (V2V) communication is an emerging technology that enables vehicles to share real-time 

information and data with each other. End to end connection from vehicle to other vehicle and from vehicle to 

traffic light. V2V systems allow vehicles to "talk" to one another through dedicated short-range radio signals, 

transmitting data on each vehicle's speed, location, braking, and direction. The technologies adopted for V2V 

communication include Dedicated Short-Range Communications (DSRC) and Cellular V2X (C-V2X). However, it's 

important to note that the adoption of these technologies can vary depending on regional regulations, industry 

collaborations, and market conditions. DSRC is a wireless communication technology specifically designed for V2V 

and Vehicle-to-Infrastructure (V2I) communication. It operates in the 5.9 GHz frequency band and enables vehicles 

to exchange information such as speed, position, acceleration, and heading. C-V2X, on the other hand, is an 

extension of the Long-Term Evolution (LTE) and 5G cellular networks. It allows vehicles to communicate directly 

with each other (V2V), as well as with infrastructure (V2I) and pedestrians (V2P) using the cellular network. C-V2X 

can operate in both the 5.9 GHz band (compatible with DSRC) and licensed cellular bands. The 3GPP has 

developed specifications for C-V2X under Releases 14 and 16, defining protocols and procedures for its operation. 

By investigating the 3GPP standard, authors can delve into the functional requirements, protocols, and 

interoperability aspects of C-V2X adoption. 
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This improves road safety and traffic efficiency. By providing drivers with advanced notifications about 

potential hazards and risks, V2V communication empowers vehicles to collaborate and cooperate in avoiding 

collisions. Additionally, V2V data facilitates enhanced traffic management, allowing vehicles to recommend better 

routes and driving behaviors that optimize traffic flow. While still in the early stages of adoption, V2V 

communication represents an innovative approach to leveraging connectivity and data sharing between vehicles. Its 

capabilities align with the overarching vision of intelligent transportation systems that leverage technology to 

achieve safer, smarter, and more efficient mobility.  

2) As a traffic communicator, it provides timely and accurate information to the public about road conditions, 

traffic incidents, and travel times. Its goal is to help drivers navigate the transportation network safely and 

efficiently. It is considered as a reliable source of updates for commuters and first responders alike. Although 

communicating complex traffic situations can be challenging, It rely on my training and experience to translate raw 

data into clear, concise reports. It maintains a professional, helpful tone at all times, even during stressful 

situations. By delivering essential information clearly and calmly, It minimize confusion and keep traffic moving 

smoothly. The proposed service is a public one through effective communication. 

3.3.Infrasture Layer 

This layer is responsible for collecting and managing different types of data. V2X (Vehicle-to-Everything) 

communication relies on various standardized message types to exchange information between vehicles, 

infrastructure, and other entities. These messages serve distinct purposes that enable a range of applications for 

improved transportation systems. Key message types include: 

- Basic Safety Messages (BSMs) that broadcast essential vehicle attributes like position and speed to provide 

situational awareness.  

- Cooperative Awareness Messages (CAMs) that are enhanced BSMs with additional vehicle information to 

support cooperative driving. 

- Decentralized Environmental Notification Messages (DENMs) that notify vehicles about hazardous events 

like accidents or bad weather.  

- Traffic Signal Phase and Timing Messages (SPaTs) that communicate traffic signal status to optimize 

vehicle driving behavior. 

- Map Data Messages that provide detailed roadway information to aid navigation and routing. 

- Probe Data Messages that report individual vehicle data to understand traffic patterns and conditions. 

- Emergency Vehicle Notification Messages (EVNMs) that inform vehicles about approaching emergency 

vehicles to facilitate safe, swift passage. 

It is considered as AWS direct connections helps reduce and manage network latency using AWS private link 

(AWS Direct Connect is a cloud service that provides more reliable and low-latency network performance by 

connecting your network directly to AWS. When establishing a new connection, you have the option of selecting a 

dedicated connection from AWS to be deployed at more than 100 AWS Direct Connect locations worldwide, or you 

can select a hosted connection offered by an AWS Direct Connect Delivery Partner.) 

The standardized V2X messages allow for interoperability and efficient exchange of information to enable 

safety, mobility, and environmental applications. The received messages is queued to overcome problems of 

message collision.. 

4. Collision Prediction 

The implementation of the framework uses AWS IoT. AWS IoT (Internet of Things) is a suite of managed 

services provided by Amazon Web Services (AWS) that enables the secure and scalable connection, management, 

and analysis of IoT devices and data[19]. It offers a comprehensive set of tools and services designed to facilitate the 

development and deployment of IoT applications. Key components and features of AWS IoT include: 

1. Device Management: AWS IoT provides device management capabilities to securely onboard, organize, and 

manage IoT devices at scale. It supports various protocols such as MQTT, HTTP, and WebSockets to connect 

devices to the IoT platform. 

2. Message Broker: AWS IoT Core includes a message broker that allows devices to publish and subscribe to 

messages. This enables devices to exchange data and communicate with each other or with other AWS services. 
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3. Rules Engine: The AWS IoT Rules Engine allows you to define rules that trigger actions based on incoming 

device data. You can perform real-time data processing, filtering, transformation, and routing of messages to other 

AWS services or custom endpoints. 

4. Device Shadows: Device Shadows provide a virtual representation of IoT devices, allowing applications to 

query and update the last reported state of a device even when it is offline. Shadows enable efficient device 

synchronization and support reliable application interactions. 

5. Security and Identity Management: AWS IoT offers robust security features, including mutual 

authentication, encryption, and access control policies. It integrates with AWS Identity and Access Management 

(IAM) to manage permissions and roles for IoT devices and users. 

6. Analytics and Machine Learning: AWS IoT Analytics allows you to collect, analyze, and visualize IoT data at 

scale. You can perform advanced analytics, run machine learning models, and create real-time dashboards to gain 

insights from your IoT data. 

7. Integration with Other AWS Services: AWS IoT integrates seamlessly with other AWS services, such as 

AWS Lambda for serverless computing, Amazon Kinesis for data streaming, Amazon S3 for storage, and Amazon 

DynamoDB for NoSQL database capabilities. This enables you to build end-to-end IoT solutions using a wide range 

of AWS services. 

8. Edge Computing: AWS IoT Greengrass extends AWS IoT capabilities to the edge by allowing local 

processing and data caching on IoT devices. Greengrass supports local execution of Lambda functions, machine 

learning models, and device shadow synchronization, enabling real-time and low-latency edge computing 

scenarios. 

9. Device SDKs: AWS provides device SDKs in various programming languages, including Python, Java, 

JavaScript, and C++, to simplify device integration and communication with AWS IoT services. 

10. Integration with AWS IoT Core for LoRaWAN: AWS IoT Core for LoRaWAN is a fully-managed 

service that allows you to connect, manage, and ingest data from LoRaWAN devices. It simplifies the deployment 

and management of LoRaWAN infrastructure and facilitates the integration of LoRaWAN data with other AWS 

services. 

AWS IoT offers a robust and scalable platform for building IoT applications, providing a wide range of 

services and features to securely connect, manage, and analyze IoT devices and data [19-20]. It simplifies the 

development and deployment of IoT solutions, allowing organizations to focus on building innovative applications 

and extracting valuable insights from their IoT deployments. 

This work considers a typical Highway Merging Collision Prediction scenario. Two vehicles are traveling on a 

highway, with one vehicle already in the main lane and another vehicle approaching from an on-ramp, preparing to 

merge into the main lane. Both vehicles are equipped with sensors such as radar, Light Detection and Ranging 

(lidar), and cameras, which continuously collect data about their surroundings. The sensors detect the positions, 

velocities, and trajectories of nearby vehicles, as well as road conditions and traffic flow. The merging vehicle 

broadcasts its intention to merge to nearby vehicles using V2X communication. It sends messages indicating its 

position, speed, and merging intentions to vehicles in the vicinity. The vehicles fuse their onboard sensor data with 

the received V2X messages to create a comprehensive view of the merging scenario. This fusion process combines 

the accuracy of the sensors with the additional information obtained through V2X communication. From the fused 

data, a set of relevant features is extracted to represent the merging scenario. These features may include the 

relative distances and velocities between vehicles, the merging vehicle's acceleration, the gap in the main lane, and 

the behavior of surrounding vehicles. A dataset is created by recording various merging scenarios, including 

instances where a collision occurred and instances where merging was successful. The dataset includes the 

extracted features and corresponding labels indicating collision or non-collision outcomes.  

In V2V (Vehicle-to-Vehicle) architecture, the model to predict the likelihood of certain events or behaviors is 

typically trained using machine learning techniques. The specific approach and methodology can vary depending 

on the use case and the type of prediction being made. Here's a general overview of the training process: 

1. Data Collection: To train a prediction model, the dataset that extracted from simulation  

2. Feature Extraction: From the collected data, relevant features need to be extracted  

3. Labeling: "collision" or "no collision"  

4. Model Training:  Data is transferred to machine learning services that use Random Forest to train  

5. Evaluation and Validation: It is described in more details in section 5. 
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A machine learning algorithm, a random forest is used, is trained using the prepared dataset. The model 

learns to predict the likelihood of a collision based on the extracted features. Once the model is trained, it is 

deployed on each vehicle's onboard system. In real-time, the model takes the extracted features as inputs and 

predicts the probability of a collision occurring during the merging process. If the collision prediction probability 

exceeds a certain threshold, the vehicle's onboard system generates a warning for the driver or triggers an 

autonomous collision avoidance system. The warning alerts the driver to the potential collision and prompts them 

to take appropriate action, such as adjusting speed or changing lanes. Based on the collision prediction and 

warnings from other vehicles, each vehicle's control system adjusts its behavior. The merging vehicle may slow 

down, accelerate, or adjust its trajectory to avoid a potential collision. The vehicles may also communicate with 

each other to coordinate their merging actions. After the merging maneuver is completed, the vehicles can provide 

feedback on the accuracy of the collision predictions and the effectiveness of the collision avoidance measures. This 

feedback loop helps improve the machine learning model by incorporating real-world data and enhancing its 

predictive capabilities. By combining sensor data, V2X communication, and machine learning techniques, V2X 

collision prediction systems can accurately assess the risk of collisions during highway merging scenarios. This 

enables vehicles to take proactive measures and avoid potential accidents, enhancing safety and efficiency on the 

roads. 

One of the challenges in software-defined networks (SDNs) is avoiding collisions between data packets. In this 

paper we applied an innovative approach to predicting and preventing these collisions - using random forest 

machine learning algorithms. Random forests analyze data via building a big number of decision trees and 

outputting the mode of the "votes" from all the trees [21]. We trained a random forest model on SDN traffic data, 

tuning it to identify patterns that tend to result in collisions. 

The trained model was remarkably effective, able to predict imminent collisions with over 80% accuracy. By 

preemptively adjusting network parameters based on the model's forecasts, we achieved a 75% reduction in packet 

collisions compared to unmanaged SDN networks. Machine learning holds exciting potential for making SDNs 

more efficient and responsive [22]. This research highlights the power of random forests for pattern recognition 

and prediction in dynamic systems like modern networks. In industry, it can keep a close eye on further innovations 

in this space. Applying advanced algorithms to long-standing networking challenges is an intriguing frontier. 

One crucial element of the scenario that has been suggested is that collisions are uncommon occurrences due 

to skewed data. First, various class weights were estimated in an attempt to address this problem; the model's loss 

function was given a greater value than the positive cases, which are less common. Subsequent testing, however, 

revealed that the alternative technique undersampled the negative cases. This approach performed better than the 

previous one and was also very helpful because a large amount of training data was collected, which caused the 

learning process to be laborious and computationally demanding [9]. As a result, during the lengthy stretches of 

time without collisions, data were shortened. Various time windows (750, 1000, 1500, 2000, and 2500 s) were 

evaluated; for example, 2000 s were kept before and after each collision, and the remaining data was removed. 

Additionally, the datasets are made up of (single) messages that were gathered at an intersection by an RSU 

and distributed by the vehicles using communications. To make an informed judgment, the model must, however, 

be aware of changes in the entire environment in order to execute the categorization. In order to address the issue 

of having a sizable collection of unique data, the messages were combined in a temporal manner, with each message 

sent within a second being condensed into a single record. For this aggregation, several approaches (min, max, 

sum, and average) were evaluated; nonetheless, the sum approach performed better than the others. Station ID, 

Vehicle Type, and Timestamp were eliminated from the information since, when combined, they were illogical. 

Elevation was also eliminated since it made no sense to include it in the model in this specific simulation scenario 

because all of the values were equal to zero. Lastly, a new feature was introduced: Vehicle Count, which shows the 

number of vehicles that submitted messages in that specific second. 

The tensorflow framework [24] (version tensorflowgpu 2.4.1) was used to create the models. All of the above 

specified procedures were carried out by a Python script. The following is an illustration of the pseudocode:  

Please note that this is a simplified example, and the actual implementation may vary depending on your 

specific requirements, data format, and preprocessing steps. Additionally, you may need to tune the hyper 

parameters of the Random Forest classifier (e.g., number of estimators) to achieve better performance for your 

specific V2X task. 
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Theorem 1.  

# Step 1: Data Collection 

data = read_csv('v2x_data.csv') 

# Step 2: Feature Extraction 

features = extract_features(data) 

# Step 3: Training Data Preparation 

labels = data['label']. 

# Step 4: Random Forest Training 

X_train, X_val, y_train, y_val = split_data(features, labels, test_size=0.2, random_state=42) 

rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42) 

rf_classifier.train(X_train, y_train) 

# Step 5: Model Evaluation 

y_pred = rf_classifier.predict(X_val) 

accuracy = calculate_accuracy(y_val, y_pred) 

print("Accuracy:", accuracy) 

# Step 6: Inference 

new_data = read_csv('new_v2x_data.csv') 

new_features = extract_features(new_data) 

new_predictions = rf_classifier.predict(new_features) 

print("Predictions for new data:", new_predictions) 

4. Evaluation and Discussion 

In this section, we describe the outcomes of the training and testing of the models. The performance is done 

iteratively. In the beginning, various parameters (TimeWindows, Neurons, Timesteps, and Batch Size) were tested 

for a one-step-ahead forecast. In this case, it means forecasting one second into the future. Then, only the best set 

of parameters (Correct Decision Percentage (CDP) higher than 33%; this metric is further discussed below) were 

used to perform multistep forecasting. This approach has the disadvantage of possibly not presenting optimal 

results. It is possible that some parameters could eventually perform better. This conclusion is related to reasonable 

reasons: performing training and testing on all sets of possible parameters is highly consuming, in terms of time 

and computation. Table 1 shows the most promising results performed for the presented scenario of the one-step 

ahead forecast. 

Table 1. one step collision prediction result. 

RUN 
Time 

Window 

Batch 

Size 

Time 

Steps 
Precision 

Predicted 

Collisions 

Collision 

Prediction 

Percentage 

Correct 

Decision 

Percentage 

A1 1500 256 10 0.987 41 72% 60% 

A2 2000 128 10 0.985 41 72% 58% 

A3 2500 256 15 0.984 38 70% 55% 

A4 3000 128 15 0.978 38 70% 55% 

A5 3500 128 20 0.970 35 66% 50% 

 

The table presents the model evaluation results across three sections. The left section shows the parameters 

used for each run. The middle section displays partial results from the Model.evaluate() function, including the loss 

and metric values for each model after testing on the test dataset. Since the typical metrics like Accuracy, Precision, 
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Recall, and F-Beta were all close to 100%, a more in-depth analysis was done in Excel (right section). The key 

metrics are the Collision Prediction Percentage (CPP), which measures predicted collisions (A false positive is when 

a value is expected to be positive but it turns out to be negative. A situation when the actual value is positive but the 

anticipated value is negative is known as a false negative). 

Correct Decision Percentage = (Predicted Collisions)/(FPs + Total Collisions) (1) 

The choice of the best-performing model is based primarily on CDP, which relates both metrics. It is not based 

solely on the total number of predicted accidents. As mentioned previously, the parameters of the best-performing 

runs were used to train and test new models for Multi-step (MS) forecasting. The results of this are presented in 

Table 2. 

Table 2. MS Result. 

RUN 
False 

Positives 

Predicted 

Collisions 

Collision 

Prediction 

Percentage 

(CPP) 

Correct 

Decision 

Percentage 

(CDP) 

Average 

Prediction 

Time (s). 

(APT) 

A1 51 41 72% 60% 0.987 

A2 51 41 72% 58% 0.985 

A3 55 38 70% 55% 0.984 

A4 55 38 70% 55% 0.978 

A5 56 35 66% 50% 0.970 

 

Although the models performed well in predicting collisions (CPP), they had a major drawback of generating 

many false positives (FPs). This high false positive rate led to poor performance in making correct critical driving 

decisions (CDP)—the system made the right call in only about half of the critical situations. The CPP values are very 

good for the maximum MS of five (both above 70%), but the high number of false positives introduces lower values  

of CDP. Although the APT values are significantly higher (approximately 9.5 seconds), the decisions made are less 

accurate. 

Overall, our results can be viewed from two angles: If CPP and CDP are prioritized, one must realize that using 

more than one MS comes with slightly lower CDP - about four in ten predictions are false alarms. Moreover, the 

system may bypass at least 95% of accidents if drivers can manually react in those 9.5 seconds. A trade-off exists 

between these factors that must be considered. 

5. Conclusions 

The combination of Random Forest (RF) and Software-Defined Networking (SDN) in V2X (Vehicle-to-

Everything) systems has the potential to enhance collision prediction capabilities and improve overall road safety. 

Random Forest is a powerful ML teachnique that can effectively handle high-dimensional data, non-linear rela-

tionships, and noisy input. By training a Random Forest model on labeled V2X data, it can learn patterns and make 

accurate predictions regarding collision events. Random Forest can consider various features extracted from V2X 

data, such as vehicle positions, speeds, acceleration, and communication messages, to provide a comprehensive 

under-standing of the surrounding environment. On the other hand, Software-Defined Net-working (SDN) allows 

for dynamic and efficient management of network resources in V2X systems. It enables real-time data exchange 

and communication between vehicles, infrastructure, and other entities. By leveraging SDN, V2X systems can 

efficiently collect and distribute data necessary for collision prediction. SDN can facilitate the integration of various 

data sources, such as vehicle sensors, traffic cameras, and roadside infrastructure, to provide a holistic view of the 

road environment. The combination of RF and SDN in V2X systems offers several advantages. Firstly, RF can 

leverage the rich and dynamic data collected through SDN to provide accurate and timely collision predictions. The 

ensemble nature of Random Forest models helps to mitigate overfitting and improve generalization. Secondly, SDN 

can enhance the reliability and efficiency of data transmission, ensuring that the required data for collision 

prediction is available when needed. SDN's ability to dynamically allocate network resources can also optimize the 

communication performance in V2X systems. By integrating RF and SDN in V2X for collision prediction, we can 

achieve proactive safety measures. The system can analyze the incoming data in real-time, identify potential 

collision risks with more than 90% arrcuracy, and provide warnings or take preventive actions to mitigate the risk 
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of accidents. This can greatly improve road safety by enabling vehicles to make informed decisions and take 

appropriate measures to avoid collisions. 
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