Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

Hybrid Deep Learning and Reinforcement Learning
Approach for Autonomous Decision-Making in Dynamic
Environments

Vorem Kishore?, Dr. B.Raju2, Rajitha Bonagiri3, Johnson Kolluri4, Dr Shyam Sunder Pabbojus & Vuppula roopa®
1Assistant Professor,CSE-AIML & IOT,VNR Vignana Jyothi Institute of Engineering and Technology,Hyderabad , India
kishore_v@unrujiet.in
2Assistant Professor,Department of Computer Science and Engineering, Kakatiya Institute of Technology & Science, Warangal, Telangana,
India
br.cse@kitsw.ac.in
3Degree Lecturer in Computer Science, Telangana Tribal Welfare Residential Degree College(Girls), Mulugu, Telangana, India
rajitha.bonagiri@gmail.com
4Assistant Professor ,Department of CS&AI ,SR University, Warangal johnson.kolluri@sru.edu.in
sAssistant Professor, Department of CSE,MGIT, Gandipet, Hyderabad ,India, pshyamsunder_cse@mgit.ac.in
6Assistant professor, school of technology, Woxsen University, sadashivapet, Sangareddy,
roopa.vuppula@woxsen.edu.in
corresponding author : kishore_v@unrujiet.in

ARTICLE INFO ABSTRACT

Received: 25 Oct 2024 Autonomous decision-making in dynamic, uncertain environments (such as robotic navigation,
self-driving vehicles, and smart grid management) requires integrating powerful perception
with adaptive planning. We propose a hybrid framework that combines deep learning for
perceptual representation and reinforcement learning (RL) for sequential control. The
framework uses convolutional or recurrent neural networks to process high-dimensional
sensory data (e.g., camera or sensor arrays) and outputs features or latent states, which are
then fed into an RL algorithm (such as Deep Q-Network or Actor-Critic) to learn optimal
policies. We detail the architecture, including neural-network-based value/policy
approximation and experience replay mechanisms, and describe our simulated testbed (e.g.
CARLA urban driving simulator or OpenAl Gym environments). Experiments in a simulated
dynamic scenario demonstrate that our hybrid approach significantly outperforms standard
tabular RL and pure deep-learning baselines. We provide training curves, comparative tables of
performance metrics, and discuss the implications for real-world deployment. Key
contributions include: a conceptual integration of deep representation learning with RL for
dynamic control; a detailed methodology for training in simulation; empirical results
illustrating learning progress and robustness.
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1. INTRODUCTION

Dynamic and uncertain environments — characterized by changing conditions, moving obstacles, and noisy sensors
— pose significant challenges for autonomous systems. Examples include robots navigating cluttered spaces,
autonomous vehicles driving in traffic, and smart grid controllers balancing fluctuating power supply and demand.
Deep Reinforcement Learning (DRL) has recently shown the promise of combining deep neural networks with trial-
and-error learning to handle high-dimensional sensory inputs and long-horizon decision-making[1]. For instance,
DRL systems learn optimal policies through interaction, maximizing long-term cumulative reward, and have
achieved remarkable success in games and real-world tasks[1]. AlphaGo’s triumph, leveraging DRL and tree search,
exemplifies the breakthrough potential of this paradigm[i]. In autonomous driving, approaches have been
developed to use DRL for tasks like lane-keeping and obstacle avoidance, often within photo-realistic simulators[2].
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Figure 1 illustrates an example dynamic environment: two autonomous vehicles navigating a simulated off-road
terrain. The vehicles are controlled by policies learned through deep-RL, using visual and state observations. In our
framework, raw sensor data (camera images, LiDAR, etc.) are first processed by deep learning components (e.g.,
convolutional neural networks) to extract relevant features. These features serve as inputs to an RL agent that
learns a policy mapping observations to control actions (steering, acceleration, etc.) by maximizing a reward signal.
This hybrid approach leverages deep learning’s perceptual power and RL’s sequential optimization ability to handle
complex tasks with uncertain dynamics[2].

Deep Neural Deep Neural
Network Network

Reinforcement
Learning
Agent

Figure 1: Example simulation environment with two autonomous off-road vehicles. Deep neural networks
process the sensor inputs (e.g., camera images) of each vehicle, and a reinforcement learning agent selects
control actions (e.g., steering and throttle) to maximize cumulative reward in this dynamic setting.

The conceptual model of our approach is as follows: At each timestep, the agent observes the state s; of the
environment (e.g., current sensor readings and vehicle pose). A deep neural network encodes s; into a latent feature
vector. This latent representation is passed to an RL module (e.g., a Deep Q-Network or an Actor-Critic network)
which outputs either action-values Q (s:,a) or a policy s1(a/sy). The agent then selects an action a; (possibly using an
exploration strategy such as e-greedy or noise injection) and executes it in the simulator. The environment returns
a new state sy, and a scalar reward r;. The transition (s;,a;,r,S::) is stored in a replay buffer. During training, the
stored experiences are sampled to update the network parameters, minimizing the Bellman error and reinforcing
actions that led to high reward [3]. Over episodes, the agent’s policy improves to maximize the expected return

EYwytre [4].
2. RELATED WORK

2.1 Deep Reinforcement Learning Foundations

Reinforcement Learning (RL) formulates decision-making as a Markov Decision Process (MDP)[4], where an agent
observes state s;, takes action a;, receives reward r;, and transitions to s.,. The goal is to learn a policy 7 that
maximizes expected cumulative reward. Classical RL methods (e.g., Q-learning) use a table of values Q(s,a)
updated via the Bellman equation[5]. However, traditional tabular methods cannot handle high-dimensional or
continuous state spaces. Deep Reinforcement Learning extends RL by using deep neural networks to approximate
value functions or policies. For example, Deep Q-Networks (DQNs) use a convolutional neural network to
approximate Q(s,a), enabling learning from raw pixels[6]. Actor-Critic methods use separate neural networks for
an actor (policy) and a critic (value function) [7]. These deep learning components learn to encode sensory inputs
into compact features, while the RL component learns control policies in this learned feature space.

The integration of deep learning with RL enables tackling complex tasks. DRL has achieved human-level
performance on Atari games[6] and continuous control tasks[6], and has been applied to robotics and autonomous
systems. Notably, Bojarski et al. trained a CNN end-to-end to map raw camera images to steering angles for self-
driving, demonstrating that deep networks can learn driving behavior from minimal human data[7]. In their end-
to-end driving system, the network automatically learned road features without explicit programming, illustrating
the power of deep learning in perception. Other works (e.g., Ha and Schmidhuber’s “World Models”) combine deep
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visual encoders with RL planners to learn from pixel observations. In robotics, surveys note that DRL allows
learning sophisticated behaviors, though challenges remain in sample efficiency and real-world deployment[7].

2.2 RL for Robotics and Vehicles

Robotic navigation and control have long used RL for mapless planning and obstacle avoidance [8]. Recent DRL
research has focused on real-world and simulated robotic tasks. Tang et al. (2024) survey the successes of DRL in
robotics, highlighting that DRL has shown tremendous promise for enabling complex robot behaviors in real
settings [8]. In simulated robot navigation tasks (e.g. mobile robot reaching targets), researchers use Gazebo or
Webots simulators to train agents via DQN or PPO [7]. For example, Lee and Yusuf demonstrated a mobile robot
achieving goal-directed navigation in Gazebo using DQN/DDQN, then successfully transferring policies in a test
simulation [8]. Their work shows that DRL can learn mapless navigation with visual inputs, consistent with other
studies that train RL agents in simulation before real-world fine-tuning. Surveys of DRL for manipulation also
emphasize neural networks’ role in encoding camera inputs and joint states to produce control policies [8].

Autonomous driving, a specific robotics domain, has similarly leveraged DRL. Hossain et al. (2023) used Deep Q-
Learning in the CARLA simulator to train a vehicle to maintain lane position and avoid other cars [9]. CARLA
provides photo-realistic urban environments, and it has been used by many researchers for DRL training. (CARLA
is an open-source urban driving simulator designed for autonomous vehicle research [9].) Works in driving often
adopt convolutional policies (either end-to-end or hybrid) to process camera images, consistent with earlier
successful approaches [10]. For instance, the NVIDIA DAVE-2 system (Bojarski et al., 2016) demonstrated that
CNN s can learn steering purely from vision [9]. Hybrid approaches then use RL (rather than supervised mimicry)
to further refine control policies in dynamic traffic scenarios. Researchers have also explored inverse RL and
imitation learning for driving, but our focus is on model-free DRL.

Smart grid control is another emerging domain for DRL. In a power distribution network, conditions such as load
demand and renewable generation change over time. Simulators like GridLAB-D (an open-source power grid
simulator) allow modeling these dynamics in detail [10]. Recent work applies RL to tasks like demand response and
voltage control, showing that RL can adaptively manage distributed energy resources. For example, Ashok et al.
(2023) review DRL applications in smart grids, highlighting challenges of environment uncertainty and the need
for stable algorithms. While specifics of smart grid RL are beyond this paper, our framework is general enough to
apply: deep networks could process grid state (e.g. historical load patterns) and RL could optimize control signals
(e.g. switching or pricing). GridLAB-D’s modular physics engine can serve as the simulator (Figure 2), providing
realistic power-flow dynamics for training [11].

2.3 Hybrid Deep Learning / RL Architectures

The hybrid integration of DL and RL can take various forms. A common approach is end-to-end DRL, where a
single neural network is trained with RL objectives (e.g. maximizing expected reward). This was pioneered by the
DQN, which used a CNN to map pixel states to Q-values in Atari games[12]. Actor-Critic methods (e.g. DDPG, PPO,
SAC) similarly use neural networks for both perception and policy/value functions. In these, the agent’s “brain” is
fully a neural net (Figure 2). For example, Lillicrap et al. introduced DDPG for continuous control by using a deep
actor network (policy) and a critic network (value), enabling RL on high-dimensional continuous inputs. Haarnoja
et al’s Soft Actor-Critic (SAC) adds entropy regularization for improved stability. Schulman et al.’s PPO uses
clipped policy gradients for robust updates. All these “deep” methods fall under DRL, and they have been
successfully applied to robot locomotion and control tasks.

An alternative is modular hybridization. Here, a deep network is used for perception or feature learning, and a
separate (possibly simpler) RL algorithm is used for decision-making. For example, one might pre-train a
convolutional autoencoder or a state-estimator (e.g. VAE, RNN) on raw sensory data, and then run a lightweight RL
on the compressed latent state. This can improve sample efficiency by reducing input dimensionality. Another
hybrid is combining model-based elements: one can train a world model (predictor of next states) and use that in
RL planning. Domain adaptation can also be hybrid: use supervised learning on labeled data and then fine-tune
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with RL (so-called “bootstrapped” RL). In our work, we focus primarily on the standard end-to-end DRL pipeline,
but we structure the network as an actor-critic with shared visual encoder — a common hybrid design[13].

Deep Neural Network
Backpropagation

t
Observation A U
Policy a; Critic
Network Network

Rewars

Figure 2 depicts the high-level architecture.
3. METHODOLOGY
3.1 Hybrid Framework Overview

Our hybrid framework couples deep perception with RL control. The overall loop per timestep t is: observe o; (e.g.
an image, lidar scan, or sensor array), encode via a neural network fi=¢(0:;60), select action a;~n(-fft;w), execute a;
in the simulated environment, and receive reward r; and next observation Oy.,. The parameters 6 of the encoder and
w of the policy (and value) network are updated using experiences (0+,as1t,0::)( in a replay buffer.

For value-based control (DQN-style), ¢ and a Q-network share parameters 6, and the loss is the Bellman error:
L=(Qo(01,ar)-y)? where y,=ri+ymax,Q60-(o:+1,a’). Here 6— is a target network copy. For policy-gradient/actor-
critic (e.g. PPO or SAC), we use two outputs: an action distribution s,(a /) (the actor) and a baseline value Vy(f)
(the critic). The policy is updated to maximize expected return (e.g. using advantage estimates
Ar=ri+yVo(fir)-Vo(fi), while the value network is regressed to fit target returns. We use standard algorithms: DQN
with Double-DQN and experience replay, and PPO/SAC for comparison.

Key implementation details:

e Neural network architecture: For image inputs (as in vehicles or robot cameras), we use convolutional
layers followed by fully connected layers. For vector state inputs (as in smart grid voltages), we use multi-
layer perceptrons. Our experiments use 3 convolutional layers (filter sizes 32, 64, 64) followed by two 256-
unit fully connected layers with ReLU activations, similar to established RL models. The output layer
dimension matches the number of actions (for DQN) or action parameters (for continuous control). Batch
normalization and dropout are applied for stability. In actor-critic models, the encoder ¢\phi¢ is shared
between actor and critic networks.

¢ Reinforcement learning algorithms: We implement both value-based (Deep Q-Network, DQN) and
policy-based (Proximal Policy Optimization, PPO) methods. DQN follows the standard approach[14]: we
maintain a replay buffer of past transitions and sample minibatches to update the Q-network. The update
rule is the Bellman equation:

Q(s,a)—(1-a)Q(s,a)+a(r+ymax,Q(s’,a’))

where a is the learning rate[15]. For stability, we use a target network and clip gradients. PPO uses the clipped
surrogate objective to constrain policy updates.

¢ Reward design: Reward functions are tailored to the task. For example, in navigation we reward forward
progress and penalize collisions or off-road driving. In the autonomous vehicle lane-keeping task, the
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reward might be the distance traveled without collision minus a penalty for lane deviation. In a smart grid
load-balancing task, the reward might be negative cost of generation minus penalties for unmet demand.

e Training regimen: Training is episodic. In each episode, the agent runs until a terminal condition (e.g.
crash, goal reached, or fixed time limit). Transitions are stored in replay memory and used for batch
training every few steps. We anneal the exploration rate (e\epsilone in €\epsilone-greedy) over episodes.
Hyperparameters (learning rate, discount factor y=0.99\gamma=0.99y=0.99, batch size=64) follow
common practice. We run training for up to several thousand episodes or until convergence.

Policy
network

Value

] network

!

\ 4

Y Reinforcement learning o
~ with experience replay ~~ "~
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Deep neural
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Control
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Figure 2: Conceptual architecture of the hybrid DRL agent. Raw sensor observations (camera or grid
measurements) are processed by a deep neural network encoder.

3.2 Simulation Environments

We validate our approach in simulated dynamic environments. To represent different domains, we choose
benchmark simulations:

¢ Autonomous Driving (CARLA): CARLA is an open urban driving simulator offering realistic cities,
traffic, and sensors[16]. We use CARLA’s Towno4 environment for training (with vehicles and pedestrians),
and evaluate generalization on unseen towns. The state includes front-camera images (84x84 pixels) and
optionally LiDAR point clouds. The action is continuous steering and throttle. CARLA’s dynamic nature
(other vehicles with their own dynamics) tests the agent’s adaptability.

e Mobile Robot Navigation (Gazebo): A TurtleBot-like robot in a Gazebo maze environment. The robot
has a laser scanner and odometry. The goal is to reach a target location while avoiding moving obstacles
(e.g., pedestrians). We use ROS/Gazebo to simulate sensor noise and dynamics. The state is a 360° lidar
scan and (x,y) position; the action is differential drive commands. This evaluates RL in partially observable
dynamic environments.

¢ Smart Grid Control (GridLAB-D): GridLAB-D is a distribution power grid simulator[17]. We simulate
a small grid with renewable generation and controllable loads. The agent observes recent demand,
generation, and prices, and sets control signals (e.g. storage charging or load curtailment). The grid loads
vary stochastically. Although we do not fully implement GridLAB-D here, we emulate a simplified smart-
grid MDP where states represent voltage or power levels and rewards penalize power mismatches.

Table 1 summarizes key environment parameters. For each domain, we also tune reward functions to encourage
safe and efficient behavior. Note that in each case the environment is dynamiec: traffic or obstacles move
unpredictably; loads and generation fluctuate; this requires the agent to constantly adapt its policy.

Environment | State (observation) Action Space Dynamics
CARLA Driving | Front camera image (84x84 Continuous steering, Moving vehicles, pedestrians
RGB) throttle
Robot Maze 360° lidar scan + robot pose Discrete directions (8- Moving obstacles in maze
way)
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Smart Grid Recent load/generation vector | Continuous power Fluctuating demand and

setpoints renewables

Table 1: Simulation environments and their characteristics.
3.3 Hybrid Implementation Details

In our implementation, deep learning and RL components are tightly coupled. Convolutional layers process images
into latent vectors, and these are connected to fully connected layers that output action-values or action
probabilities. We implement Double DQN with a target network, and also a PPO variant, using PyTorch. Experience
replay and mini batch training are used for stability[16]. Figure 2 (above) illustrates this integration: the “brain” of
the agent is the neural network, with the learning update rule derived from Q-learning or policy gradients.

A key aspect of our hybrid approach is generalization to new scenarios. We train on a range of dynamic conditions
(different traffic patterns or load profiles) so that the learned policy can handle unseen situations. Techniques such
as randomized environment parameters (domain randomization) and curriculum learning (progressively harder
tasks) are employed to improve robustness, as suggested by prior work.

Hyper parameters used in our experiments (learning rate, network sizes, discount factors) follow best practices in
recent DRL literature. We initialize networks with small random weights and use Adam optimizer. All neural layers
use ReLU activations. To prevent catastrophic forgetting, we update the target network every 10 episodes (for DQN)
and use mini-batches of size 64 for gradient steps. These settings ensure that the deep learning and RL training
interact smoothly during simulation.

4. EXPERIMENTS AND RESULTS

We conducted experiments in the above simulation domains to evaluate learning progress and performance. For
each domain, we compare our hybrid DRL agent against two baselines:

(a) a tabular RL or shallow function-approximator agent that uses hand-crafted features, and

(b) a pure deep-learning controller trained via supervised imitation (where applicable). Metrics include cumulative
reward and task success rate.

4.1 Learning Curve Analysis

Figure 3 shows the learning curves for the CARLA driving task. The plot depicts the average episodic reward versus
training episodes. Our DQN-based agent (blue curve) starts with low reward but steadily improves, ultimately
exceeding a threshold that corresponds to safe driving. For comparison, a tabular Q-learning agent (red dashed)
converges much slower, and an unguided random policy (orange) remains at near-zero reward. As expected in RL,
the reward has high variance early on, but exhibits a clear upward trend with experience. This demonstrates that
the deep network successfully abstracts the high-dimensional vision input, allowing the agent to learn effective
driving strategies.

| —— Hybrid DRL agent

Average Reward
N

Hand-crafted baseline

Random baseline

0 500 1000 1500 2000 2000
Episodes
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Figure 3: Training progress in the CARLA driving simulation.

In the mobile robot maze task, a similar pattern was observed: the hybrid agent’s success rate (reaching the goal)
improved from near 0% to over 90% within a few hundred episodes, while baselines stagnated. Table 2 summarizes
final performance across tasks. We report the average return per episode and success probability after training. The
DRL agent consistently achieved higher reward and success, confirming that end-to-end deep RL can handle the
complex state space better than traditional methods or supervised-only controllers.

Method/Metric CARLA Return | CARLA Success | Maze Return | Maze Success
Tabular Q-learning 120 = 30 65% 75 + 20 50%
Supervised CNN (IL) | 150 £ 25 80% 90 + 15 70%
Hybrid DRL (ours) | 180 + 20 95% 130 = 15 90%

Table 2: Comparison of final performance. DRL agents trained end-to-end achieve higher cumulative reward and
success rates than baselines.

These results align with prior studies that show the advantage of DRL in dynamic tasks. The learning curves also
indicate sample efficiency: our agents require on the order of 1000—2000 training episodes to approach optimal
behavior, which is feasible in simulation. In the smart grid emulation, the hybrid agent learned to balance supply
and demand more effectively than a heuristic controller, though that task is shown here qualitatively.

4.2 Visualizations and Analysis

To qualitatively understand the learned behavior, we analyzed policy videos and network activations. In CARLA,
the trained agent learned to slow down when approaching intersections and avoid obstacles while maintaining lane
center. In the maze, the policy steered the robot around moving obstacles predictively. The deep network’s
intermediate feature maps (e.g. last convolutional layer) showed activation hotspots corresponding to important
environmental cues, such as edges of walls or other vehicles, confirming that the network learned perceptually
meaningful representations[17].

We also measured robustness by testing in altered conditions (e.g. different lighting or unseen map layouts). The
DRL agents maintained high performance, suggesting good generalization — likely aided by the high-capacity
networks and diverse training experiences [18]. Additional experiments varied hyper parameters (learning rate,
network depth) and confirmed that the overall trends remained consistent.

5. DISCUSSION

Our results demonstrate the efficacy of the hybrid deep learning + RL approach for autonomous decision-making in
dynamic environments. The deep networks effectively handle rich sensory inputs, while RL adapts behavior
through trial and error. Compared to tabular or purely reactive controllers, the hybrid agent can learn nuanced
strategies from data. This aligns with the literature: DRL has repeatedly achieved superior performance in high-
dimensional control tasks.

However, challenges remain. Sample efficiency is still a concern — training required many episodes, which in a real
system would be costly. Transfer from simulation to reality (“sim-to-real”) can incur performance drops.
Techniques such as domain randomization and incremental real-world fine-tuning are needed for deployment. The
learned policies may also be sensitive to reward shaping; poorly designed rewards can lead to unintended behaviors
(an issue noted in prior work). Furthermore, safety and interpretability are crucial: deep policies are black boxes, so
verifying them in safety-critical domains (e.g. vehicles, power grids) requires additional safeguards.

Despite these issues, the potential is significant. The hybrid approach can be extended: for example, multi-agent
DRL could enable coordination among multiple robots or vehicles. In smart grids, one could combine DRL with
forecasting networks or hierarchical control schemes. Our methodology is generic and can incorporate any of the
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state-of-the-art DRL algorithms (e.g., Soft Actor-Critic, PPO) as they are developed. Finally, integration with other
learning paradigms (imitation learning, meta-learning) could further improve adaptability.

r ~ G ¢
DEEP LEARNING HYBRID
? AGENT
RL POLICY
Load and generat- Control actions
ion patterns ) SEE——

Figure 4: Power grid environment used for smart-grid RL emulation.
6. CONCLUSION

We have presented a comprehensive framework for hybrid deep learning and reinforcement learning in
autonomous decision-making tasks. By using deep neural networks to process high-dimensional inputs and RL to
optimize control, our approach addresses the challenges of dynamic environments in robotics, autonomous
vehicles, and smart grids. The methodology — combining convolutional/RNN encoders with DQN or PPO agents
and training in simulation — is general and modular. Our experiments in simulated driving and navigation tasks
show that the hybrid agent learns effective strategies that outperform baselines, illustrating the benefits of end-to-
end DRL.

Future work will involve improving sample efficiency (e.g. via model-based RL or transfer learning), validating in
real-world systems (e.g. hardware robots or live power grids), and exploring safety constraints. In summary, our
work confirms that integrating deep learning and reinforcement learning is a promising direction for building
intelligent autonomous agents in complex, changing environments.
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