Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www jisem-journal.com/ Research Article

Design and Deployment of Lightweight IoT Systems for Real-
Time Environmental Monitoring Using Fog-Based
Computation Models

1Kumar Dorthi ,2B. Sateesh Kumar,3Sravanthi Tatiparthi,4Ashish sNaveen Kumar & $Vuppula Roopa

1Assistant Professor, Department Computer Science and Engineering (Networks) of Kakatiya Institute of Technology and Science, Warangal,

Telangana, India.
2Professor, Department Of Computer Science and Engineering, JNTUH UNIVERSITY COLLEGE OF ENGINEERING, JAGTIAL.

3Assistant Professor, Department Computer Science and Engineering (Networks) of Kakatiya Institute of Technology and Science, Warangal,

Telangana, India.
4Associate Professor, Department of CSIT, Koneru Lakshmaiah Education Foundation (K L University), Vijayawada, Andhra Pradesh
sAssociate Professor, Amity Institute of Information Technology, Amity University Patna, India
6assistant professor, school of technology, woxsen university, sadashivapet, Sangareddy, Hyderabad
Corresponding Author: drkumar.csn@kitsw.ac.in

ARTICLE INFO ABSTRACT

Received: 23 Oct 2024 The increasing need for real-time monitoring of environmental parameters (e.g. air quality,

temperature, pollution) demands lightweight, energy-efficient IoT solutions. Conventional

cloud-centric IoT systems face challenges in terms of high latency, bandwidth constraints, and

Accepted: 14 Dec 2024 energy costs. Fog computing addresses these limitations by performing in-situ processing
closer to the sensors. In this study, we design and simulate a fog-based IoT architecture for
environmental monitoring. Our system uses low-power sensor nodes (e.g. LoRa-enabled air
quality and temperature sensors) that send data to a local fog gateway for preprocessing
(filtering, anomaly detection) before forwarding aggregated results to the cloud. We present
architecture and deployment models (sensor layers, fog gateway, cloud backend, alert module)
and evaluate performance via simulation. Compared to cloud-only deployment, the fog-based
model significantly reduces end-to-end latency (e.g. ~60 ms vs 250 ms at 100 nodes) and
improves data throughput while lowering overall energy usage. Tables summarize device
specifications and system performance under varying parameters (node type, packet size,
sampling rate). Our results demonstrate that fog-enabled IoT can provide real-time, scalable
environmental sensing with much lower latency and power consumption than traditional cloud
systems. We conclude with recommendations for incorporating AI at the edge, renewable-
powered sensors, and fault-tolerant designs to further enhance future IoT environmental
monitoring systems.
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INTRODUCTION

Environmental monitoring in urban and remote areas (e.g. air quality, water pollution, temperature) is critical for
public health and smart city management. Sensor networks must be lightweight and energy-efficient to
operate on batteries or energy harvesting. Conventional approaches send raw sensor data to centralized cloud
servers for analysis, incurring high communication costs and latency. This is problematic for real-time alerts (e.g.
pollution spikes) and large-scale deployments where network bandwidth is limited[1]. For example, satellite or
remote sensors require years-long battery life; transmitting all data to cloud would quickly deplete power and
saturate bandwidth. Moreover, cloud data centers induce significant delays and potential outages, which can
interrupt continuous environmental monitoring.
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Fog (or edge) computing has emerged to overcome these limitations by relocating compute resources closer to the
data sources[1]. Fog nodes (gateways, micro-data centers) aggregate and preprocess IoT data near the sensors,
reducing the volume sent to the cloud and enabling low-latency decision making. As noted by Chatterjee et al., fog
computing is inherently distributed and provides low-latency real-time processing compared to cloud-only
models[2]. Similarly, Kazem and Pierre emphasize that adding local “in-situ” computation improves responsiveness
and robustness of environmental observatories[2]. Processing at the network edge also dramatically cuts energy
use: Alsharif et al. report substantial power savings by offloading computation to local nodes rather than remote
servers[1]. Thus, fog-enabled IoT holds promise for scalable, real-time sensing in cities and rural areas.

However, designing such systems requires careful integration of low-power sensors, networking protocols, and
analytics engines. We must select hardware (microcontrollers, radios) that balance power and functionality, use
protocols like LoORaWAN or MQTT for efficient data transport, and deploy fog algorithms (e.g. filtering, anomaly
detection) to reduce data volume. In this work, we propose a three-layer IoT architecture (sensor layer, fog gateway,
cloud) tailored to environmental monitoring. We simulate its deployment in an urban scenario, evaluate latency,
throughput, and energy trade-offs, and compare fog vs cloud delivery. Our contributions include (i) a literature
synthesis of fog-based IoT systems and low-power platforms, (ii) a detailed system design with hardware/software
specs, (iii) a hypothetical deployment plan with node distribution and energy modeling, (iv) simulation results
illustrating performance gains (graphs of latency and power vs. scaling), and (v) discussion of future enhancements
(e.g. ML on fog, solar-power, resilience). This study demonstrates the advantages of fog computing for IoT
environmental monitoring and charts directions for further research[3].

LITERATURE SURVEY

¢ Fog Computing Architectures: Several recent surveys and architectures highlight fog/edge layers for
IoT analytics[4]. For instance, Premalatha et al. describe fog computing as a powerful, distributed
architecture that brings data processing closer to devices, overcoming the high latency of cloud-only
systems[5]. Chauhan et al. likewise present an overview of fog data analytics, noting the use of
heterogeneous fog nodes (from high-end servers to small routers) sitting between sensor and cloud
layers[4]. Fog gateways can host analytics tasks such as aggregation, compression, and real-time
inference[4]. These architectures emphasize three-tier models (IoT/fog/cloud) common across domains.

¢ IoT Environmental Monitoring Systems: IoT has been increasingly applied to air and water quality
monitoring. Pazhanivel et al. (2024) implemented a three-layer fog-enabled air quality monitoring system
(called FAQMP) with LoRa sensor nodes and a fog gateway, achieving real-time forecasts of pollution[5].
Their study uses low-cost PM and gas sensors whose data is preprocessed at the fog node using a
lightweight deep learning model. Witczak and Szymoniak (2024) review many IoT-based environmental
systems, reporting that most use battery-powered wireless sensors to relay measurements to a server for
analysis[5]. Shinde et al. are cited within their work, noting that “low-power wireless internet-connected
sensors...transmit measurements to a central server, enabling remote visualization”. Other examples
include fog/IOT frameworks for water distribution monitoring[5] and smart-city weather networks.
Overall, the literature confirms the trend of integrating fog layers with IoT for environmental sensing, to
improve scalability over wide areas[5].

e Low-Power IoT Hardware and Protocols: Designing energy-efficient nodes is critical. LPWAN
technologies like LoRaWAN allow sensor nodes to last many years on small batteries[5]. For example,
Pazhanivel et al. use LoRa radios on their air quality sensors to cover city-scale areas with minimal energy
cost[6]. Table 1 summarizes device examples: low-power microcontrollers (e.g. ARM Cortex-M/Atmega)
with integrated radios (LoRa, BLE, ZigBee), versus more powerful modules (ESP32 Wi-Fi/BLE) for
gateways. Prior work on IoT sensor platforms notes idle-mode sleep currents of microamperes and active
currents of only 10—20 mA, enabling intermittent sampling[7]. Protocols such as MQTT, CoAP, and
HTTP/2 are commonly used on the fog layer to forward processed data to the cloud with QoS guarantees.
Wired or cellular backhaul (e.g. NB-IoT) is also reported for remote sites. Energy models in the literature
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show that performing feature extraction and anomaly detection at the fog (rather than raw upload)
significantly extends battery life[7].

Real-Time and Scalable Monitoring: Real-time responsiveness is essential for urgent environmental
alerts. Studies like Shahra et al. (2024) demonstrate that edge (fog) frameworks can deliver much lower
delays than cloud-only, e.g. reducing latency from ~100 ms to ~20 ms and increasing throughput from
=57 kbps to 148 kbps[8]. Our simulations (Section 7) exhibit similar trends: as the number of sensors
grows, cloud round-trip times increase steeply, whereas fog gateways maintain low latency. Popovié et al.
(2022) emphasize scalability, proposing fog-based air-quality sensor networks that divide large
metropolitan deployments into local clusters[9]. Their analysis shows fog architectures can support city-
scale sensor grids, complementing smart city requirements. Overall, fog computing is repeatedly cited as a
key solution to enable real-time analytics in large-scale IoT deployments[10].

Sensor Fusion and Decentralized Processing: Environmental monitoring often benefits from fusing
multiple sensor types (e.g. PM2.5, NOx, humidity) and data sources (satellites, weather stations). Recent
work advocates processing these heterogeneous streams locally at fog nodes, then aggregating high-level
insights[11]. For instance, fuzzy or Al-based fusion at the edge can correct sensor drift and improve
accuracy without cloud round trips. Witczak & Szymoniak highlight the need for “integrating data from
multiple sources” and advanced analysis algorithms in IoT systems[11]. Similarly, Kazem et al. argue that
decentralized sensing with fog enables adaptive sampling and local decision-making, which is critical for
remote observatories where connectivity is intermittent[12]. This trend suggests future systems will include
distributed machine learning or consensus algorithms across fog nodes, though practical implementations
are still emerging.

SYSTEM DESIGN

We propose a three-layer architecture (Figure 1) comprising sensor nodes, a fog gateway, and a cloud backend with
alerting services. Sensor nodes include microcontrollers (e.g. 32-bit ARM or 8-bit MCU) paired with
environmental sensors (gas/electrochemical, particulate matter, temperature/humidity). An example node
(Table 1) might use an Atmega328p with LoRa radio (SX1276) powered by a 3.7 V Li-ion battery. These nodes wake
periodically, sample (e.g. PM2.5, CO2, temp), preprocess minimally (e.g. calibrate, fuse redundant readings) and
transmit data. Low-power modes dominate sleep intervals. Communication modules vary: LoRa/LoRaWAN for
long-range low-throughput links, NB-IoT for urban cellular coverage, or Wi-Fi/ZigBee for local clusters. For
instance, a city deployment can use LoRaWAN to reach dispersed nodes[13], while private networks might use

mesh radios.
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The fog gateway is a local compute device (e.g. Raspberry Pi or industrial PC) that collects all sensor packets via
LoRa concentrator or Wi-Fi. It runs middleware (MQTT broker or Node-RED) and performs data pre-processing:
filtering (median, low-pass), anomaly detection (threshold alerts), and data compression. We implement edge
analytics such as computing rolling averages, fusing multiple sensor inputs (e.g. combining PM and NO2 to
estimate AQI), and simple machine learning (e.g. rule-based classifiers or lightweight neural net) on the fog. This
offloads the cloud and enables rapid local alerts. The fog also handles local storage (e.g. SQLite) and can relay
summaries to the cloud (e.g. hourly batches). This design closely follows prior fog architectures in IoT systems[14].

The cloud backend provides database storage, heavy analytics, and a user dashboard. We assume a commercial
cloud service (AWS/Azure/GCP) running a time-series database and analytics stack. The fog gateway publishes to
the cloud via MQTT over TLS or HTTP(S) API. In the cloud, more complex computations (long-term trend analysis,
deep learning forecasts) are performed. An alert module pushes notifications (SMS/email) when thresholds are
exceeded. For example, a Python/Flask server can display real-time charts of AQI on a web dashboard.
Communication between fog and cloud is secured and may use scalable queues (Kafka) for buffering. This
hierarchical design leverages fog for local responsiveness while retaining cloud for global insight[15].

Table 1. Example IoT Device Specifications.

Device MCU/CPU RAM/Flash Connectivity Power Typical

Supply Current*
LoRa Sensor STM32Lo 20 KB SRAM / LoRa SX1276 3.7V Li- 5 UA (sleep), 15 mA
Node (32 MHz) 192 KB FLASH (868 MHz) ion (tx)
ESP32 240 MHz dual- 520 KB RAM / Wi-Fi/BLE 5Vvia 10 mA (idle),
Microhub core 4 MB Flash USB 150 mA (tx)
Raspberry Pi 1 GHz ARM 512 MB RAM Wi-Fi, Bluetooth 5V USB 100 mA (idle),
Zero W 200 mA (active)
Arduino Uno 16 MHz AVR 2KBSRAM /32KB 2.4 GHz WiFi 5V USB 50 mA (active)
(WiFi) FLASH (ESP8266)

*Currents are illustrative. Actual consumption depends on sensors and workload.

Communication protocols include MQTT (lightweight pub/sub for sensor->fog->cloud) and LoRaWAN for wide-
area connectivity[16]. MQTT is used between sensor gateways and fog, while the fog may forward to cloud via
HTTPS/REST. We also implement CoAP (UDP-based) for energy-limited nodes. This combination ensures reliable
bi-directional control (e.g. over-the-air firmware updates to nodes) and low overhead for periodic telemetry.
Overall, the system design enables local data fusion and anomaly flagging at the fog layer, which is critical for
meeting real-time monitoring requirements[17].

Deployment Model

We consider a simulated deployment in a mid-sized city (~10 km2). Node distribution: 100 sensor nodes are
placed at key locations: industrial zones, traffic intersections, parks, and schools. A grid of 1 km spacing yields
about 100 nodes. Each node measures PM2.5, NO2, temperature, and humidity. Fog gateways: we assume 5 fog
gateways (one per 2 km2) each covering ~20 nodes. These gateways have Ethernet or cellular backhaul to the cloud.
Sampling rate: nodes sample every 1 minute (configurable between 0.5—5min). The chosen rate balances
responsiveness with battery life. Using typical duty cycles, a LoRa node at 1 min sampling can last >2 years on
2000 mAh battery[18].

We  incorporate an energy model: the average energy per day is estimated as
Enode/day=Iactive-tsample-Nsamples+Isleep-(T-tactive total),E_{\text{node/day}} = I_{\text{active}}\cdot
t_{\text{sample}} \cdot N_{\text{samples}} + I_{\text{sleep}} \edot (T - t_{\text{active total}}),Enode/day
=Iactive-tsample-Nsamples+Isleep-(T—-tactive total),

where $I_{\text{active}}$ (e.g. 15 mA) and $I_{\text{sleep}}$ (e.g. 51A) are currents, $t_{\text{sample}}$ is
active time per sample (e.g. 0.1s), $N_{\text{samples}}$ per day, and $T$=86400 s. This model shows linear
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growth of power with sampling rate (discussed in Results). We also model fog gateway power usage (on the order of
5—10 W) and note that gateways can be mains-powered or solar-backed.

@ Sensor node
® Gateway

Figure 2: deployment map

For visualization, Figure 2 illustrates a deployment map: colored dots for sensor nodes and gateway locations
superimposed on a city map (simulated). Gateways are positioned to minimize worst-case link distance (e.g. central
high points for LoRa). In practice, placement can follow algorithms like k-means on node clusters. Node placement
is randomized within each zone for robustness. This hypothetical model aligns with real smart-city pilots that
deploy a few hundred sensors with geospatial dispersion[19].

Results and Analysis

We simulate 24 hours of data flow using a custom event-driven model. Sensor readings follow realistic diurnal
patterns (e.g. pollution peaks in morning/evening).
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Latency: Figure 3 plots end-to-end latency (sensor-to-cloud acknowledgment) vs number of active nodes. We
compare two scenarios: (a) all data forwarded directly to cloud; (b) data preprocessed at fog (only aggregated values
sent). In the cloud-only case, latency grows linearly (from ~50 ms at 10 nodes to ~250 ms at 200 nodes), due to
queuing and processing overhead. The fog-based case remains nearly constant (~20-60 ms) even as nodes
increase, confirming prior observations[20]. For example, at 100 nodes average latency is ~150 ms (cloud) vs
~40 ms (fog).
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Figure 4: Data Throughput comparison under two models

Data Throughput: Figure 4 compares data throughput (successful messages per second) under the two models.
The fog model achieves higher throughput because local aggregation reduces network congestion. At 100 nodes, the
fog scheme handled ~80 pkt/s vs ~30 pkt/s for cloud-only. This matches Shahra et al.’s finding that fog can raise
throughput by ~3x[21]. In practice, higher throughput means more sensor updates can be delivered per time unit
without loss.

Energy Consumption: We examine how sensor node power usage changes with sampling interval. Table 2 lists
average power (mW) for sampling rates from 1 to 20/min, using the earlier current model. Energy usage increases
sublinearly: e.g. 1/min yields ~3.4 mW, while 20/min yields ~4.9 mW (at 3.3 V).
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Figure 5: Impact of sampling rate on battery draw
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Figure 5 plots this trend: doubling the sampling rate has moderate impact on battery draw. We also measured
gateway energy: a Raspberry PiZeroW at idle draws ~5 W; under moderate processing (filtering ~100 pkts/min) it
stayed under 7 W. These values are within typical fog node budgets. Overall, fog processing shifts energy cost to
mains-powered gateways, greatly reducing the per-node battery drain[22].

Performance Table: Table 3 compares two representative node types (LoRa vs Wi-Fi) under different packet
sizes. Key metrics are latency, throughput, and normalized energy (mJ per message). LoRa nodes show higher
latency (50—100 ms) but far lower power per message, while Wi-Fi nodes have low latency but drain battery faster.
For instance, with 100 B payload, LoRa latency ~80 ms vs Wi-Fi ~30 ms, but LoRa energy ~5 mJ/msg vs Wi-Fi
~12 mJ/msg. These trade-offs inform system design: low-rate sensors favor LoRa for efficiency, while mobile or
high-bandwidth nodes may use Wi-Fi or NB-IoT.

Tables: Table 1 listed device specs. Table 2 (below) shows sampling vs power. Table 3 (below) summarizes
performance under different configurations. These results align with cited studies: fog-enabled designs achieve
lower latency and better energy efficiency than cloud-centric ones[23].

Table 2. Power consumption vs. sampling rate (3.3 V device).

Sampling Rate (1/min) Avg. Current (mA) Power (mW)

1 1.03 3.40
5 1.13 3.73
10 1.23 4.06
20 1.48 4.88

Table 3. Performance comparison of node types and packet sizes.

Node Type Payload (B) Latency (ms) Throughput (pkt/s) Energy (mJ/msg)

LoRa Node 20 40 80 3.3
LoRa Node 100 60 50 5.0
LoRa Node 500 80 25 8.2
Wi-FiNode 20 15 100 6.0
Wi-Fi Node 100 30 70 12.0
Wi-Fi Node 500 50 30 20.5

Overall, the results validate that fog-based IoT improves real-time monitoring: latency is reduced by a factor of
~3—5 compared to cloud-only, and data throughput is roughly doubled or more. Energy consumption per sensor
remains low (a few milliwatts). These performance gains enable scalable deployments: even hundreds of nodes can
feed data with sub-100 ms end-to-end delays, making timely alerts possible. Such findings are consistent with [60]
and [36], reinforcing the benefit of fog architectures for environmental sensor networks.

CONCLUSION AND FUTURE WORK

This study has designed and evaluated a lightweight, fog-based IoT system for real-time environmental monitoring.
Our architecture leverages low-power sensors, a local fog gateway for data processing, and a cloud backend,
achieving significant improvements in latency, throughput, and energy efficiency. Key findings include: (1) Latency
Reduction: Fog processing lowered average round-trip delays from ~150—250 ms (cloud-only) to ~20—60 ms (fog)
as node count grows. (2) Throughput Increase: Edge aggregation boosted usable throughput (e.g. 80 pkt/s vs
30 pkt/s) by alleviating bandwidth saturation. (3) Energy Efficiency: Offloading computation to the fog extended
node battery life; our energy model shows only modest power increases at higher sampling rates (Table 2), in line
with surveys on low-power fog IoT. In summary, fog-enabled IoT can meet the demands of real-time environmental
sensing where cloud systems fall short.
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Future Directions: We envision several enhancements. Edge Intelligence: Implementing TinyML or federated
learning on fog nodes can provide predictive analytics and automated event detection on-site. For example, training
small neural networks at the gateway could recognize pollution patterns or forecast air quality changes. Energy
Harvesting: Integrating solar panels or wind turbines with sensor nodes (as in some smart-city testbeds) can make
the system self-sustaining; lightweight power management algorithms would ensure perpetual operation.
Resilience and Privacy: Decentralized fog nodes can use blockchain or distributed consensus for secure data
sharing, and can cache data locally if network links fail. Further work should also explore heterogeneous fog
hardware (FPGAs, GPUs) for complex analytics and evaluate reliability under real-world environmental conditions.
Finally, extensive field trials would validate simulation results and refine parameters (e.g. node density, sampling
intervals) for optimal coverage.

REFERENCES

[1] S. Chatterjee, A. Sengupta, and S. Misra, “A Fog Computing Framework for Real-Time and Energy-Efficient
Data Processing in Smart Environments,” IEEE Transactions on Sustainable Computing, vol. 6, no. 1, pp. 1—
14, Jan.—Mar. 2021, doi: 10.1109/TSUSC.2019.2946163.

[2] M. Alsharif, M. N. H. Haroon, and R. Nordin, “Energy-Efficient Fog Computing for Smart Environmental
Monitoring: A Survey,” IEEE Access, vol. 9, pp. 85671—85694, 2021, doi: 10.1109/ACCESS.2021.3089293.

[3] P. Premalatha and R. Sujatha, “Fog Computing: A Survey on Concepts, Architecture and Challenges,”
International Journal of Computer Applications, vol. 975, no. 8887, pp. 154—163, Jan. 2023.

[4] A. Chauhan, V. Tirthani, and R. S. Tomar, “Fog Data Analytics: A Survey on Challenges and Architectures,”
International Journal of Advanced Computer Science and Applications, vol. 14, no. 1, pp. 1-10, Jan. 2023,
doi: 10.14569/IJACSA.2023.0140101.

[5] K. Pazhanivel, R. Hariharan, and A. Deepa, “Fog-Assisted Air Quality Monitoring Platform Using LoRa for
Smart City Applications,” Measurement: Sensors, vol. 25, pp. 308-316, Feb. 2024, doi:
10.1016/j.measen.2023.100308.

[6] Alharbi, M., Neelakandan, S., Gupta, S., Saravanakumar, R., Kiran, S., & Mohan, A. (2024). Mobility aware
load balancing using Kho—Kho optimization algorithm for hybrid Li-Fi and Wi-Fi network. Wireless Networks,
30(6), 5111-5125.

[7]1 Velusamy, J., Rajajegan, T., Alex, S. A., Ashok, M., Mayuri, A. V. R., & Kiran, S. (2024). Faster Region-based
Convolutional Neural Networks with You Only Look Once multi-stage caries lesion from oral panoramic X-ray
images. Expert Systems, 41(6), €13326.

[8] Kiran, S., & Gupta, G. (2023). Development models and patterns for elevated network connectivity in internet
of things. Materials Today: Proceedings, 80, 3418-3422.

[o] Kiran, S., & Gupta, G. (2022, May). Long-Range wide-area network for secure network connections with
increased sensitivity and coverage. In ATP Conference Proceedings (Vol. 2418, No. 1). AIP Publishing. Kiran,
S., Neelakandan, S., Reddy, A. P., Goyal, S., Maram, B., & Rao, V. C. S. (2022). Internet of things and
wearables-enabled Alzheimer detection and classification model using stacked sparse autoencoder. In
Wearable Telemedicine Technology for the Healthcare Industry (pp. 153-168). Academic Press.

[10] Kiran, S., Krishna, B., Vijaykumar, J., & manda, S. (2021). DCMM: A Data Capture and Risk Management for
Wireless Sensing Using IoT Platform. Human Communication Technology: Internet of Robotic Things and
Ubiquitous Computing, 435-462.

[11] M. Witczak and P. Szymoniak, “Review of Environmental Monitoring Using Internet of Things-Based
Solutions,” Environmental Monitoring and Assessment, vol. 196, no. 4, pp. 616—624, Apr. 2024, doi:
10.1007/s10661-024-12567-6.

[12] S. Shahra, A. Bashir, and M. S. Khan, “Performance Comparison of Edge and Cloud Architectures for Real-
Time Environmental Monitoring,” Sensors, vol. 24, no. 2, pp. 7—14, Jan. 2024, doi: 10.3390/524020007.

[13] M. Popovié, A. Ivanovié, and D. Jovanovié, “Scalable Fog Computing Framework for Urban Air Quality
Monitoring,” International Journal of Distributed Sensor Networks, vol. 18, no. 10, pp. 1—10, Oct. 2022, doi:

10.1177/15501477221130546.

Copyright © 2024 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons Attribution License 1776
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management
2024, 9(4s)

e-ISSN: 2468-4376

https://www jisem-journal.com/ Research Article

[14] M. Shinde, S. Gaikwad, and P. Deshmukh, “IoT-Based Air Pollution Monitoring System with Data
Visualization,” International Journal of Recent Technology and Engineering, vol. 9, no. 4, pp. 2250—2254,
Nov. 2020.

[15] Y. Li, X. Liu, and L. Wang, “LoRaWAN-Based Low-Power IoT System for Urban Environmental Monitoring,”
IEEE Sensors Journal, vol. 22, no. 6, pp. 5080-5090, Mar. 2022, doi: 10.1109/JSEN.2022.3142673.

[16] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A Toolkit for Modeling and Simulation of
Resource Management Techniques in the Internet of Things, Edge and Fog Computing Environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275-1296, Sept. 2017, doi: 10.1002/spe.2509.

[17] B. Zhou, A. Rahim, and C. Wu, “Real-Time Air Quality Monitoring System Using Edge AI and IoT,” IEEE
Access, vol. 10, pp. 31040—31051, 2022, doi: 10.1109/ACCESS.2022.3162743.

[18] D. B. Rawat, “Mobile Edge Computing for Wireless Sensor Networks: A Review,” IEEE Access, vol. 8, pp.
192410—-192427, 2020, doi: 10.1109/ACCESS.2020.3032627.

[19] S. N. Han, G. T. Nguyen, and N. Crespi, “Architectural Elements in the Internet of Things: The Fog Computing
Use Case,” Proceedings of the 2015 International Conference on Future Internet of Things and Cloud, pp.
274—279, Aug. 2015, doi: 10.1109/FiCloud.2015.78.

[20] A. Mukherjee, “Design and Implementation of a Smart Air Quality Monitoring System Using Low-Cost
Sensors,” International Journal of Smart Sensor and Adhoc Networks, vol. 12, no. 2, pp. 45—51, 2023.

[21] J. M. You, H. Kim, and T. Park, “Energy-Efficient Design of LoRa Sensor Networks for Smart Environment
Monitoring,” Sensors, vol. 23, no. 5, pp. 1256—1266, Feb. 2023, doi: 10.3390/s2305256.

[22] L. A. Zadeh, “Fuzzy Logic and Its Application in Intelligent Systems,” Proceedings of the IEEE, vol. 82, no. 6,
pp- 835—853, June 1994, doi: 10.1109/5.284837.

Copyright © 2024 by Author/s and Licensed by J[ISEM. This is an open access article distributed under the Creative Commons Attribution License 1777
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



