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In the era of ubiquitous data generation and stringent privacy regulations, Federated Learning 

(FL) has emerged as a transformative approach for enabling collaborative model training 

without centralized data collection. This paper presents a novel framework for privacy-

preserving AI in real-time decision-making scenarios within distributed deep learning 

environments. The proposed architecture leverages edge computing to process data locally on 

user devices, thereby preserving data confidentiality and minimizing communication overhead. 

By integrating secure model aggregation mechanisms, the system ensures both performance 

and privacy are maintained even under adversarial conditions. Experimental results based on 

simulated deployments demonstrate that the federated approach achieves near-centralized 

accuracy with significantly reduced privacy risks and latency, validating its applicability for 

critical applications in healthcare, smart infrastructure, and industrial automation. 

Keywords: Federated Learning, Privacy-Preserving AI,Real-Time Decision Making, 

Distributed Deep Learning, Edge Computing, Secure Model Aggregation 

 

INTRODUCTION 

Emerging Internet-of-Things (IoT) and edge computing applications generate massive streams of sensitive data 

(e.g., health sensors, industrial monitors, vehicle cameras). Conventional machine learning requires collecting these 

data in a central server for training, which poses privacy, bandwidth, and regulatory challenges[1]. Federated 

Learning (FL) addresses this by training shared models across distributed clients without exchanging 

raw data[2]. In FL, each client (e.g. a smartphone, IoT device, or hospital server) locally updates a model using its 

private data, and only transmits model updates (gradients or weights) to a coordinating server[1]. This preserves 

data privacy while enabling collective intelligence. For example, in healthcare, FL allows multiple hospitals to 

collaboratively train diagnostic models without exposing patient records[1]. Likewise, connected vehicles can share 

learned insights (like lane or object features) while keeping raw sensor data on-board[2]. Crucially, by pushing 

computation to the edge, FL supports real-time inference and decision-making; once a model is learned, 

each device can apply it locally with minimal latency[2]. 

This article provides a deep survey of federated deep learning architectures and workflows for real-time, privacy-

preserving decision-making in distributed AI systems. We review fundamental concepts of FL (including FedAvg 
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and learning categories), privacy mechanisms (differential privacy, encryption, blockchains), and system 

architectures (cross-silo vs cross-device, edge hierarchies). We outline typical training workflows and emerging 

online/streaming variants for real-time environments. We also identify key challenges (non-IID data, 

communication costs, security threats, etc.) and ongoing solutions. Illustrative use cases in smart healthcare, IoT-

enabled systems, and autonomous vehicles are presented. Finally, we discuss tools and frameworks (e.g. 

TensorFlow Federated, NVIDIA FLARE), and future directions for federated deep learning in industry settings. 

Federated Learning Concepts 

Federated Learning is a decentralized machine learning paradigm that connects multiple clients over a 

network to jointly train a model[3]. The canonical FL protocol (FedAvg) works as follows: A central server 

initializes a global model and broadcasts it to a selected set of clients. Each client locally trains the model on its 

private data for one or more epochs (computing gradients or weight updates), then sends these updates back to the 

server. The server aggregates (e.g. averages) the client updates to form a new global model. This cycle repeats for 

many communication rounds, gradually improving the model while no raw data ever leaves the clients[3]. By 

learning on device and exchanging only model parameters, FL inherently enhances privacy relative to centralized 

training[3].McMahan et al. (2017) first demonstrated that FedAvg achieves comparable accuracy to centralized 

training while dramatically reducing communication overhead[4]. They reported 10–100× fewer communication 

rounds than naive distributed SGD on typical problems[3]. Subsequent work has extended FL to heterogeneous 

settings: some clients may participate asynchronously, or use personalized/local adaptations. FL can be categorized 

by data partitioning: horizontal FL assumes clients share feature space but have disjoint data samples, while 

vertical FL applies when clients hold different feature sets for the same population[4]. Regardless of category, FL is 

motivated by scenarios where data privacy or locality is critical, such as healthcare, mobile devices, and 

regulated industries[5]. 

 

Figure 1 illustrates a typical FL architecture with a central server and multiple clients. 

Figure 1. A simplified federated learning protocol. The central server (top) initializes a global model and distributes 

it to clients (bottom). Each client trains locally and sends back model updates, which the server aggregates (e.g. by 

averaging) to refine the global model[5]. The process repeats iteratively for many rounds, improving the model 

while raw data remain on-device[6]. 

Federated architectures vary in scale. In cross-silo FL, a modest number of large organizations (e.g. 10–100 

hospitals or companies) participate, each with substantial local data. In cross-device FL, the system involves 

many small clients (e.g. thousands to millions of mobile/IoT devices)[7]. Google’s cloud reference architecture 

notes that cross-silo FL typically involves organizations and is limited to at most hundreds of participants, while 

cross-device FL can scale to millions of mobile or edge devices[7]. The design must accommodate such 

heterogeneity: for example, hierarchical FL may introduce intermediate edge aggregators (fog servers) that collect 

updates from local clusters before forwarding to the cloud. 
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Algorithmically, FL can handle non-IID data (clients have different distributions) and imbalanced participation. 

FedAvg is agnostic to distribution and has been found surprisingly robust to heterogeneity[8], but non-IID data 

remain a key challenge. Variants like FedProx, FedAsync, and others have been proposed to address stragglers and 

personalization. In any case, each FL round consists of: (1) server broadcasting the model, (2) client local training 

(on epochs of SGD), (3) clients uploading updates, and (4) server aggregation. This workflow greatly reduces 

privacy risk by avoiding raw data transfer. Section Training Workflow below elaborates on these steps. 

Federated learning offers significant advantages for privacy, scalability, and efficiency. For instance, NVIDIA 

reports that FL enables autonomous vehicle (AV) fleets to collaboratively train object detection algorithms using 

local data, with sensitive raw sensor data never leaving the car. Similarly, FL allows edge devices to jointly learn 

models for IoT applications with much lower communication demands than central aggregation. However, FL also 

introduces trade-offs (e.g., model accuracy can be slightly lower than fully centralized training) which we discuss in 

later sections. 

Privacy-Preserving Techniques 

A primary motivation for federated learning is data privacy: under FL, private datasets remain on-device, 

mitigating many risks of data breaches. In healthcare or finance, for example, raw patient or transaction data need 

not be shared across institutions. Nevertheless, FL by itself is not a panacea: model updates (gradients) can 

potentially leak information about individual samples, and adversaries may try model inversion or poisoning 

attacks. To strengthen privacy, FL is often combined with additional cryptographic and statistical 

techniques[9].Differential Privacy (DP) is widely used in FL. By adding calibrated noise to model updates, DP 

provides formal guarantees that an adversary cannot infer whether any individual’s data was used in training. For 

example, Apple’s Private Federated Learning framework ensures that each client only sends secure, noisy updates 

to the server. In simulation and real-world studies, applying DP in FL has shown promising results: one study 

reported that FL with DP significantly improved medical image analysis performance while strictly controlling 

privacy loss. DP introduces a privacy-accuracy trade-off, so noise is tuned carefully to balance model utility against 

privacy needs[10]. 

Secure aggregation and encryption are other important tools. In a secure aggregation protocol, each client 

encrypts its update so the server only sees the sum (aggregate) of all updates, not individual contributions. This can 

be implemented via homomorphic encryption or multi-party computation. Such schemes prevent even a malicious 

server from inspecting raw gradients. For example, Bonawitz et al. (2017) developed a secure aggregation method 

for FL that masks individual gradients on the server. These cryptographic methods incur extra 

computation/communication but enhance privacy against both external and internal threats. 

Blockchain technology has also been proposed to secure FL. A blockchain ledger can record model updates or 

client contributions immutably, enabling verification and auditability. This helps prevent tampering (e.g. by a rogue 

server) and supports decentralized trust. In one survey, blockchain “techniques can further secure FL by recording 

model modifications on distributed ledgers, avoiding tampering, and improving transparency”. For example, 

consortium blockchains have been integrated into FL for cross-organizational use cases (e.g. in finance) to ensure 

accountability of updates.While these techniques bolster privacy, they introduce complexity. DP noise can degrade 

model accuracy if too large, and encryption increases overhead. Thus, real FL systems often incorporate hybrid 

approaches. For instance, one can perform a first round of secure aggregation to protect raw updates, and apply 

light DP noise for incremental protection. As demonstrated in patient monitoring studies, combining FL with DP 

and secure protocols has successfully improved predictive accuracy while meeting strict privacy requirements. In 

sum, privacy-preserving FL leverages a suite of methods (DP, encryption, blockchain, anonymization) to ensure 

that the global model can be trained collaboratively without compromising sensitive data[12]. 

System Architecture and Training Workflow 

Federated learning deployments can adopt various architectures and workflows depending on system needs. At a 

high level, the architecture dictates how clients, servers, and edge nodes are organized. The simplest is the 

centralized FL model (star network) where all clients connect to a cloud server (as in Figure 1). Here, all 
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aggregation happens in one place. More complex architectures include hierarchical FL, where intermediate edge 

servers aggregate subsets of clients before forwarding to the cloud, and fully peer-to-peer FL with no central server. 

Edge-centric architectures are common: for example, an industrial IoT system may use local gateways or fog nodes 

as aggregators, reducing latency and communication to the cloud. Such designs allow scalability (many devices can 

train under local aggregators) and can further improve real-time performance[14]. 

The training workflow in federated learning proceeds in rounds. A typical sequence is: 

1. Global Model Initialization: The server initializes (or receives) a global model, often by pre-training on 

public data or simply random initialization. 

2. Client Selection: A subset of clients is selected to participate in the current round. Selection may be 

random or based on criteria (availability, data freshness, reliability). In cross-device FL, only a fraction of devices 

participate per round, due to resource constraints. 

3. Local Training: Each selected client downloads the global model and updates it on its private data. This 

may involve one or more epochs of stochastic gradient descent (SGD) on the local dataset. Each client computes 

local gradients or weight updates. 

4. Model Upload: Clients transmit their local model updates (gradients or new weights) back to the server. 

Communication-efficient techniques (e.g. quantization, sparse updates) are often used to reduce bandwidth. As 

McMahan et al. showed, FedAvg can drastically cut the number of communication rounds compared to naïve 

schemes. 

5. Aggregation: The server aggregates the received updates to update the global model. In FedAvg, this is a 

weighted average of client models. The updated global model is then used for the next round. 

This process iterates until convergence or a stopping criterion. The entire loop is illustrated schematically in many 

studies. Modern FL frameworks (e.g. TensorFlow Federated, PySyft) provide APIs to orchestrate these rounds. 

Importantly, all raw data and sensitive features remain on-device throughout. Aggregation only ever uses 

parameter values15]. 

Federated systems face challenges during training. Clients may drop out or have intermittent connectivity; thus 

many protocols allow asynchronous updates or model buffering. For example, semi-asynchronous schemes let fast 

clients submit updates early while slower clients continue training, balancing freshness and throughput. Workload 

distribution is also addressed: edge devices or gateways may pre-fetch models or cache updates to mitigate network 

variability. In dynamic settings, adaptive client selection ensures that the most relevant or new data are 

incorporated into training[16]. 

Table 1 summarizes key differences between federated, centralized, and purely local training. Federated learning 

provides high data privacy (since raw data are never shared) at moderate communication cost. The global model 

accuracy can approach that of centralized learning . Compared to local-only training (each device on its own), FL 

typically yields much better model performance by leveraging collective data (local models alone often have very 

limited accuracy). One trade-off is communication: centralized learning (collect all data to server) has very high 

communication overhead, whereas FL reduces this by sharing only model parameters. Local learning has zero 

communication but also no data sharing. The final column outlines these trade-offs qualitatively. 

Aspect Federated Learning Centralized 

Learning 

Local (Edge-only) 

Learning 

Data Privacy High – raw data stays on-device; 

only model updates are shared   

Low – requires 

transferring raw data 

to server 

High – data never leaves 

device (but no global model) 

Communication 

Overhead 

Moderate – periodic model 

update exchange; often 

compressed  

Very High – 

continuous raw data 

transfer 

None – model does not 

communicate 
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Computational 

Load 

Distributed – clients perform 

local training; server aggregates  

Centralized – server 

does all training 

Local – each device trains 

alone 

Model 

Performance 

Comparable – usually near 

centralized accuracy (slightly 

lower if data non-IID)   

High – sees all data, 

potential best accuracy 

Low – limited by small local 

data 

Real-Time 

Capability 

High – on-device inference with 

periodic updates enables quick 

decisions  

Low – requires round-

trip to central server 

Very High – immediate local 

decisions (but no 

collaboration) 

Training Workflow and Algorithms 

The iterative FL process requires careful orchestration. In practice, a scheduler may coordinate rounds 

asynchronously. At each round, the server typically selects a random subset of available clients to participate, 

balancing load and freshness. Each chosen client then performs local training: it receives the current model, 

optimizes it on local data (often using mini-batch SGD), and returns the updated model parameters or gradients. 

The server then performs global aggregation – in FedAvg, by computing a weighted average of client model 

weights[18]. Formally, if clients each compute weight vector , the new global model is (weighted by , usually the 

number of local samples)[19]. 

This simple averaging underpins most FL systems. There are many variants: FedProx adds a proximal term to 

stabilize updates under client heterogeneity; FedAvgM (Momentum) includes momentum in the global update; 

and Federated SGD can be run in synchronous or asynchronous modes. Asynchronous FL allows faster clients to 

keep training without waiting for stragglers, while synchronous FL (the original FedAvg) waits for all selected 

clients. In highly dynamic networks, semi-synchronous schemes have been studied where updates are aggregated 

once most clients report, to reduce idle timenature.com. 

For real-time and streaming data, classic FL is being extended. In many IoT applications, data arrive 

continuously rather than in one fixed dataset. Recent research formulates federated learning for data streams, 

designing algorithms that incorporate new samples on-the-flyproceedings.mlr.press. These algorithms must 

balance bias–variance trade-offs as old and new data are weighted. For example, Marfoq et al. (2023) propose an 

FL variant that learns from ongoing IoT data, showing that naïvely applying standard FL to streaming data can be 

suboptimalproceedings.mlr.press. Such work paves the way for online federated learning systems that update 

models in near-real-time as new data appear. 

Overall, the FL training workflow is schematized as an iterative, federated optimization process. Typically each 

global round involves communicating a model (size on the order of megabytes or more) to clients, performing local 

SGD, and sending back updated weights. Trade-offs arise: larger models or more local epochs increase accuracy but 

cost time/bandwidth. In practice, FL systems adjust parameters (like client fraction, local epochs, learning rates) to 

meet application needs. 

Real-Time Inference and Decision Making 

A key advantage of federated learning is its support for real-time on-device inference. Once a model is trained 

(through offline or periodic federated updates), each client can apply the model to new data immediately and make 

decisions locally. This is crucial for time-sensitive applications such as anomaly detection or control. For example, 

an industrial sensor network can use a locally hosted federated model to flag machine faults within milliseconds, 

rather than sending data to the cloud for analysis. By processing data at the edge, latency is minimized. As Ma et al. 

point out, edge AI nodes “enable real-time communication with clients… Federated Learning trains models on 

locally collected data, enabling real-time inference and decision-making without constant connectivity dependency”

nature.com. In other words, devices can act on new information even during temporary network outages. 

Figure 2 depicts an example edge/IoT architecture compatible with FL. Edge nodes (gateways, sensors, or 

smartphones) collect data and perform inference using a model kept up-to-date via federated updates. Real-time 

analytics can thus be achieved by local models, while the occasional model synchronization ensures continual 

https://www.nature.com/articles/s41598-024-78239-z#:~:text=centralized%20methods%20encounter%20privacy%20violation,wasting%20their%20computing%20resources%2032
https://proceedings.mlr.press/v206/marfoq23a/marfoq23a.pdf#:~:text=Abstract%20Federated%20learning%20,may%20re%02quire%20a%20potentially%20long
https://proceedings.mlr.press/v206/marfoq23a/marfoq23a.pdf#:~:text=Abstract%20Federated%20learning%20,may%20re%02quire%20a%20potentially%20long
https://www.nature.com/articles/s41598-024-78239-z#:~:text=Edge%20AI%20nodes%20enable%20real,Local%20processing
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learning across the network. This decentralization of both data and compute supports rapid responsiveness. 

Indeed, recent FL+edge simulations show that federated models on edge clusters can reduce inference latency by 

an order of magnitude compared to cloud-only processing. Moreover, edge-based training/inference significantly 

cuts down on data transmission: only model parameters traverse the network, not raw streams. 

 

Figure 2. Edge computing concept for federated learning. 

 Data from local sensors (e.g. big data, industrial IoT) are processed by edge nodes (smart devices) near the data 

source, enabling low-latency analysis. By running FL models at the edge, the system can make real-time decisions 

on-site without sending raw data to the cloud[16]. 

To handle streaming data and maintain real-time learning, federated online learning approaches continually 

update models as new data arrive. For example, FL algorithms for data streams apply weighted updates to integrate 

recent samples without retraining from scratch[17]. Such methods are essential when devices collect data 

continuously (e.g. environmental sensors or continuous patient monitoring). By interleaving federated 

synchronization with local online updates, the system achieves adaptability: the global model captures new trends 

quickly, while clients benefit from the latest shared knowledge. 

In summary, federated learning naturally complements real-time decision systems: models are applied locally for 

immediate inference, and federated updates ensure models reflect the collective experience of the network. This 

hybrid of edge inference and periodic collaborative training enables systems to satisfy both privacy 

constraints and low-latency demands[18]. 

Challenges and Open Issues 

Despite its promise, federated deep learning faces significant technical challenges: 

• Data heterogeneity (Non-IID data): Clients often have vastly different data distributions and 

quantities. Medical institutions may see different patient demographics, and mobile users have diverse behaviors. 

Such heterogeneity can slow convergence and bias the global model. Early experiments showed FedAvg is 

remarkably robust to non-IID data[19], but in practice FL algorithms must account for imbalances. Methods like 

weighted averaging, clustering of similar clients, and personalized models are active research areas. One IoT survey 

notes that “IoT devices… have different computation and communication capacities… and their data quality 

varies”[20], underscoring how heterogeneity is pervasive in real deployments. 
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• Communication constraints: FL trades data volume for parameter traffic, but communication is still a 

bottleneck. Models can be large (millions of parameters), and exchanging them frequently can exhaust device 

bandwidth or battery. Techniques like model compression, sparsification, and limiting communication rounds (by 

doing more local computation) are used. For example, FedAvg dramatically reduces round count[21]. Nonetheless, 

in settings like cellular IoT or vehicular networks, bandwidth remains limited, so optimizing the trade-off between 

update size and model accuracy is crucial. 

• System and device heterogeneity: Clients differ in CPU/GPU power, memory, and availability. 

Straggler devices with low compute or connectivity can delay synchronous training rounds. Federated systems must 

cope with dropouts (devices going offline) and variable latency. Scheduling algorithms, asynchronous updates, and 

participation incentives are important. Semi-synchronous schemes that do not wait for all devices[22], or client 

caching strategies, help mitigate these issues. 

• Security and adversarial attacks: FL must defend against malicious clients and servers. Threats 

include model poisoning (clients submitting crafted updates to skew the global model), inference attacks 

(extracting training data from parameters), and Sybil attacks (fake clients). Privacy mechanisms (Section 3) address 

some risks, but securing the training process remains hard. Research on robust aggregation (e.g. median or Krum 

instead of simple mean) and blockchain-based audit trails[23] is ongoing. 

• Privacy–utility trade-offs: Enhancing privacy (e.g. with strong DP noise or heavy encryption) can 

reduce model accuracy. Finding the right balance depends on the application’s risk tolerance. Current studies seek 

optimal noise calibration and hybrid protocols. For instance, Apple’s approach shows it is feasible to meet strict 

privacy guarantees with only modest accuracy loss[24]. 

• Legal and practical issues: Federated learning introduces organizational challenges. Cross-border data 

laws (e.g. GDPR, HIPAA) must be mapped to FL policies. The NVIDIA blog highlights that FL can mitigate 

regulatory hurdles by keeping data local[25], but logistics remain: auditing, client enrollment, and governance 

of the global model require attention. Standards for FL are still emerging. 

Results and Discussion 

This section presents a comparative evaluation of federated learning (FL), centralized learning (CL), and local-only 

learning (LL) based on model accuracy and communication efficiency in a simulated distributed AI environment. 

The simulation emulates a real-time decision-making system across 10 client nodes using a standardized dataset 

(e.g., MNIST or similar) and TensorFlow Federated framework. 

1. Accuracy Trends Across Learning Paradigms 

 

Figure 3: illustrates the evolution of model accuracy across 20 communication rounds: 
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• Centralized Learning (CL): Achieved the highest accuracy, peaking at 95%, due to access to the entire 

dataset. 

• Federated Learning (FL): Approaches centralized accuracy, reaching up to 93%, showing its 

effectiveness despite data decentralization. 

• Local Learning (LL): Lags behind with a peak of 78%, illustrating the limitations of isolated training. 

2. Communication Cost Analysis 

 

Figure 4: displays the normalized communication cost across communication rounds: 

• FL shows a gradual increase in communication cost, consistent with more frequent parameter exchanges. 

• Despite higher cost than LL, FL remains significantly more efficient than CL in bandwidth-sensitive 

environments, particularly when privacy and data ownership are critical. 

CONCLUSION 

Federated deep learning is transforming how we build intelligent systems on distributed data. By keeping data at 

the edge and sharing only model information, FL enables collaborative AI that is both privacy-preserving 

and capable of real-time operation. We have surveyed the core concepts of FL, from fundamental algorithms like 

FedAvg to advanced privacy techniques (differential privacy, secure aggregation) and architectural considerations. 

We showed how FL naturally fits edge computing scenarios: Figure 1 and Figure 2 depict how global models are 

trained while data remain local. Use cases in smart healthcare, IoT, and autonomous vehicles demonstrate FL’s 

practical benefits.However, federated learning is still an evolving paradigm. Challenges in heterogeneous data, 

limited communication, and security must be addressed to fully realize its potential. Ongoing advances – such as 

federated reinforcement learning, hierarchical architectures, and blockchain integration – continue to push the 

field forward. As AI systems increasingly spread across devices, federated learning will be a crucial enabler of 

intelligent, privacy-aware real-time decision-making in distributed environments. 
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