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This study presents an energy-aware Condition-Based Maintenance (CBM) framework for an 

SKF 6205 bearing in a motor-driven system, integrating Industry 4.0 technologies. Real-time 

data from ESP32-based IoT sensors enabled degradation modeling using a Gamma process and 

evaluation of energy efficiency. The degradation index (Xt), derived from tri-axial RMS 

vibration, identified a failure threshold of 41.5 g·min, with a CBM trigger set at 75% (31.13 

g·min). An Energy Efficiency Indicator (EEI), defined as the ratio of power input to incremental 

degradation, highlighted performance drops near failure, validating the thresholds. Remaining 

Useful Life (RUL) was estimated using Maximum Likelihood Estimation on Gamma 

distribution parameters (α = 16.61, β = 0.000286). The proposed approach links energy 

efficiency with wear progression, enabling accurate, sustainable maintenance decisions in 

smart manufacturing environments. 

Keywords:  Energy efficiency, degradation Index, condition based monitoring, energy 

efficiency indicator 

 

1. INTRODUCTION 

The advent of Industry 4.0 has revolutionized conventional maintenance practices by incorporating real-time 

monitoring, predictive analytics, and condition-based techniques. This paper investigates how energy efficiency can 

be integrated with advanced maintenance strategies, including Condition-Based Maintenance (CBM) and proactive 

Preventive Maintenance (PPM). Through analysis of recent developments and practical case studies, the study 

highlights the impact of enabling technologies such as the Internet of Things (IoT), machine learning, and energy-

saving opportunity windows in enhancing maintenance efficiency. The results emphasize the potential for reducing 

energy consumption, increasing equipment reliability, and lowering operational expenses. This paper also outlines 

practical recommendations for implementing energy-efficient maintenance models in Industry 4.0-driven 

industrial environments.(Do Hoang, Iung, & Vu, 2018). 

Energy efficiency is increasingly recognized as a critical element of sustainable industrial practices. The integration 

of advanced maintenance approaches—such as Condition-Based Maintenance (CBM) and predictive analytics—

with energy-efficient technologies offers substantial potential for reducing costs and minimizing environmental 

impact. This study investigates these synergies through case studies, mathematical modeling, and simulations, 

aiming to deliver practical strategies for optimizing industrial energy consumption. With industries contributing 

significantly to global energy demand, escalating energy prices and environmental challenges underscore the 

urgency for smarter, efficiency-driven maintenance. Emerging Industry 4.0 technologies, including IoT and 

artificial intelligence, provide dynamic tools to monitor, analyze, and enhance energy performance in real time.(Do 

et al., 2013; Do et al., 2018). 

 Condition-Based Maintenance (CBM) is a data-driven maintenance strategy that relies on monitoring the 

real-time condition of equipment to determine when maintenance is necessary. Rather than following a fixed 

schedule, CBM initiates maintenance only when specific indicators suggest declining performance or an imminent 

failure. These indicators can be identified through various techniques, including non-invasive measurements, visual 
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inspections, performance monitoring, and scheduled diagnostic tests. Data collection can occur periodically or 

continuously, especially when embedded sensors are present in the equipment. CBM is applicable to both mission-

critical and non-mission-critical assets, enhancing reliability while optimizing maintenance resources.(Jianget al., 

2018) 

Modern industrial enterprises face growing pressure from legislative, economic, and sustainability demands, 

particularly in managing resources like energy, raw materials, and waste. Among these, energy efficiency has 

emerged as a critical focus due to its significant impact on operational sustainability. For instance, in the lifecycle 

cost of an electric motor, energy consumption can account for up to 96%, compared to just 2.5% for purchase and 

1.5% for maintenance. Despite this, maintenance decisions are still largely driven by traditional metrics such as 

reliability, availability, and direct cost. This highlights the need to incorporate the Energy Efficiency Indicator (EEI) 

into maintenance and operational decision-making to better balance performance, cost, and sustainability over a 

system's lifecycle. (Do et al., 2013) 

2. LITERATURE SURVEY 

Aiping Jiang et. al (2018) discussed that a condition-based maintenance strategy integrating ecological factors like 

energy consumption and carbon dioxide emissions. It aims to minimize total costs and environmental impact 

through optimization and simulation analyses. The research highlights the importance of considering ecological 

impacts in maintenance management. Future studies could extend the model to multi-unit systems and non-

periodic inspections . Anh Hoang and Benoit Iung (2015) discussed that a generic data-driven approach for 

modeling energy efficiency performance (EEP) in industrial applications. It emphasizes the need for prognostics to 

predict EEP at both component and system levels. The approach is validated on the TELMA platform, simulating a 

real industrial plant. It integrates future mission profiles and operational conditions to enhance decision-making. 

Anh Hoang et. al (2014)  presents various definitions of energy efficiency and their applications in industrial 

sectors . It proposes a multi-level approach for evaluating energy efficiency indices. A novel concept, REEL, is 

introduced to predict the remaining efficient lifetime of components/systems. The paper emphasizes the 

importance of prognostic approaches for forecasting energy efficiency evolution. An example of an air-fan system 

illustrates the proposed concepts and their practical applications. Anh Hoang et al (2016) developed a model on 

energy efficiency (EE) for condition-based maintenance (CBM) to enhance sustainability in industrial systems. It 

proposes a new EE-based CBM model incorporating energy consumption in maintenance optimization. The study 

compares the new EE-based approach with an existing CBM model to assess cost and efficiency benefits. A case 

study on the TELMA platform demonstrates the impact of EE on CBM strategies . 

Phuc Do et. al (2016) investigates using energy efficiency as a key performance indicator in condition-based 

maintenance decision-making. It proposes a new energy efficiency-based maintenance model for optimizing costs 

and performance. The model is validated through a case study on the TELMA platform, comparing it to traditional 

methods. Results highlight the impact of energy efficiency on maintenance strategies, emphasizing cost and 

efficiency benefits. Same author in his research work of 2018 investigates using energy efficiency as a key 

performance indicator in condition-based maintenance decision-making.They proposes a new model integrating 

energy efficiency with maintenance costs and useful output performance. The model's effectiveness is demonstrated 

through a case study on the TELMA platform. The results highlight the impact of energy efficiency on existing 

maintenance strategies. Anh Hoang and Benoit Iung in 2015 finds a generic data-driven approach for modeling 

energy efficiency performance (EEP) in industrial applications. It focuses on prognostics to predict remaining 

energy-efficient lifetime (REEL) and energy efficiency indicators (EEl). The approach is validated on the TELMA 

platform, simulating a real industrial plant. It addresses challenges in assessing energy efficiency at both 

component and function/system levels . 

Anh Hoang, Eric Levrat, and Alexandre Voisin in 2014 discusses energy efficiency assessment and its importance in 

decision-making for reducing energy consumption. It introduces a new energy efficiency indicator (EEI) and a 

prognostic formulation for predicting remaining efficient lifetime (REEL). The implementation of these concepts is 

illustrated through an electrical fan-blower system case study. The research emphasizes the need for evaluating 

energy efficiency to enhance decision-making processes in industrial applications. Anh Hoang and Benoît Iung in 
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2016 investigates using energy efficiency (EE) for condition-based maintenance (CBM) to enhance sustainability in 

industrial systems. It proposes a new EE-based CBM model incorporating energy consumption in maintenance 

optimization. The study compares the new EE-based approach with an existing CBM model to assess cost and 

efficiency benefits. A case study on the TELMA platform illustrates the impact of EE on CBM strategies. 

 Aiping Jiang et al 2018 proposes a condition-based maintenance strategy that integrates ecological aspects, 

minimizing costs and environmental impact. The optimal thresholds for CO2 emissions and energy consumption 

are identified as 6 tons and 3 tons, respectively. The average expected cost per week is $109.406, which is lower 

than previous studies. Increasing inspection costs lead to a decrease in CO2 emissions thresholds and an increase in 

inspection intervals. The method presented performs better in reducing penalties for excess emissions compared to 

previous research. The study highlights the importance of balancing maintenance costs with ecological impacts to 

enhance decision-making. Allen H Tai et al 2009, The research develops a maintenance model maximizing system 

availability under imperfect maintenance conditions. It utilizes a Gamma process to model system degradation. The 

optimal maintenance threshold and inspection intervals are determined to enhance system reliability. A sequential 

uniform design algorithm is proposed for obtaining optimal solutions numerically. The study emphasizes the 

importance of condition-based maintenance (CBM) for reducing system downtime.  

Xiangxin An, Guojin Si et al 2022 reviews energy optimization in operation and maintenance (O&M) of 

manufacturing systems, highlighting its significance for sustainability. It categorizes O&M optimization approaches 

across machine, production-line, factory, and supply-chain levels. The research addresses challenges in energy 

consumption optimization due to manufacturing dynamics and system complexity. It emphasizes the need for 

effective energy management strategies in industrial operations. - The paper discusses condition-based 

maintenance (CBM) for systems experiencing soft failures due to continuous degradation. It aims to maximize 

system availability by determining optimal maintenance thresholds and inspection intervals. The system's 

degradation is modeled as a gamma process, with failures occurring at a defined threshold. The research highlights 

the importance of imperfect maintenance and periodic observations in improving system reliability.  

3. CIRCUIT DIAGRAM 

In this study, multiple sensors were integrated to monitor the condition and performance of an SKF 6205 bearing. 

Tri-axial vibration data were captured using the ADXL345 accelerometer via I2C, mounted directly on the bearing 

housing for real-time mechanical behavior analysis as shown in Fig. 1. Temperature near the bearing was measured 

with a PT100 RTD sensor and MAX31865 amplifier using SPI communication. Motor current was continuously 

monitored using the ACS712 Hall Effect sensor, while the ZMPT101B module measured input voltage, scaled for 

analog input through the ESP32’s ADC. Mechanical load was assessed using a load cell with an HX711 amplifier, 

and shaft speed was optionally tracked with a Hall Effect sensor detecting magnetic pulses to calculate RPM. All 

sensor outputs were collected by the ESP32 microcontroller and logged at one-minute intervals to a microSD card. 

This compact, low-cost, non-DAQ system supported reliable data acquisition for condition-based maintenance and 

energy efficiency analysis under experimental conditions. 

 

Figure 1 Circuit Diagram 
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4. PARAMETER BEHAVIOUR WITH RESPECT TO TIME 

In rotating machinery, various mechanical faults can significantly influence vibration behavior and overall system 

performance. These faults not only accelerate wear and tear but also compromise operational safety and efficiency. 

Early detection through vibration analysis helps in identifying the root causes and preventing unexpected 

breakdowns. The various faults can be created to study degradation of the system when it  is in running condition. 

The possible faults can be lack of lubrication, Loosening of Bearing Mounting Nuts, Load Misalignment, Surface 

Defect etc. All sensor outputs were collected by the ESP32 microcontroller to study the effect of various parameters 

with respect to time. The data collected consists of acceleration in X, Y and Z direction, temperature, current, 

voltage, power, energy, load and speed. 

The Figure 2 shows RMS acceleration versus time, indicating the vibration behaviour of a deteriorating machine. A 

gradual increase in baseline RMS values between sharp peaks suggests progressive wear or degradation. The 

sudden spikes followed by drops likely correspond to maintenance actions that temporarily restore machine 

condition. However, with each cycle, the baseline vibration level rises, pointing to cumulative deterioration. This 

pattern supports the need for condition-based maintenance and suggests that timely interventions, guided by 

vibration thresholds, can improve reliability and prevent unexpected failures.  

The Energy vs Time graph in figure 3 shows a monotonic (steadily increasing) curve. It reflects the cumulative 

energy consumed by the system over the duration of the test. The slope of the curve is low initially, indicating low 

power draw during the early healthy phase. As degradation increases (especially after ~6000 minutes), the slope 

may steepen, meaning: More energy is consumed per unit time — possibly due to increased friction, misalignment, 

or faulty conditions. 

 

Figure 2 A graph of RMS Acceleration Vs Time 

 

Figure 3 A graph of Energy Vs Time 
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5. MODELLING 

5.1 Degradation Index, Xt -  

The degradation index Xt serves as a vital metric in condition-based maintenance (CBM) to monitor the progressive 

deterioration of machinery components—in this case, SKF 6205 bearings. It quantifies the cumulative exposure of 

the system to vibrations over time, helping in the early identification of wear and failure trends. The calculation of 

Xt is grounded in the use of Root Mean Square (RMS) vibration values derived from tri-axial acceleration data. 

RMS Vibration is given by the equation -  

Vibration RMS =
√X2  +  Y2  +  Z2

3
  

This equation aggregates the vibration signals from the X, Y, and Z axes into a single representative value, offering a 

holistic view of the vibration intensity at each time step. 

Now, the Cumulative Degradation Index is given by the equation - 

Xt  = ∑ VibrationRMSi

t

i =1

  

The cumulative sum of RMS values over time gives us Xt which steadily increases as the bearing wears. This allows 

maintenance decisions to be based not just on sudden anomalies but also on long-term trends. Xt helps -  

1. To Detect early-stage bearing wear 

2. Trigger maintenance before critical failure 

3. Support the transition from time-based to condition-based maintenance 

For instance, in the dataset analyzed, the initial RMS value at minute 0 was 0.0036 g, and the degradation index 

rose to 0.0175 g·min within just five minutes—clearly showing how cumulative vibration builds up. Table 1 shows 

sample data calculation 

Table 1. Vibration RMS values 

Time (min) Vibration RMS Degradation Index (Xt - Xt-1) 

0 0.003602 0.003602 

1 0.003614 0.007216 

2 0.003697 0.010913 

3 0.003465 0.014378 

4 0.003174 0.017552 

5.2 Gamma distribution 

The Gamma distribution is a versatile probability distribution that is frequently used to model the time until an 

event occurs, particularly in areas such as reliability engineering, queuing theory, and survival analysis. The 

distribution is characterized by two parameters: shape (α) and rate (β). Table 2 shows sample data calculation. 

Calculation for (α) and (β) 

Step 1: ΔXt = Xt−Xt−1(sample calculation) 
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Table 2 Gamma Distribution 

Time (min) Xt(g·min) ΔXt=Xt−Xt−1 

0 0.000 – 

1 0.003 0.003 

2 0.007 0.004 

3 0.011 0.004 

4 0.017 0.006 

5 0.020 0.003 

So, the degradation increments are: 

ΔXt={0.003,0.004,0.004,0.006,0.003} 

Step1 : Calculate Sample Mean μ 

μ =  
0.003 +  0.004 +  0.004 +  0.006 +  0.003

5
 

μ = 0.004 

Step 2: Calculate Sample Variance σ2 

First, compute the squared deviations from the mean: 

• (0.003−0.004)2=0.000001 

• (0.004−0.004)2=0 

• (0.004−0.004)2=0 

• (0.006−0.004)2=0.000004 

• (0.003−0.004)2=0.000001 

𝜎2  =  
0.000001 + 0 + 0 + 0.000004 + 0.000001

5
 =  0.0000012 

Step 3: Estimate Gamma Parameters 

Using method of moments: 

α =  
μ2

σ2
 =  

0.0042

0.0000012
 =  

0.000016

0.0000012
 ~ 13.33 

β =  
σ2

μ
 =  

0.0000012

0.004
 =  0.003 

To calculate the values of α and β, a programming language is used and values are calculated as below 

Result: (16.611066177186398, 0.000286240143079647) 

Gamma distribution fitted successfully to your degradation increments using Maximum Likelihood 

Estimation (MLE). 

Here are the fitted parameters: 

• Shape parameter α ≈ 16.61 

• Scale parameter β≈ 0.000286 

These parameters define the Gamma process model for your SKF 6205 bearing degradation: 
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Xt∼Gamma(16.61t, 0.000286) 

The Gamma distribution is defined for a continuous, non-negative variable x by the PDF: 

f (x;  α, β)  =  
1

βαγ(α)
 . xα−1. e

−x
β  

Where: 

• α= shape parameter 

• β= scale parameter 

• γ(α)= gamma function (generalization of factorial) 

• x≥0 = the variable (in your case, degradation increment ΔXt ) 

Gamma Function for our Dataset (SKF 6205 Bearing) 

From your MLE-based fitting: 

• α=16.61 

• β=0.000286 

f (x)  =  
1

(0.000286)16.61αγ(16.61)
 . x15.61. e

−x
0.000286 

Figure 3 shows that how reading are following gamma distribution. The bars are representing empirical 

distribution of degradation increments (real data). The curve shows Gamma PDF fitted using MLE 

(Maximum Likelihood Estimation) with our estimated parameters. The Gamma curve aligns closely with the shape 

of the histogram — indicating a good statistical fit. This confirms that your degradation increments can be 

effectively modeled using a Gamma process, which can now be used for RUL prediction, failure probability, or 

CBM planning. 

 

Figure 3 Graph of probability Density Vs Degradation Increment 

4.3 Degradation Xt Over Time  

The figure 4 clearly indicates that over a period of time system degrades. The graph illustrates a upward trend in the 

system’s operational parameters, which suggests that the system undergoes deterioration due to factors such as wear 



Journal of Information Systems Engineering and Management 
2024, 9(4s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  
 

 1719 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

and tear, environmental influences, aging of components, or lack of maintenance. This degradation may manifest as 

increased energy consumption, reduced efficiency, higher failure rates, or longer response times. The consistent decline 

over time implies that without timely intervention or maintenance, the system’s performance will continue to degrade, 

potentially leading to failure or complete shutdown. 

 

Figure 4 Graph of Degradation Index Vs Time 

6. THRESHOLD OF FAILURE 

The degradation behavior of the SKF 6205 bearing was quantified using a cumulative degradation index, X t, 

calculated as the time-integrated RMS of triaxial vibration amplitude, expressed in g·min. This index increases 

monotonically, reflecting the bearing’s accumulated mechanical wear over time. A failure threshold was defined at 

Xt, = 41.5g·min, based on system behavior and condition-based maintenance (CBM) literature. At this point, 

distinct fault indicators appear and vibration RMS exceeds 0.0089 g, temperature approaches 40°C, and load 

exceeds 58%, marking a transition to an irreversible failure-prone state as shown in Figure 5. Although some 

indicators may briefly fluctuate, the cumulative Xt remains a reliable marker of degradation. Failure occurred at 

8829 minutes, validating the threshold. This approach aligns with CBM methodologies, where failure points are 

determined by sustained deviations or critical degradation peaks (Phuc Do, Voisin, Levrat, & Iung, 2012), 

supporting reliable RUL estimation and maintenance planning. 

 

 

Figure 5 Graph of Temp Vs Vibration RMS and Vibration RMS Vs Time 
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Figure 6 Graph of Cumulative Degradation Index Xt Vs Time 

The figure 6 shows  the Degradation Index Xt over time with clearly shaded region. The Green regions 

represent when the system is in a "Normal" state. The Orange regions indicate the "Fault" state and the 

dashed red line marks the failure threshold at Xt=41.5 g.min 

7. REMAINING USEFUL LIFE (RUL) ESTIMATION AND STRATEGY (LIFE IS 8829) 

In condition-based maintenance (CBM), Remaining Useful Life (RUL) denotes the estimated time before a 

component reaches a defined failure threshold. For the SKF 6205 bearing analyzed in this study, degradation is 

tracked using a cumulative index Xt, which aggregates RMS vibration over time. A failure threshold of Xt = 41.5 

g·min was determined based on observed system behavior, indicating the onset of critical wear. 

To predict RUL, the degradation pattern was modeled using a Gamma process—a stochastic model well-suited for 

representing monotonic wear. The shape (α=16.61) and scale (β=0.000286) parameters were derived via Maximum 

Likelihood Estimation (MLE). Simulations initiated from different health states (e.g., Xt=30.35) were used to 

estimate the time remaining until the failure threshold. At Xt = 35 g·min, the mean RUL was approximately 1369 

minutes, with a 95% confidence interval of [1354, 1384] minutes. In contrast, at Xt=41.49, the mean RUL dropped 

to around 1 minute, signifying imminent failure. 

To standardize proactive intervention, CBM trigger points were defined as percentages of the failure threshold, 

facilitating dynamic and data-driven maintenance scheduling. 

To avoid arbitrary selection of RUL reference points, this work adopts the industry-standard approach of defining 

CBM triggers as a percentage of the failure threshold. Table 3 below summarizes the recommended trigger levels 

and their corresponding degradation index values: 

Table 3 Trigger Levels and corresponding Degradation Index 

Threshold Stage 

 

% of 

Failure 

Xt  Value 

(g·min) 

Purpose 

 

 

60% (Early Warning) 

 
60% 24.90 Alert that degradation has begun 

70% (Inspection Planning) 70% 29.05 Schedule diagnostics/monitoring 

75% (Maintenance Planning) 75% 31.13 Prepare for preventive action 

90% (Urgent Action) 90% 37.35 Maintenance must be executed 
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Threshold Stage 

 

% of 

Failure 

Xt  Value 

(g·min) 

Purpose 

 

 

100% (Failure) 100% 41.50 End of useful life 

In this case, Xt=41.5….failure and time 8829 min. So above predefined trigger levels ensure that maintenance 

decisions are made systematically, based on a consistent and measurable degradation framework. They also help 

reduce downtime, avoid emergency failures, and extend the useful life of the bearing through timely intervention. 

The Figure 7 indicates the variation of degradation Index over a threshold value. 

 

Figure 7  Graph of Degradation Index Vs. Threshold stage 

While Phuc Do et al. (2015) do not prescribe a fixed threshold for degradation, their findings emphasize that initiating 

maintenance based on combined insights from energy efficiency trends and cumulative degradation leads to favorable 

cost-performance outcomes. In this study, a CBM trigger point is established at 75% of the identified failure threshold 

(Xt = 31.13 g·min). This selection is consistent with prevailing practices in the condition-based maintenance literature, 

where interventions are typically recommended when 20–30% of the Remaining Useful Life (RUL) remains (Jardine, 

Lin, & Banjevic, 2006). By adopting this strategy, the maintenance schedule ensures sufficient lead time for action 

while maintaining system performance and operational continuity. 

In this study, a degradation threshold set at 75% of the failure point (Xt = 31.13 g·min) is adopted as the optimal 

trigger for initiating condition-based maintenance (CBM). This level offers a practical balance—providing adequate 

Remaining Useful Life (RUL) to plan and execute maintenance actions proactively, while avoiding unnecessary early 

interventions. The chosen threshold aligns with widely accepted guidelines in CBM research, supporting both 

operational reliability and maintenance efficiency. Figure 8 presents the progression of system degradation over time, 

captured through the cumulative Degradation Index (Xt). The steadily increasing trend reflects the continuous wear 

experienced by the system during operation. Key condition-based maintenance (CBM) trigger thresholds are 

highlighted—ranging from early warning (60%) to failure (100%)—including intermediate points for inspection (70%), 

maintenance planning (75%), and urgent action (90%). These thresholds act as decision markers to guide timely 

maintenance interventions. The clear upward trajectory of Xt underscores the importance of continuous condition 

monitoring to support early detection and avoid unexpected failures. 
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The Blue curve indicates actual degradation Xt over time and horizontal dashed lines indicates  thresholds at 60%, 

70%, 75%, 90%, and 100% of the failure limit (41.5 g·min). Here each threshold indicates a key maintenance 

decision point  

The CBM framework developed integrates degradation modeling with statistical RUL estimation to determine an 

optimal maintenance trigger. The selection of a 75% threshold ensures a reliable and cost-effective maintenance 

window. This forms the foundation for integrating energy efficiency indicators (EEI) and cost-based optimization in 

the next phase of the work. 

 

Figure 8 Graph of Cumulative Degradation Index Vs Time 

8. ENERGY EFFICIENCY INDICATOR (EEI) 

The Energy Efficiency Indicator (EEI) serves as a key metric for evaluating how effectively a mechanical system 

converts input energy into useful output over its operational life. Within the framework of condition-based 

maintenance (CBM), EEI provides valuable insight into performance degradation by capturing energy losses 

associated with mechanical wear. This makes it a complementary indicator to traditional degradation metrics, 

offering a more comprehensive basis for maintenance decision-making. 

For the SKF 6205 bearing system analysed in this study, the EEI at any time t is defined as: 

𝐸𝐸𝐼𝑡  =  
𝑃𝑡

∆𝑋𝑡

 

Pt: Power consumed at time t (in kW) 

ΔXt=Xt−Xt−1: Incremental degradation at time t (in g·min), computed from the cumulative degradation index Xt. As 

shown in below figure 9,  as the system degrades, EEI gets reduced over a period of time. The Energy Efficiency 

Indicator (EEI) trend reveals three distinct phases in system performance. Initially, during the first 2000 minutes, 

EEI values remain above 600 W/(g·min), reflecting efficient energy conversion and stable operation. Between 2000 

and 6000 minutes, a gradual decline in EEI indicates early-stage wear and a drop in performance efficiency. In the 

final phase, from approximately 6000 to 8800 minutes, EEI falls sharply—dropping below 200 W/(g·min) as the 

degradation index (Xt) approaches the failure threshold of 41.5 g·min. This sharp decline signals critical mechanical 

deterioration, where increased energy consumption yields minimal output, highlighting the need for immediate 

maintenance intervention.  
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Figure 9 Graph of EEI Vs Time (min) 

Triggering condition-based maintenance (CBM) at 75% of the failure threshold (Xt = 31.13 g·min), which occurs 

around 7500–7700 minutes, aligns well with a notable decline in energy efficiency. At this stage, the Energy 

Efficiency Indicator (EEI) drops below 300 W/(g·min), signaling reduced operational performance. This reinforces 

the value of initiating maintenance before the system reaches 80–90% of its degradation limit, helping to prevent 

excessive energy loss. The EEI trend clearly supports the degradation-based trigger, as it highlights a steep 

efficiency drop near failure, validating the 75% threshold as a practical point for maintenance intervention from 

both energy and reliability standpoints.From the graph of EEI vs degradation index as shown in figure 10 below 

observations are made 

1. Early Stage (Low Xt < 20 g·min): 

o EEI values are high (above 600 W/g·min) 

o The system is operating efficiently, converting power into motion with minimal wear. 

2. Mid-Stage (Around 30 g·min): 

o EEI begins to decline steadily 

o At Xt=31.13 g⋅min (your 75% CBM trigger), EEI falls to ~300–350 W/g·min 

o This supports intervention before efficiency deteriorates sharply 

3. Pre-Failure Region (40–41.5 g·min): 

o EEI drops to below 200 W/g·min 

o This shows the system is consuming more energy but degrading rapidly — signaling poor efficiency 

and critical wear 

The EEI vs Xt graph clearly shows a downward trend in energy efficiency as degradation increases. A marked 

decline near Xt=31.13 g.min(75% of the failure threshold) supports this value as an optimal CBM trigger. Beyond 

this point, energy is increasingly wasted in maintaining a degraded system. 
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Figure 10 Graph of EEI Vs Degradation Index Xt (g.min) 

9. CONCLUSION 

This study effectively demonstrated a comprehensive Condition-Based Maintenance (CBM) framework for the SKF 

6205 bearing using real-time data from an ESP32-based IOT platform. A wide range of sensors—including ADXL345 

(vibration), RTD PT100 (temperature), ACS712 (current), ZMPT101B (voltage), HX711 (load), and a speed sensor—were 

integrated into a compact system that logged performance metrics every minute to a microSD card. 

The degradation of the bearing was quantified using a cumulative vibration-based index Xt, with a Gamma process 

applied to model its stochastic progression. This allowed accurate estimation of Remaining Useful Life (RUL), with the 

failure threshold empirically set at Xt=41.5 g.min, based on system behavior and physical indicators. A preventive 

maintenance trigger was defined at 75% of this threshold, aligning with recommendations from CBM literature (e.g., 

Phuc Do et al., 2015). 

To evaluate the energy performance of the system, the Energy Efficiency Indicator (EEI), defined as the ratio of input 

power to degradation rate, was introduced. A significant drop in EEI after 6000 minutes indicated declining operational 

efficiency, reinforcing the need for timely intervention before reaching critical wear stages. A CBM cost simulation 

framework was also developed, considering energy usage, maintenance timing, and fault conditions. Through analysis of 

sensor data—RMS acceleration, temperature, load, power, and Machine_State—strong correlations were found between 

physical degradation and sensor responses. 

The experimental setup, built around a low-cost, non-DAQ system, proved effective in capturing meaningful 

degradation patterns. Controlled faults such as misalignment, lubrication loss, and nut loosening were introduced to 

simulate real-world deterioration scenarios. Overall, the project successfully integrated real-time monitoring, 

probabilistic degradation modeling, and energy-aware decision-making into a unified CBM strategy. This approach 

illustrates the potential for intelligent, predictive maintenance in smart manufacturing environments aligned with 

Industry 4.0 goals. 
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