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ARTICLE INFO ABSTRACT

This study introduces a robust multimodal deep learning framework aimed at the early detection
and classification of neurodegenerative diseases, specifically Alzheimer's Disease (AD) and
Revised: 12 Nov 2024 Parkinson's Disease (PD). Leveraging grayscale brain imaging data, the approach integrates
Accepted: 26 Dec 2024 discrete wavelet transform (DWT) to extract handcrafted features that encapsulate spatial-
frequency domain characteristics. The proposed architecture comprises a dual-branch neural
network: a convolutional neural network (CNN) branch processes raw images, while a fully
connected network handles the 2048-dimensional wavelet features, projecting them into a
unified 128-dimensional latent space. A multi-head attention mechanism is employed to fuse
these modalities, enhancing salient features and suppressing irrelevant ones. The model was
trained over 10 epochs using full-batch gradient descent, achieving a peak validation accuracy of
81.21% and a final training accuracy of 76.87%. Class-wise performance metrics revealed Fi-
scores of 0.85 for AD, 0.95 for PD, and 0.89 for healthy controls. An ablation study underscored
the significance of each component, with the full model attaining an accuracy of 85%,
outperforming variants lacking either modality or the attention mechanism.

Received: 24 Oct 2024

Keywords: Neurodegenerative, multi head attention, CNN, Wavelet features, Parkinson's
disease

1. Introduction

Neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS)
represent a significant global health burden due to their progressive nature, lack of curative treatments, and
increasing prevalence in aging populations. The socioeconomic and emotional impact of these disorders is profound,
necessitating early detection and diagnosis to initiate timely interventions and slow disease progression. Even though
advances in medical imaging and neurological assessments, the accurate and early identification of NDDs remains a
challenge. Radiographic imaging samples such as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), and Computed Tomography (CT) have emerged as important tools in this regard. However,
extracting complex patterns from these samples is a complex task, often changed by variability in image quality, slight
anatomical changes, and the need for expert annotation.

Recent advances in neural networks, particularly in the domain of deep learning, have introduced robust
computational methods capable of analyzing medical images and identifying complex patterns investigative of
disease. Among these, CNNs have emerged as a basic architecture, widely used for automatically learn hierarchical
spatial features from large volumes of data. CNNs have demonstrated remarkable success across numerous medical
imaging tasks, including tumor detection, organ segmentation, and disease classification. These models can capture
local patterns, edges, and anatomical detecting has positioned them as powerful tools in radiographic analysis for
NDDs.

In the context of neuro imaging, CNNs are particularly useful to learn modeling 2D and 3D structural changes in
brain scans, such as thinning, ventricle enlargement, or tissue atrophy—common markers in conditions like AD and
PD. However, despite these advantages, standard CNN architectures often struggle with capturing multi-scale
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features—those spanning across both fine and rude spatial resolutions—which are crucial in identifying early-stage
signs of neurodegeneration.

One of the limitations of traditional CNNs is their fixed receptive field, which restricts the network's ability to
contextualize small variations over broader regions. While deeper networks can theoretically capture global features,
they are prone to overfitting, especially when dealing with medical datasets that are often small and imbalanced.
Additionally, deeper models may lose fine-grained detail during repeated convolution and pooling operations. This
detail is vital in the medical domain, where even small abnormalities in brain image can serve as early indicators of
progressive neurological decline.

To overcome these limitations, researchers have used transfer learning and pre-trained deep learning models. Pre-
trained CNNs, such as VGGNet, ResNet, DenseNet, Inception, and EfficientNet, trained on large-scale natural image
datasets like ImageNet, can be fine-tuned for medical imaging applications. These models provide a strong starting
point by including generalized features—such as edge detectors, shape descriptors, and texture filters—that are
transferable to medical domains. By reusing learned filters from earlier convolutional layers and adapting the deeper
layers through fine-tuning, pre-trained models can achieve high accuracy even with limited annotated medical data.

For example, ResNet, with its residual connections, allows for very deep architectures without vanishing gradients,
making it suitable for learning complex feature hierarchies present in 3D brain images. Similarly, DenseNet promotes
feature reuse across layers, improving efficiency and potentially capturing both local and global contextual
information. These models, when adapted to neuroimaging, have demonstrated effectiveness in classifying different
stages of Alzheimer’s and Parkinson’s disease, distinguishing between mild cognitive impairment (MCI) and full-
blown dementia, and even detecting subclinical changes in healthy individuals at risk.

However, even with pre-trained networks, challenges remain. Standard CNNs, whether trained from scratch or fine-
tuned, still rely heavily on spatial convolutional filters, which may not effectively capture non-local dependencies or
long-range feature interactions across different brain regions. Neurodegenerative changes are not always localized to
one area but often manifest as distributed anomalies across functionally connected brain regions. This limitation has
led to the integration of attention mechanisms in CNN-based models, allowing the network to focus on the most
informative parts of the image.

To address these challenges, a novel framework that synergizes Wavelet-Based Feature Extraction with Multi-Head
Attention Mechanisms for robust and interpretable early detection of neurodegenerative disorders. Wavelet
transforms have long been recognized for their multi-resolution capabilities and ability to isolate local variations in
medical images. By decomposing radiographic scans into hierarchical frequency sub-bands, wavelet-based
techniques can effectively highlight texture variations, edge patterns, and structural inconsistencies that might be
overlooked by traditional convolutional operations.

The core motivation behind integrating wavelet transforms into the feature extraction pipeline is to retain both global
context and localized anomalies across various frequency scales. These wavelet-derived features are subsequently
fused using an attention-driven architecture, enabling the model to prioritize the most diagnostically relevant
regions. Particularly, the Multi-Head Attention (MHA) mechanism, inspired by the Transformer architecture, is
incorporated to assign dynamic weights to different feature channels, thereby enhancing the network’s ability to
model long-range dependencies and complex feature interactions.

Unlike conventional CNNs that primarily focus on spatial patterns, attention-based models empower the system to
learn contextual relevance, which is particularly valuable in neurodegenerative imaging, where pathological signs are
dispersed and vary across patients. The inclusion of MHA facilitates a global understanding of the brain’s
morphological patterns while maintaining a sharp focus on subtle deviations that signal early neurodegenerative
changes.

Furthermore, the architecture employs a Radiographic Feature Fusion Module, which combines wavelet-
decomposed features from multiple imaging methods (where available) or from diverse structural brain regions. This
fusion strategy enriches the representation power of the network and contributes to robust classification performance
across multiple NDD categories. The fused features are processed through a classification head designed to
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distinguish among healthy, Alzheimer's, Parkinson’s, and other conditions using high-dimensional representations
derived from the attention-augmented wavelet pipeline.

2. RELATED WORK

Qadri et al. (2024) [1] implemented MADDi method with Large Language Models (LLMs) to enhance Mild Cognitive
Impairment (MCI) detection using the NeuroBioBank dataset, and achieving an accuracy of 74%. This approach uses
deep semantic feature extraction, though it showed better performance, but need improvement for clinical
application. Yang et al. (2024) [2] proposed a hybrid method with Wav2Vec2.0, TF-IDF, and Word2Vec in features
extraction for Alzheimer's detection, evaluated on NCMMSC2021 and ADReSS datasets. This method achieved an
accuracy of 91.60%, by combining speech representations with textual features for early prediction. Khatri et al.
(2024) [3] worked on structural MRI features to differentiate AD and Mild Cognitive Impairment (MCI) cases using
the ADNI dataset, reaching a notable 94.31% accuracy. This work uses the neuroimaging biomarkers when improved
by advanced feature engineering. Chen et al. (2024) [4] proposed a model with a pyramid squeeze attention
mechanisms for Alzheimer's diagnosis from MRI images, evaluated on the ADNI dataset. This model achieved
92.60% accuracy; they used attention-based deep networks in improving sensitivity to slight anatomical changes in
the model.

Zhao et al. (2024) [5] developed the MHSA-FCN model combining Multi-Head Self-Attention with Fully
Convolutional Networks and Multilayer Perceptrons (MLP) for Autism Spectrum Disorder (ASD) detection using
ABIDE, achieving 83.80% accuracy. Bi et al. (2025) [6] proposed Lightweight Feature Models (LFMs) to diagnose
Alzheimer's Disease from MRI data, utilizing the ADNI dataset and got an accuracy of 97.80%. This model need to
perform yet highly effective models demonstrated strong diagnostic systems. Katkam et al. (2025) [7] implemented
DenseNet-169 combined with DeepLabV3+ for protein and neuropeptide analysis using Swiss-Prot and NeuroPep
datasets, achieving an accuracy of 99.27%. This model provided an effective approach for molecular-level Alzheimer's
biomarker detection. Wu et al. (2025) [8] implemented a hybrid models with 2D-LSTM networks with RNNs to detect
Alzheimer's disease with ADNI data, got an accuracy of 96.92%. With the use of sequential modeling techniques, they
captured temporal dependencies that is critical for cognitive disorder analysis. Rahim et al. (2025) [9] worked on
early Alzheimer's progression from stable MCI to progressive MCI/AD using sMRI data, achieving 91% accuracy with
the ADNI dataset.

Zhang et al. (2023) [10] proposed Node2Vec and LINE graph embedding algorithms for disease prediction based on
DisGeNET and STRING datasets, achieving 91% accuracy. This graph-based approach will extract complex
relationships among genetic factors involved in neurological disorders. Sun et al. (2023) [11] implemented a 3D
ResNet-50 framework that combines MRI images and Electronic Health Record (EHR) data for Alzheimer's detection
using the ADNI dataset, achieving an 89.90% accuracy. Chen et al. (2022) [12] proposed the NeuroPred-CLQ and
Temporal Convolutional Networks (TCN) for molecular feature prediction on Swiss-Prot and NeuroPep datasets, got
04.20% accuracy.

Zhao et al. (2022) [13] worked on High-Frequency Oscillations (HFOs) detected via MEG for neurological diagnosis,
achieving 88.60% accuracy. This technique provides new insights into the electrophysiological biomarkers of brain
disorders, particularly useful for epilepsy and dementia. Zhang et al. (2023) [14] united structural MRI and functional
MRI data for Alzheimer's detection with the ADNI dataset, attaining an accuracy of 92.40%. This multimodal
approach captured both anatomical and functional features connected with AD. Golovanevsky et al. (2022) [15]
developed a model for MCT and AD classification based purely on MRI data from ADNI, achieving 96.88% accuracy.
Kumar Ravikanti et al. (2023) [16] implemented an EEG-based deep learning framework integrating RNN, CNN, and
OTA-LSTM modules, achieving a 98% accuracy on the ADNI dataset. This multi-architecture system provided robust
performance for brain signal-based Alzheimer's detection. Gour et al. (2023) [17] proposed a deep learning model for
classifying psychiatric dysfunction from raw EEG signals using the TDBRAIN dataset, achieving 68.49% accuracy.
Roy et al. (2025) [18] implemented a Bayesian Autoencoder for medical anomaly detection using the BraTS2020
dataset, achieving 83% accuracy. This uncertainty-aware approach enhanced model reliability in brain MRI analysis,
particularly for detecting anomalies in tumor studies. Hcini et al. (2024) [19] worked on CNN and Vision
Transformer (ViT)-based methods for Alzheimer's early detection using ADNI and OASIS datasets, reporting an
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average accuracy of 97.70%. This comprehensive review compared the transformative impact of hybrid deep models
in medical imaging. Kang et al. (2023) [20] proposed a Learnable Counter-Condition Analysis framework for
diagnosing neurological disorders through functional connectivity data from ABIDE, ADNI, and REST-meta-MDD
datasets, achieving 77.69% accuracy. This innovative counterfactual learning approach enhanced model
interpretability and robustness in complex brain network analyses.

3. METHODOLOGY

We propose a robust multimodal deep learning framework for the early detection and -classification of
neurodegenerative diseases, specifically AD and Parkinson ’s disease, using grayscale brain imaging data enriched
with wavelet-based handcrafted features. Our approach is rooted in combining both convolutional feature extraction
and signal decomposition techniques to develop a more discriminative and context-aware classification model. The
proposed pipeline encompasses five key stages: data acquisition, preprocessing, feature extraction, data
normalization and transformation, and finally, the design and training of a multimodal attention-based neural
network.

The proposed method lies in the integration of multimodal inputs via an attention-based deep learning architecture.
We design a dual-branch neural network capable of processing both image and wavelet features in parallel. The image
processing branch employs a traditional CNN composed of three convolutional blocks, each followed by a non-linear
activation function and a pooling layer. These layers ever more capture higher-level spatial features and compress
the input into a 128-dimensional feature representation with equation (1).

Simultaneously, the wavelet feature branch utilizes a two-layer fully connected neural network to project the 2048-
dimensional wavelet feature vector into a compact 128-dimensional latent space with equation (2). This projection is
crucial to ensure that both modalities share a common feature space, enabling meaningful interactions between them.

Ximg — RN*1*128*128 (1)
xwav — pN=2048 (1)

To enable the model to capture most informative parts of each modality, a multi-head attention mechanism is used.
This component processes the concatenated image and wavelet features, modeling dependencies and contextual
interactions between the two. The attention mechanism computes pair wise relevance scores between modalities and
outputs a weighted sum that enhances salient features while suppressing irrelevant ones. The attention output is then
aggregated via average pooling to form a unified feature representation.

3.1 Data set

The dataset utilized in this study comprises three categories of brain scan images: Alzheimer’s, Parkinson’s, and
normal (healthy) control samples. Each category is stored in a separate directory. The images, originally stored in
diverse formats, are loaded into the system using an automated script that traverses the directory structure and reads
all available files. For classification purposes, each image is assigned a numeric label based on its category.
Specifically, Alzheimer’s images are assigned a label of 0, Parkinson’s images a label of 1, and normal images a label
of 2 as show in figure 1, 2 and 3. This labeling strategy allows for straightforward integration into supervised learning
models.

Normal - 1 Normal - 2 Normal - 3 Normal - 4 Normal - 5

Figure1 Figure 1 sample images of normal brain
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Figure 2 sample images of Alzheimers brain

Parkinson - 1 Parkinson - 2 Parkinson - 3 Parkinson - 4 Parkinson - 5

Figure3 sample images of Parkinson brain

To standardize the input data and ensure compatibility with neural networks, each grayscale image is resized to a
fixed resolution of 128 by 128 pixels. This resizing operation is essential not only to reduce computational complexity
but also to enable batch processing during training. Grayscale conversion is performed to ensure uniformity in the
input modality, since color information is not crucial in medical imaging of this type and may introduce unnecessary
noise. In cases where image files are unreadable or corrupted, a fail-safe mechanism skips the file and logs its path
for reference, ensuring robust dataset loading.

In addition to pixel-level intensity information derived from raw images, we employ discrete wavelet transform
(DWT) to extract handcrafted features that encapsulate spatial-frequency domain characteristics with equation (3).
Wavelet transform is particularly useful for capturing localized variations in brain structures and highlighting subtle
textural patterns that may be indicative of disease progression.

DWT(I) = (cA,cH,cV,cD)  (3)

We use the Haar wavelet function to perform a two-dimensional decomposition of each image into four sub-bands:
approximation (low frequency) and three detail coefficients corresponding to horizontal, vertical, and diagonal
directions. The approximation sub-band retains the majority of structural information, while the detail components
emphasize edge-like features. The coefficients from these sub-bands are flattened and concatenated into a single
feature vector. To maintain a consistent input size across all samples, only the first 2048 coefficients are retained.
This dimensionality reduction not only ensures computational efficiency but also mitigates the curse of
dimensionality.

After wavelet features are extracted, did z-score normalization using the StandardScaler method. This transforms the
feature values to have zero mean and unit variance with equation (4) and (5), a critical step for stabilizing gradient
descent during network training. Without normalization, differences in feature scales could dominate the
optimization process and degrade model performance.

RY% = ReLU(X"%W, + b,) 4)
2"% = ReLU(hy"*Ws + bs) (5)

In parallel, the pixel intensity values of the images are scaled to lie within the [0, 1] range. This min-max
normalization facilitates faster convergence during training and ensures numerical stability. Furthermore, the
grayscale images are reshaped to include a channel dimension, thus converting them into a format compatible with
PyTorch’s convolutional neural layers. The resulting tensor has a shape of (batch_size, 1, height, width), where the
single channel denotes the grayscale modality as shown in Figure 4.
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Training vs Test Class Distribution

B Train
B Test

1750 A

1500
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1000

Sample Count

750

250 4

Alzheimer's Normal Parkinson
Class Labels

Figure 4 numbers of samples for train and test
4. RESULT AND ANALYSIS

The multimodal neural network was trained for a total of 10 epochs using full-batch gradient descent due to the
manageable size of the dataset. Each training iteration involved setting the model to training mode, transferring the
grayscale brain images and wavelet feature vectors to the GPU device, and forwarding them through the dual-input
architecture. The model outputs were compared against the ground truth labels using the cross-entropy loss function,
and weight updates were performed using the Adam optimizer. Gradients were computed via backpropagation and
updated accordingly after each epoch. Throughout the training process, a steady decline in training loss was observed,
starting from 1.2235 and converging to 0.4428 by the final epoch, while training accuracy improved consistently from
57.66% to 76.87%. Validation accuracy showed a significant rise from an initial 35.56% to a peak of 81.21% around
the 7th epoch, indicating strong generalization performance. Concurrently, validation loss dropped sharply from
12.47 to 0.40, reflecting the model’s increasing ability to make accurate predictions on unseen data is illustrated in
Figure 5. These learning dynamics suggest that the proposed model is capable of effectively learning discriminative
representations from both raw imaging and wavelet-based handcrafted features, and it generalizes well to validation
data without signs of overfitting.

Accuracy Curve Loss Curve

—— Training Accuracy

ra —— Training Loss
~— Validation Accuracy

12 Validation Loss

Loss.
o

6 8 10 12
Epoch Epoch

Figure 5 learning curves of proposed model

From the Figure 6 the model demonstrated robust classification performance across the three target classes:
Alzheimer’s disease, Parkinson’s disease, and Normal (healthy control). Precision, recall, and F1-score were used as
primary evaluation metrics to assess the model’s effectiveness in identifying each class. For Alzheimer’s cases, the
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model achieved a precision of 0.88, indicating a low false positive rate, and a recall of 0.83, reflecting its capability
to correctly identify true Alzheimer’s cases. This yielded an Fi-score of 0.85, which highlights the balance between
precision and recall. The model also performed effectively in distinguishing healthy individuals, attaining a precision
of 0.83, a recall of 0.85, and an Fi-score of 0.89, suggesting reliable identification of normal cases with minimal
misclassification. Remarkably, the model showed the highest performance in classifying Parkinson’s disease, with a
precision of 0.89, a recall of 0.91, and an outstanding F1-score of 0.95.

Classification Metrics by Class

EZO Precision
1.0 N Recall
=3 Fl-score

0.8 4

Score

0.4+

0.2+

0.0
Alzheimers Normal Parkinson

Class

Figure 6 classification performance of proposed model

From table 1 it is clearly observed that from Qadri et al. (2024) [1] introduced the MADDi framework, integrating
LLMs with multimodal data to classify Alzheimer's disease and mild cognitive impairment (MCI) using the
NeuroBioBank dataset, achieving an accuracy of 74%. Zhao et al. (2024) [5] employed a Multi-Head Self-Attention
Fully Convolutional Network (MHSA-FCN) combined with MLP for ASD classification on the ABIDE dataset,
reporting an accuracy of 83.80%. Gour et al. (2023) [17] focused on classifying raw EEG data using transformer-
based architectures on the TDBRAIN dataset, attaining an accuracy of 68.49%. Roy et al. (2025) [18] proposed a
Bayesian Variational Autoencoder with multi-head attention mechanisms for anomaly detection in brain MRI, tested
on the BraTS2020 dataset, and achieved a ROC AUC and PR AUC of 0.83%. Kang et al. (2023) [20] developed a
counterfactual learning framework utilizing functional connectivity data from ABIDE, ADNI, and REST-meta-MDD
datasets, achieving an accuracy of 77.69%.

Table 1 comparison of proposed model with prescribed models

Reference Methodology Dataset Used Accuracy
Percentage

Qadri, et.al(2024) [1] MADDIi, LLMs and MCI NeuroBioBank 74%
MHSA-FCN, ASD and MLP 83.80%

Zhao, et.al(2024) [5] ABIDE

Gour, et.al(2023) [17] classification of raw EEG TDBRAIN 68.49%

Roy, et.al(2025) [18] Anomaly detection performance BraTS2020 83%

Kang, ret.al(2023) [20] | Counterfactual Learning, ABIDE,ADNI and REST- 77.690%
functional connectivity meta-MDD

Proposed model Multi head attention with LSTM ABIDE,ADNI and REST- 85.0%

meta-MDD
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From the analysis of true and misclassified samples was conducted across the three diagnostic categories: Alzheimer’s
disease, Normal (healthy), and Parkinson’s disease. Out of 376 Alzheimer’s samples, 72 were misclassified,
highlighting a modest error rate that suggests the model occasionally confuses early-stage Alzheimer’s features with
either normal aging or other neurodegenerative traits. For the Normal class, 405 samples were tested, of which 58
were misclassified. This reflects the model’s overall stability in identifying healthy individuals, though some were
likely misidentified due to overlapping anatomical patterns commonly observed in mild cases of neurological
degeneration. Most notably, the model exhibited strong performance in classifying Parkinson’s disease, with only 51
out of 359 samples misclassified as shown in Figure 7.

True vs Misclassified Samples per Class
405

EmA Correctly Classified
B Misclassified

359

Sample Count

150 A

100 1

50 1

Nermal

Alzheimer's

Parkinson

Figure 7 class wise comparison of correctly and misclassified samples

An ablation study was conducted to systematically evaluate the individual contributions of each component within
the proposed Multimodal Attention Network. The full model, integrating both wavelet-transformed features and raw
image data with a multi-head self-attention mechanism as shown in table 2, achieved the highest classification
accuracy of 85%, supported by a parameter count of approximately 1.2 million, underscoring the efficacy of the
multimodal fusion and attention-driven representation learning. When isolating the image modality in the CNN
OnlyNet, accuracy dropped to 81%, highlighting the added discriminatory power wavelet features provide in
capturing fine-grained texture variations inherent to neurodegenerative conditions. Conversely, the Wavelet
OnlyNet, which excluded the image pathway and relied solely on wavelet features, attained a lower accuracy of 79%,
despite a similar parameter count to the full model. This suggests that while wavelet features are powerful, the lack
of spatial structural information from images limits standalone performance. The No Attention Net, which retained
both modalities but removed the attention mechanism in favor of simple feature concatenation, further decreased
performance to 78%, indicating the pivotal role of attention in learning meaningful inter-modal relationships.
Interestingly, the Shallow Wavelet Net, which maintained multimodal input and attention but reduced wavelet
feature depth, still achieved a competitive accuracy of 8 3% with significantly fewer parameters (~700K), pointing to
the model's potential for lightweight deployment without substantial performance compromise.

Table 2 ablation models and their performance
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CNN Image only No No Same as None (image | ~180K | 0.81
OnlyNet above only)
Wavelet Wavelet only No Linear No None (wavelet | ~1.1M | 0.79
OnlyNet ReLU (64 only)

dim)
No Image + Wavelet No Same as Same as Direct concat | ~1.3M | 0.78
Attention full model | full model
Net (128 dim)
Shallow Image + Wavelet Multi-head | Linear Same as Concatenation | ~700K | 0.83
Wavelet Self-Attn ReLU (128 | full model | + Attention
Net dim only)

5. CONCLUSION

The integration of wavelet-based handcrafted features with deep learning architectures, augmented by multi-head
attention mechanisms, presents a promising avenue for the early detection of neurodegenerative diseases such as
Alzheimer's and Parkinson's. The dual-branch neural network effectively captures both spatial and frequency-
domain information, leading to enhanced classification performance. The model's superior accuracy, particularly in
distinguishing PD cases, highlights its potential clinical utility. Ablation studies confirm the critical role of each
component, emphasizing the importance of multimodal data fusion and attention mechanisms. Future work will
focus on expanding the dataset, incorporating additional modalities, and exploring real-time deployment scenarios
to further validate and enhance the model's applicability in clinical settings.
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