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This study introduces a robust multimodal deep learning framework aimed at the early detection 

and classification of neurodegenerative diseases, specifically Alzheimer's Disease (AD) and 

Parkinson's Disease (PD). Leveraging grayscale brain imaging data, the approach integrates 

discrete wavelet transform (DWT) to extract handcrafted features that encapsulate spatial-

frequency domain characteristics. The proposed architecture comprises a dual-branch neural 

network: a convolutional neural network (CNN) branch processes raw images, while a fully 

connected network handles the 2048-dimensional wavelet features, projecting them into a 

unified 128-dimensional latent space. A multi-head attention mechanism is employed to fuse 

these modalities, enhancing salient features and suppressing irrelevant ones. The model was 

trained over 10 epochs using full-batch gradient descent, achieving a peak validation accuracy of 

81.21% and a final training accuracy of 76.87%. Class-wise performance metrics revealed F1-

scores of 0.85 for AD, 0.95 for PD, and 0.89 for healthy controls. An ablation study underscored 

the significance of each component, with the full model attaining an accuracy of 85%, 

outperforming variants lacking either modality or the attention mechanism. 

Keywords: Neurodegenerative, multi head attention, CNN, Wavelet features, Parkinson's 

disease 
 

1. Introduction 

Neurodegenerative disorders such as AD, PD, Huntington’s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) 

represent a significant global health burden due to their progressive nature, lack of curative treatments, and 

increasing prevalence in aging populations. The socioeconomic and emotional impact of these disorders is profound, 

necessitating early detection and diagnosis to initiate timely interventions and slow disease progression. Even though 

advances in medical imaging and neurological assessments, the accurate and early identification of NDDs remains a 

challenge. Radiographic imaging samples such as Magnetic Resonance Imaging (MRI), Positron Emission 

Tomography (PET), and Computed Tomography (CT) have emerged as important tools in this regard. However, 

extracting complex patterns from these samples is a complex task, often changed by variability in image quality, slight 

anatomical changes, and the need for expert annotation. 

Recent advances in neural networks, particularly in the domain of deep learning, have introduced robust 

computational methods capable of analyzing medical images and identifying complex patterns investigative of 

disease. Among these, CNNs have emerged as a basic architecture, widely used for automatically learn hierarchical 

spatial features from large volumes of data. CNNs have demonstrated remarkable success across numerous medical 

imaging tasks, including tumor detection, organ segmentation, and disease classification. These models can capture 

local patterns, edges, and anatomical detecting has positioned them as powerful tools in radiographic analysis for 

NDDs. 

In the context of neuro imaging, CNNs are particularly useful to learn modeling 2D and 3D structural changes in 

brain scans, such as thinning, ventricle enlargement, or tissue atrophy—common markers in conditions like AD and 

PD. However, despite these advantages, standard CNN architectures often struggle with capturing multi-scale 
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features—those spanning across both fine and rude spatial resolutions—which are crucial in identifying early-stage 

signs of neurodegeneration. 

One of the limitations of traditional CNNs is their fixed receptive field, which restricts the network's ability to 

contextualize small variations over broader regions. While deeper networks can theoretically capture global features, 

they are prone to overfitting, especially when dealing with medical datasets that are often small and imbalanced. 

Additionally, deeper models may lose fine-grained detail during repeated convolution and pooling operations. This 

detail is vital in the medical domain, where even small abnormalities in brain image can serve as early indicators of 

progressive neurological decline. 

To overcome these limitations, researchers have used transfer learning and pre-trained deep learning models. Pre-

trained CNNs, such as VGGNet, ResNet, DenseNet, Inception, and EfficientNet, trained on large-scale natural image 

datasets like ImageNet, can be fine-tuned for medical imaging applications. These models provide a strong starting 

point by including generalized features—such as edge detectors, shape descriptors, and texture filters—that are 

transferable to medical domains. By reusing learned filters from earlier convolutional layers and adapting the deeper 

layers through fine-tuning, pre-trained models can achieve high accuracy even with limited annotated medical data. 

For example, ResNet, with its residual connections, allows for very deep architectures without vanishing gradients, 

making it suitable for learning complex feature hierarchies present in 3D brain images. Similarly, DenseNet promotes 

feature reuse across layers, improving efficiency and potentially capturing both local and global contextual 

information. These models, when adapted to neuroimaging, have demonstrated effectiveness in classifying different 

stages of Alzheimer’s and Parkinson’s disease, distinguishing between mild cognitive impairment (MCI) and full-

blown dementia, and even detecting subclinical changes in healthy individuals at risk. 

However, even with pre-trained networks, challenges remain. Standard CNNs, whether trained from scratch or fine-

tuned, still rely heavily on spatial convolutional filters, which may not effectively capture non-local dependencies or 

long-range feature interactions across different brain regions. Neurodegenerative changes are not always localized to 

one area but often manifest as distributed anomalies across functionally connected brain regions. This limitation has 

led to the integration of attention mechanisms in CNN-based models, allowing the network to focus on the most 

informative parts of the image. 

To address these challenges, a novel framework that synergizes Wavelet-Based Feature Extraction with Multi-Head 

Attention Mechanisms for robust and interpretable early detection of neurodegenerative disorders. Wavelet 

transforms have long been recognized for their multi-resolution capabilities and ability to isolate local variations in 

medical images. By decomposing radiographic scans into hierarchical frequency sub-bands, wavelet-based 

techniques can effectively highlight texture variations, edge patterns, and structural inconsistencies that might be 

overlooked by traditional convolutional operations. 

The core motivation behind integrating wavelet transforms into the feature extraction pipeline is to retain both global 

context and localized anomalies across various frequency scales. These wavelet-derived features are subsequently 

fused using an attention-driven architecture, enabling the model to prioritize the most diagnostically relevant 

regions. Particularly, the Multi-Head Attention (MHA) mechanism, inspired by the Transformer architecture, is 

incorporated to assign dynamic weights to different feature channels, thereby enhancing the network’s ability to 

model long-range dependencies and complex feature interactions. 

Unlike conventional CNNs that primarily focus on spatial patterns, attention-based models empower the system to 

learn contextual relevance, which is particularly valuable in neurodegenerative imaging, where pathological signs are 

dispersed and vary across patients. The inclusion of MHA facilitates a global understanding of the brain’s 

morphological patterns while maintaining a sharp focus on subtle deviations that signal early neurodegenerative 

changes. 

Furthermore, the architecture employs a Radiographic Feature Fusion Module, which combines wavelet-

decomposed features from multiple imaging methods (where available) or from diverse structural brain regions. This 

fusion strategy enriches the representation power of the network and contributes to robust classification performance 

across multiple NDD categories. The fused features are processed through a classification head designed to 
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distinguish among healthy, Alzheimer's, Parkinson’s, and other conditions using high-dimensional representations 

derived from the attention-augmented wavelet pipeline. 

2. RELATED WORK 

Qadri et al. (2024) [1] implemented MADDi method with Large Language Models (LLMs) to enhance Mild Cognitive 

Impairment (MCI) detection using the NeuroBioBank dataset, and achieving an accuracy of 74%. This approach uses 

deep semantic feature extraction, though it showed better performance, but need improvement for clinical 

application. Yang et al. (2024) [2] proposed a hybrid method with Wav2Vec2.0, TF-IDF, and Word2Vec in features 

extraction for Alzheimer's detection, evaluated on NCMMSC2021 and ADReSS datasets. This method achieved an 

accuracy of 91.60%, by combining speech representations with textual features for early prediction. Khatri et al. 

(2024) [3] worked on structural MRI features to differentiate AD and Mild Cognitive Impairment (MCI) cases using 

the ADNI dataset, reaching a notable 94.31% accuracy. This work uses the neuroimaging biomarkers when improved 

by advanced feature engineering. Chen et al. (2024) [4] proposed a model with a pyramid squeeze attention 

mechanisms for Alzheimer's diagnosis from MRI images, evaluated on the ADNI dataset. This model achieved 

92.60% accuracy; they used attention-based deep networks in improving sensitivity to slight anatomical changes in 

the model. 

Zhao et al. (2024) [5] developed the MHSA-FCN model combining Multi-Head Self-Attention with Fully 

Convolutional Networks and Multilayer Perceptrons (MLP) for Autism Spectrum Disorder (ASD) detection using 

ABIDE, achieving 83.80% accuracy. Bi et al. (2025) [6] proposed Lightweight Feature Models (LFMs) to diagnose 

Alzheimer's Disease from MRI data, utilizing the ADNI dataset and got an accuracy of 97.80%. This model need to 

perform yet highly effective models demonstrated strong diagnostic systems. Katkam et al. (2025) [7] implemented 

DenseNet-169 combined with DeepLabV3+ for protein and neuropeptide analysis using Swiss-Prot and NeuroPep 

datasets, achieving an accuracy of 99.27%. This model provided an effective approach for molecular-level Alzheimer's 

biomarker detection. Wu et al. (2025) [8] implemented a hybrid models with 2D-LSTM networks with RNNs to detect 

Alzheimer's disease with ADNI data, got an accuracy of 96.92%. With the use of sequential modeling techniques, they 

captured temporal dependencies that is critical for cognitive disorder analysis. Rahim et al. (2025) [9] worked on 

early Alzheimer's progression from stable MCI to progressive MCI/AD using sMRI data, achieving 91% accuracy with 

the ADNI dataset.  

Zhang et al. (2023) [10] proposed  Node2Vec and LINE graph embedding algorithms for disease prediction based on 

DisGeNET and STRING datasets, achieving 91% accuracy. This graph-based approach will extract complex 

relationships among genetic factors involved in neurological disorders. Sun et al. (2023) [11] implemented a 3D 

ResNet-50 framework that combines MRI images and Electronic Health Record (EHR) data for Alzheimer's detection 

using the ADNI dataset, achieving an 89.90% accuracy. Chen et al. (2022) [12] proposed the NeuroPred-CLQ and 

Temporal Convolutional Networks (TCN) for molecular feature prediction on Swiss-Prot and NeuroPep datasets, got 

94.20% accuracy.  

Zhao et al. (2022) [13] worked on High-Frequency Oscillations (HFOs) detected via MEG for neurological diagnosis, 

achieving 88.60% accuracy. This technique provides new insights into the electrophysiological biomarkers of brain 

disorders, particularly useful for epilepsy and dementia. Zhang et al. (2023) [14] united structural MRI and functional 

MRI data for Alzheimer's detection with the ADNI dataset, attaining an accuracy of 92.40%. This multimodal 

approach captured both anatomical and functional features connected with AD. Golovanevsky et al. (2022) [15] 

developed a model for MCI and AD classification based purely on MRI data from ADNI, achieving 96.88% accuracy. 

Kumar Ravikanti et al. (2023) [16] implemented an EEG-based deep learning framework integrating RNN, CNN, and 

OTA-LSTM modules, achieving a 98% accuracy on the ADNI dataset. This multi-architecture system provided robust 

performance for brain signal-based Alzheimer's detection. Gour et al. (2023) [17] proposed a deep learning model for 

classifying psychiatric dysfunction from raw EEG signals using the TDBRAIN dataset, achieving 68.49% accuracy. 

Roy et al. (2025) [18] implemented a Bayesian Autoencoder for medical anomaly detection using the BraTS2020 

dataset, achieving 83% accuracy. This uncertainty-aware approach enhanced model reliability in brain MRI analysis, 

particularly for detecting anomalies in tumor studies. Hcini et al. (2024) [19] worked on  CNN and Vision 

Transformer (ViT)-based methods for Alzheimer's early detection using ADNI and OASIS datasets, reporting an 
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average accuracy of 97.70%. This comprehensive review compared the transformative impact of hybrid deep models 

in medical imaging. Kang et al. (2023) [20] proposed a Learnable Counter-Condition Analysis framework for 

diagnosing neurological disorders through functional connectivity data from ABIDE, ADNI, and REST-meta-MDD 

datasets, achieving 77.69% accuracy. This innovative counterfactual learning approach enhanced model 

interpretability and robustness in complex brain network analyses. 

3. METHODOLOGY 

We propose a robust multimodal deep learning framework for the early detection and classification of 

neurodegenerative diseases, specifically AD and Parkinson ’s disease, using grayscale brain imaging data enriched 

with wavelet-based handcrafted features. Our approach is rooted in combining both convolutional feature extraction 

and signal decomposition techniques to develop a more discriminative and context-aware classification model. The 

proposed pipeline encompasses five key stages: data acquisition, preprocessing, feature extraction, data 

normalization and transformation, and finally, the design and training of a multimodal attention-based neural 

network. 

The proposed method lies in the integration of multimodal inputs via an attention-based deep learning architecture. 

We design a dual-branch neural network capable of processing both image and wavelet features in parallel. The image 

processing branch employs a traditional CNN composed of three convolutional blocks, each followed by a non-linear 

activation function and a pooling layer. These layers ever more capture higher-level spatial features and compress 

the input into a 128-dimensional feature representation with equation (1). 

Simultaneously, the wavelet feature branch utilizes a two-layer fully connected neural network to project the 2048-

dimensional wavelet feature vector into a compact 128-dimensional latent space with equation (2). This projection is 

crucial to ensure that both modalities share a common feature space, enabling meaningful interactions between them. 

𝑋𝑖𝑚𝑔 = 𝑅𝑁∗1∗128∗128                  (1) 

𝑋𝑤𝑎𝑣 = 𝑅𝑁∗2048                  (1) 

To enable the model to capture most informative parts of each modality, a multi-head attention mechanism is used. 

This component processes the concatenated image and wavelet features, modeling dependencies and contextual 

interactions between the two. The attention mechanism computes pair wise relevance scores between modalities and 

outputs a weighted sum that enhances salient features while suppressing irrelevant ones. The attention output is then 

aggregated via average pooling to form a unified feature representation. 

3.1 Data set 

The dataset utilized in this study comprises three categories of brain scan images: Alzheimer’s, Parkinson’s, and 

normal (healthy) control samples. Each category is stored in a separate directory. The images, originally stored in 

diverse formats, are loaded into the system using an automated script that traverses the directory structure and reads 

all available files. For classification purposes, each image is assigned a numeric label based on its category. 

Specifically, Alzheimer’s images are assigned a label of 0, Parkinson’s images a label of 1, and normal images a label 

of 2 as show in figure 1, 2 and 3. This labeling strategy allows for straightforward integration into supervised learning 

models. 

 

Figure1 Figure 1 sample images of normal brain 
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Figure 2 sample images of Alzheimers brain 

 

Figure3 sample images of Parkinson brain 

To standardize the input data and ensure compatibility with neural networks, each grayscale image is resized to a 

fixed resolution of 128 by 128 pixels. This resizing operation is essential not only to reduce computational complexity 

but also to enable batch processing during training. Grayscale conversion is performed to ensure uniformity in the 

input modality, since color information is not crucial in medical imaging of this type and may introduce unnecessary 

noise. In cases where image files are unreadable or corrupted, a fail-safe mechanism skips the file and logs its path 

for reference, ensuring robust dataset loading. 

In addition to pixel-level intensity information derived from raw images, we employ discrete wavelet transform 

(DWT) to extract handcrafted features that encapsulate spatial-frequency domain characteristics with equation (3). 

Wavelet transform is particularly useful for capturing localized variations in brain structures and highlighting subtle 

textural patterns that may be indicative of disease progression. 

𝐷𝑊𝑇(𝐼) = (𝑐𝐴, 𝑐𝐻, 𝑐𝑉, 𝑐𝐷)       (3) 

We use the Haar wavelet function to perform a two-dimensional decomposition of each image into four sub-bands: 

approximation (low frequency) and three detail coefficients corresponding to horizontal, vertical, and diagonal 

directions. The approximation sub-band retains the majority of structural information, while the detail components 

emphasize edge-like features. The coefficients from these sub-bands are flattened and concatenated into a single 

feature vector. To maintain a consistent input size across all samples, only the first 2048 coefficients are retained. 

This dimensionality reduction not only ensures computational efficiency but also mitigates the curse of 

dimensionality. 

After wavelet features are extracted, did z-score normalization using the StandardScaler method. This transforms the 

feature values to have zero mean and unit variance with equation (4) and (5), a critical step for stabilizing gradient 

descent during network training. Without normalization, differences in feature scales could dominate the 

optimization process and degrade model performance. 

ℎ1
𝑤𝑎𝑣 = 𝑅𝑒𝐿𝑈(𝑋𝑤𝑎𝑣𝑊4 + 𝑏4)            (4) 

𝑧1
𝑤𝑎𝑣 = 𝑅𝑒𝐿𝑈(ℎ1

𝑤𝑎𝑣𝑊5 + 𝑏5)            (5) 

In parallel, the pixel intensity values of the images are scaled to lie within the [0, 1] range. This min-max 

normalization facilitates faster convergence during training and ensures numerical stability. Furthermore, the 

grayscale images are reshaped to include a channel dimension, thus converting them into a format compatible with 

PyTorch’s convolutional neural layers. The resulting tensor has a shape of (batch_size, 1, height, width), where the 

single channel denotes the grayscale modality as shown in Figure 4. 
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Figure 4 numbers of samples for train and test 

4. RESULT AND ANALYSIS 

The multimodal neural network was trained for a total of 10 epochs using full-batch gradient descent due to the 

manageable size of the dataset. Each training iteration involved setting the model to training mode, transferring the 

grayscale brain images and wavelet feature vectors to the GPU device, and forwarding them through the dual-input 

architecture. The model outputs were compared against the ground truth labels using the cross-entropy loss function, 

and weight updates were performed using the Adam optimizer. Gradients were computed via backpropagation and 

updated accordingly after each epoch. Throughout the training process, a steady decline in training loss was observed, 

starting from 1.2235 and converging to 0.4428 by the final epoch, while training accuracy improved consistently from 

57.66% to 76.87%. Validation accuracy showed a significant rise from an initial 35.56% to a peak of 81.21% around 

the 7th epoch, indicating strong generalization performance. Concurrently, validation loss dropped sharply from 

12.47 to 0.40, reflecting the model’s increasing ability to make accurate predictions on unseen data is illustrated in 

Figure 5. These learning dynamics suggest that the proposed model is capable of effectively learning discriminative 

representations from both raw imaging and wavelet-based handcrafted features, and it generalizes well to validation 

data without signs of overfitting.  

 

Figure 5 learning curves of proposed model 

From the Figure 6 the model demonstrated robust classification performance across the three target classes: 

Alzheimer’s disease, Parkinson’s disease, and Normal (healthy control). Precision, recall, and F1-score were used as 

primary evaluation metrics to assess the model’s effectiveness in identifying each class. For Alzheimer’s cases, the 
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model achieved a precision of 0.88, indicating a low false positive rate, and a recall of 0.83, reflecting its capability 

to correctly identify true Alzheimer’s cases. This yielded an F1-score of 0.85, which highlights the balance between 

precision and recall. The model also performed effectively in distinguishing healthy individuals, attaining a precision 

of 0.83, a recall of 0.85, and an F1-score of 0.89, suggesting reliable identification of normal cases with minimal 

misclassification. Remarkably, the model showed the highest performance in classifying Parkinson’s disease, with a 

precision of 0.89, a recall of 0.91, and an outstanding F1-score of 0.95.  

 

Figure 6 classification performance of proposed model 

From table 1 it is clearly observed that from Qadri et al. (2024) [1] introduced the MADDi framework, integrating 

LLMs with multimodal data to classify Alzheimer's disease and mild cognitive impairment (MCI) using the 

NeuroBioBank dataset, achieving an accuracy of 74%. Zhao et al. (2024) [5] employed a Multi-Head Self-Attention 

Fully Convolutional Network (MHSA-FCN) combined with MLP for ASD classification on the ABIDE dataset, 

reporting an accuracy of 83.80%. Gour et al. (2023) [17] focused on classifying raw EEG data using transformer-

based architectures on the TDBRAIN dataset, attaining an accuracy of 68.49%. Roy et al. (2025) [18] proposed a 

Bayesian Variational Autoencoder with multi-head attention mechanisms for anomaly detection in brain MRI, tested 

on the BraTS2020 dataset, and achieved a ROC AUC and PR AUC of 0.83%. Kang et al. (2023) [20] developed a 

counterfactual learning framework utilizing functional connectivity data from ABIDE, ADNI, and REST-meta-MDD 

datasets, achieving an accuracy of 77.69%. 

Table 1 comparison of proposed model with prescribed models 

Reference Methodology Dataset Used Accuracy 

Percentage 

Qadri, et.al(2024) [1] MADDi, LLMs and MCI NeuroBioBank 74% 

Zhao,  et.al(2024) [5] 
MHSA-FCN, ASD and MLP 

ABIDE 
83.80% 

Gour, et.al(2023) [17] classification of raw EEG  TDBRAIN 68.49% 

Roy, et.al(2025) [18] Anomaly detection performance  BraTS2020 83% 

Kang, ret.al(2023) [20] Counterfactual Learning, 

functional connectivity 

ABIDE,ADNI and REST-

meta-MDD 

77.69% 

Proposed model Multi head attention with LSTM ABIDE,ADNI and REST-

meta-MDD 

85.0% 
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From the analysis of true and misclassified samples was conducted across the three diagnostic categories: Alzheimer’s 

disease, Normal (healthy), and Parkinson’s disease. Out of 376 Alzheimer’s samples, 72 were misclassified, 

highlighting a modest error rate that suggests the model occasionally confuses early-stage Alzheimer’s features with 

either normal aging or other neurodegenerative traits. For the Normal class, 405 samples were tested, of which 58 

were misclassified. This reflects the model’s overall stability in identifying healthy individuals, though some were 

likely misidentified due to overlapping anatomical patterns commonly observed in mild cases of neurological 

degeneration. Most notably, the model exhibited strong performance in classifying Parkinson’s disease, with only 51 

out of 359 samples misclassified as shown in Figure 7.  

 

Figure 7 class wise comparison of correctly and misclassified samples 

An ablation study was conducted to systematically evaluate the individual contributions of each component within 

the proposed Multimodal Attention Network. The full model, integrating both wavelet-transformed features and raw 

image data with a multi-head self-attention mechanism as shown in table 2, achieved the highest classification 

accuracy of 85%, supported by a parameter count of approximately 1.2 million, underscoring the efficacy of the 

multimodal fusion and attention-driven representation learning. When isolating the image modality in the CNN 

OnlyNet, accuracy dropped to 81%, highlighting the added discriminatory power wavelet features provide in 

capturing fine-grained texture variations inherent to neurodegenerative conditions. Conversely, the Wavelet 

OnlyNet, which excluded the image pathway and relied solely on wavelet features, attained a lower accuracy of 79%, 

despite a similar parameter count to the full model. This suggests that while wavelet features are powerful, the lack 

of spatial structural information from images limits standalone performance. The No Attention Net, which retained 

both modalities but removed the attention mechanism in favor of simple feature concatenation, further decreased 

performance to 78%, indicating the pivotal role of attention in learning meaningful inter-modal relationships. 

Interestingly, the Shallow Wavelet Net, which maintained multimodal input and attention but reduced wavelet 

feature depth, still achieved a competitive accuracy of 83% with significantly fewer parameters (~700K), pointing to 

the model's potential for lightweight deployment without substantial performance compromise.  

Table 2 ablation models and their performance 

Model 

Variant 

Modalities Used Attention 

Mechanism 

Wavelet 

Feature 

Processing 

Image 

Feature 

Processing 

Fusion 

Method 

Params  ACC 

Multimodal 

Attention 

Net 

Image + Wavelet Multi-head 

Self-Attn 

Linear 

ReLU (128 

dim) 

3 Conv + 

ReLU + 

Pool + 

AvgPool 

Concatenation 

+ Attention 

~1.2M 0.85 
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CNN 

OnlyNet 

Image only No No Same as 

above 

None (image 

only) 

~180K 0.81 

Wavelet 

OnlyNet 

Wavelet only No Linear 

ReLU (64 

dim) 

No None (wavelet 

only) 

~1.1M 0.79 

No 

Attention 

Net 

Image + Wavelet No Same as 

full model 

(128 dim) 

Same as 

full model 

Direct concat ~1.3M 0.78 

Shallow 

Wavelet 

Net 

Image + Wavelet Multi-head 

Self-Attn 

Linear 

ReLU (128 

dim only) 

Same as 

full model 

Concatenation 

+ Attention 

~700K 0.83 

5. CONCLUSION 

The integration of wavelet-based handcrafted features with deep learning architectures, augmented by multi-head 

attention mechanisms, presents a promising avenue for the early detection of neurodegenerative diseases such as 

Alzheimer's and Parkinson's. The dual-branch neural network effectively captures both spatial and frequency-

domain information, leading to enhanced classification performance. The model's superior accuracy, particularly in 

distinguishing PD cases, highlights its potential clinical utility. Ablation studies confirm the critical role of each 

component, emphasizing the importance of multimodal data fusion and attention mechanisms. Future work will 

focus on expanding the dataset, incorporating additional modalities, and exploring real-time deployment scenarios 

to further validate and enhance the model's applicability in clinical settings. 
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